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In this paper, we propose a robust local descriptor for face recognition. It consists of two components, one based
on a shearlet-decomposition and the other on local binary pattern (LBP). Shearlets can completely analyze the
singular structures of piecewise smooth images, which is useful since singularities and irregular structures
carry useful information in an underlying image. Furthermore, LBP is effective for describing the edges extracted
by shearlets even when the images contain high level of noise. Experimental results using the Face Recognition
Grand Challenge dataset show that the proposed local descriptor significantly outperforms many widely used
features (e.g., Gabor and deep learning-based features)when the images are corrupted by randomnoise, demon-
strating robustness to noise. In addition, experimental results show promising results for two challenging
datasets which have poor image quality, i.e., a remote face dataset and the Point and Shoot Face Recognition
Challenge dataset.
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1. Introduction

Feature descriptor is a key factor in the performance of many com-
puter vision and pattern recognition applications. A plethora of feature
descriptors has been developed to improve the performance for these
applications. There are several studies that evaluate the performance
of these methods, such as [39,43,44]. These methods can be divided
into two classes: one is learning-based deep features in supervised,
weakly supervised or unsupervised way, attempting to model high-
level abstractions in data by using architectures composed of multiple
non-linear transformations [24]. The other one is traditional local
features, nowadays often called hand-crafted features inspired by neu-
roscience studies, e.g., Weber local descriptor (WLD) [8], Gabor [12],
scale-invariant feature transform (SIFT) [40], and local binary pattern
(LBP) [45].

For learning-based deep features, a typical approach is deep learning
(DL), introduced by Hinton [24]. It performs very well for hand-written
digit recognition [25], face recognition [49,50], human pose estimation
[52] and object recognition [30]. The main criticism of deep learning
comes from the observation that it requires tons of annotated training
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data. Despite the power of deep learning methods, they still lack much
of the functionality needed for realizing this goal entirely [42].

For the class of hand-crafted local features, typical examples are LBP
[45], Gabor [12], and SIFT [40]. These local features achieved very good
performance for texture classification, face recognition and object
recognition. Specifically, Ojala et al. proposed a simple but very power-
ful local descriptor, i.e., local binary pattern (LBP). It is one of the best
performing texture descriptors and has been widely used in various
applications, such as textures classification and face recognition [45].
Chen et al. developed a robust local binary pattern [9]. Liu and Fieguth
proposed a random feature for texture classification [38]. Zhang et al.
proposed to use Gabor and LBP for face recognition [58]. Lowe in-
troduced SIFT, which performs well for matching and recognition
tasks [40].

However, one issue of feature descriptors (learning-based deep
features and hand-crafted local features) is that they are not robust
to the noise present in images. Vincent proposed the denoising
autoencoders (dA) to improve deep learning-based methods [53],
which showed good results when the input data to the autoencoders
was contaminated with noise. In this paper, we propose a local de-
scriptor robust to noise. It is a hand-crafted local feature, which
achieves good performance when the scale of the training set is not
sufficient for deep learning (see Section 3 for details.). The proposed
local descriptor consists of two components. One is based on the
shearlet decomposition and the other on local binary patterns (LBPs).
Shearlets can detect the edges in images even when they have high
level of noise. Furthermore, LBP is effective in describing the edges
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Fig. 1. Frequency support of the shearlets for different values of a and s.
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extracted by shearlets. The proposed descriptor is called LSF since
it combines LBP and shearlet and the shearlet transformation is
performed in the Fourier domain. Experimental results on the Face
Recognition Grand Challenge (FRGC) dataset show that the proposed
local descriptor significantly outperforms many widely used features
(e.g., Gabor and deep learning based features) when noise is present
in the images. In addition, experimental results show promising results
for two challenging datasets which have poor image quality, i.e., a
remote face dataset [5] and the Point and Shoot Face Recognition
Challenge (PaSC) dataset [2].

1.1. Related works

In this section, we introduce some related works and discuss the
difference between these works and the proposed method.

Lim developed the discrete shearlet transform (DST)which provides
efficient multiscale directional representation and showed how to im-
plement the shearlet transform by multiresolution analysis (MRA). He
assessed the performance of DST in image denoising and approximation
applications [35]. Dong et al., [14] and He et al., [23] used shearlets for
texture classification. Different from them, we use shearlets and LBP
for face recognition. In addition, we tested different thresholds and dif-
ferent filters for the shearlet transformation (see Table 2). We found
that only the real part of the shearlet transformation in the Fourier
domain is good for face recognition. We also tested the robustness of
shearlets and LBP over high level of noise and compared to state-of-
the-artmethods, such as the deep learning-basedmethod [24]. Further-
more, we tested the proposed method for two challenging datasets,
i.e., a remote face dataset [5] and PaSC [2], and obtained promising
results.

Face recognition, as one of the typical applications of image analysis
and understanding, has attracted significant attention in many areas
such as entertainment, information security, law enforcement, and sur-
veillance [26,32,60]. There are quite a lot ofmethods presented recently,
e.g., [1,3,4,6,7,11,13,27,41,47,55–58]. Specifically, Danti and Zeng used
shearlets for face recognition and achieved promising results for some
face datasets, i.e., ORL and FERET [11,56]. In contrast, we use shearlet
transform for face recognition in a different setting, that is, a remote
face dataset [5] and PaSC [2]. Zhang et al. [58] used Gabor plus LBP for
face recognition. Zhang et al. [33] used the phase patterns for face recog-
nition. Vu and Caplier [54] enhanced patterns of oriented edges magni-
tude for face recognition and image matching. Tan and Triggs [51]
proposed local texture feature sets for face recognition under difficult
lighting conditions.

In this paper, we employ shearlets and LBP for dealing with heavy
noise in face recognition because the shearlets form robust features
and can detect edges elegantly even in the presence of high level of
noise. Technically, we divide each face into blocks and use an individual
classifier for each block and then combine the similarity scores from all
the blocks for better performance.

2. Method

In this section, we first introduce the shearlet transformation and
LBP. We then discuss methods for combining them to represent face
images.

2.1. Shearlet transform

The continuous wavelet transform provides a decomposition of
a signal over dilated and translated versions of a fixed waveform ψ.
Specifically, for a fixed ψ∈L2(R2), this is defined as the mapping Wψ

with domain L2(R2) such that for g ∈L2(R2)

Wψg a; tð Þ ¼
Z

R2
g uð Þψa;t uð Þdu; ð1Þ
where ψa ,t(u)=a−1ψ(a−1(u− t)) , aN0, t ∈ R2 and ψ is the complex
conjugate. If the function ψ satisfies the admissibility or Calderὸn condi-

tion
R∞
0 jΨðaωÞj2 da

a
¼ 1 for a.e. ω∈ R2 (where Ψ denotes the Fourier

transform of ψ), then ψ is referred to as a wavelet, and any g ∈L2(R2)
can be recovered via the reproducing formula:

g ¼
Z ∞

0

Z
R2

g; ψa;t

D E
ψa;tdt

da
a4

: ð2Þ

Despite the success ofwavelets in signal and image processing appli-
cations, it is known mathematically that traditional wavelets are not
very effective in dealing with multidimensional signals containing dis-
continuities such as edges. This is due to the fact that this transform
is isotropic (the analyzing elements ψa,t are obtained by applying the
same dilation factor for all coordinate directions) and, as a result, it
has a very limited ability to resolve edges and other distributed discon-
tinuities which usually occur in multidimensional data.

In this section, we briefly describe a multi-scale and multi-
directional representation called the shearlet transform [16]. The
shearlet transform combines the power of multi-scale methods with
the ability to capture the geometry of multidimensional signals and is
essentially optimal in representing images containing edges.

The shearlet construction can be considered as a natural extension
of wavelets into two-dimensions [16]. Its representative elements are
defined by the two-dimensional affine system

~ψast xð Þ ¼ detMasj j−1
2 ~ψ M−1

as x−t
� �

: t ∈ R2
n o

; ð3Þ

where

Mas ¼ 1 s
0 1

� �
a 0
0

ffiffiffi
a

p
� �

is a product of a shearing and anisotropic dilationmatrix for (a, s)∈R+×
R. The generating function ~ψ is such that

~Ψ ζð Þ ¼ ~Ψ ζ1; ζ2ð Þ ¼ ~Ψ1 ζ1ð Þ ~Ψ2
ζ2

ζ1

� �
; ð4Þ

where ~Ψ1 is a continuous wavelet for which ~Ψ1 ∈ C∞ðRÞwith supp ~Ψ1⊂
[−2, 1/2] ∪ [1/2, 2], and ~Ψ2 is chosen so that ~Ψ2 ∈ C∞ðRÞ, supp ~Ψ2⊂



Fig. 2. A few atoms from a shearlet dictionary. Each block represents the result of the
shearlet transform for a particular scale and orientation after applying it to a centered
impulse response.
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[−1, 1], with ~Ψ2 N 0 on (−1, 1), and k ~Ψ2k2 ¼ 1. Under these assump-
tions, a function f∈L2(R2) can be represented as

f xð Þ ¼
Z

R2

Z ∞

−∞

Z ∞

0
f ; ~ψast

D E
~ψast xð Þ da

a3
dsdt; ð5Þ

for a ∈ R+, s ∈ R, and t ∈ R2. The operator SH defined by

SH f ; a; s; tð Þ ¼ f ; ~ψast

D E
ð6Þ

is referred to as the continuous shearlet transform of f∈L2(R). It is depen-
dent on the scale variable a, the shear s, and the location t. Frequency
support of the shearlets for different values of a and s is shown in
Fig. 1. In addition, the shearlets are defined on the Cartesian domain
and the various directions are obtained from the action of shearing
transformations.

The collection of discrete shearlets is given by [16,35]

~ψ j;l;k ¼ det Aj j j2~ψ BlAjx−k
� �

: j; l ∈ Z; k ∈ Z2
n o

; ð7Þ

where

B ¼ 1 1
0 1

� �
; A ¼ 2 0

0
ffiffiffi
2

p
� �

:

Note that the discrete shearlet transform is complex. Please refer to
[16,35] for details.
Fig. 3. LBP. (a) A pixel and its eigh
The matrices Aj (i.e., anisotropic scaling matrices) and Bl (i.e., shear
matrices) lead to windows that can be elongated along arbitrary direc-
tions and the geometric structures of singularities in images (Fig. 1).
In fact, one can approximate 2-D piecewise smooth functions with
singularities with nearly optimal approximation rate using shearlets.
In addition, shearlets can completely analyze the singular structures of
piecewise smooth images. These properties of shearlets are useful in
image processing especially since singularities and irregular structures
carry essential information in an underlying image. For example, dis-
continuities in the intensity of an image indicate the presence of edges
[35]. For more details about the discrete shearlets and how to imple-
ment the shearlet transformation in frequency domain, please refer to
[16].

Shearlets form a Parseval frame (tight frame with bounds equal to
1) for L2(R2) given the appropriate choice of the generating function ~ψ
[16]. An M-channel filter bank implementation can be done by using
the techniques given in [17]. As a consequence, its implementation
has a complexity of O(N2 log2(N)) for an N × N image. Fig. 2 shows
some basis elements from a shearlet dictionary.

2.2. Local binary pattern

The basic form of LBP is illustrated in Fig. 3(a) and (b) [45]. The
operator takes as input a local neighborhood around each pixel and
thresholds the neighborhood pixels at the value of the central pixel.
The resulting binary-valued string is then weighted as follows:

LBP Icð Þ ¼ ∑
P−1

i¼0
2is Ii−Icð Þ; ð8Þ

where the parameter Pmeans the number of the neighbors (e.g., P= 8
in Fig. 3), and Ic is the central pixel. Ic and Ii are the gray-level values at c
and i, and s(A) is 1 if A ≥ 0 and 0 otherwise.

2.3. Combining shearlets and LBP

We use the shearlet coefficients and LBP to represent faces. For a
given image, we perform the shearlet transform and then compute
the LBP features of images resulting from the shearlet transform. Specif-
ically, as shown in Fig. 4, given an image or a patch, we have two steps.
For the first step, we perform the shearlet transform. In this step, we
perform the fast Fourier transform (FFT) first and then carry out the
shearlet transformation as discussed in Section 2.1. We keep the real
part of the resulting images after taking the shearlet transformation.
We then employ a filter derived from1-D usingmaximally flatmapping
function with two vanishing moments for denoising, better frequency
selectivity and regularity [10]. The second step is to compute the LBP
feature as discussed in Section 2.2.

For the filter in our framework, we use the nonsubsampled
contourlet transform (NSCT) developed by [10]. NSCT is based on a
nonsubsampled pyramid structure and nonsubsampled directional fil-
ter banks. The resulting decomposition by NSCT is a flexible multiscale,
multidirection, and shift invariant image decomposition [10]. The core
of NSCT is the nonseparable two-channel nonsubsampled filter bank.
NSCT is designed to be with better frequency selectivity and regularity.
t neighbors; (b) the basic LBP.
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Fig. 4. Flowchart of combining shearlet and LBP for faces.
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There are two kinds of filters used in our method, i.e., ‘pyr’ and ‘pyrexc’.
Meanwhile, ‘pyr’ means that we use a nonsubsampled pyramid struc-
ture to compute the shearlet transform. ‘pyrexc’ means that we use
nonsubsampled pyramid structure but exchanging the two highpass
filters. The highpass at higher scales is filtered by the portion of the
directional highpass filter that has “bad” response. Please see [10] for
more details about these two kinds of filters.

2.4. Representation for faces

In Fig. 5, we show the resulting images of applying the multi-
resolution shearlet transform for an input image in its original form
(row a1) and under high level of additive Gaussian noise (a2, a3), re-
spectively. The resulting images in Fig. 5(b1–f1 and b2–f2) are the real
part of the transform, and the transformation is constructed in the
Fourier domain. In addition, Fig. 5(b1–f1) correspond to the different
scales, i.e., a in Eq. (6). The six images in Fig. 5(c1) correspond to the
different directions, i.e., s in Eq. (6). The same is for the other images
in Figs. 5 and 6. For more details about how to set up the number of
shear orientations, please refer to [36,22].

Shearlet transform and LBP are complementary, and combining them
will improve the performance of the classifier. Firstly, from Figs. 5 and 6,
we can find that the multi-resolution shearlet transformation provides
Fig. 5.Multi-resolution transformation for one image from FRGC. (a1) is noise free; (a2) and (a3
(a1); (b2–f2) are the real parts after the shearlet transformation for (a2); (b3–f3) are the imagi
image.
good frequency localization and directional selectivity (i.e., edges).
Accordingly, LBP is good at describing edges extracted by the shearlet
transform. Secondly, LBP is not so robust to noise [45]. However, the
shearlet transformation detects the edges very well although the
image is contaminated by high level of Gaussian noise. For example,
for the image with Gaussian noise as shown in Fig. 5(a2, b2, c2 and
d2), we can find that shearlet is able to completely analyze the singular
structures of piecewise smooth images (i.e., edges). Formore discussions
on the robustness of shearlet to noise, please refer to [19,35]. Note that
images in Fig. 5(b1–f1, b2–f2) are the real parts of the shearlet transform
since we find that the imaginary part is not useful for classification.
Specifically, Fig. 5(b3)–(f3) shows the imaginary parts of shearlet trans-
formation in different levels for an image with high level of noise
(i.e., Fig. 5(a3)). From these images, we find that these imaginary
parts contain few discriminative features for face recognition. Later in
Section 3, experimental results also confirm this observation.

We use the shearlet plus LBP to represent faces in low quality im-
ages/videos. Given a face image, I, we compute its real part of the
shearlet transform ~ψ j;l;k as shown in Eq. (7), and some resulting example
images are shown in Fig. 6. After thatwe use LBP to compute the texture
features of the resulting faces from the shearlet transformation ~ψ j;l;k ,
and then concatenate them into one long histogram, i.e., the multi-
resolution transformation as shown in Figs. 5(b1–f1 and b2–f2) and 6.
) arewith high level of noise; (b1–f1) are the real parts after the shearlet transformation for
nary parts after the shearlet transformation for (a3). Note that (a2) and (a3) are the same



Fig. 6.Multi-resolution transformation for face images from remote facedataset by the shearlet transform to provide good frequency localization and directional selectivity. All thesemulti-
resolution transformation of face images are the real parts after the shearlet transformation.
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In addition, as shown in Fig. 6, we find that this transformation also
completely captures the singular structures of face images with poor
image quality. From Fig. 5(f1), we can find that the residual has very
little information. In our case we do not use this part of shearlet trans-
formation for face recognition.

When we use the shearlet plus LBP for face recognition, we divide
each face into patches as done in [1,58]. One example is shown in
Fig. 7. Unlike [1,58], we build one classifier for each patch. Specifically,
for each patch pi, where i= 1, 2…20, we compute its shearlet transfor-
mation ~ψ j;l;k as in Eq. (7) and then LBP feature as in Eq. (8), i.e., fLBP(~ψ j;l;k).
The window to compute LBP is 3 × 3 neighbors as in Fig. 3 and we then
build the histogram for each patch. Thuswe have 256 bins for each ~ψ j;l;k.
We then use the PCA to reduce the dimensionality of the feature
fLBP(~ψ j;l;k). We keep 98% energy following [4]. After that, we get Φ =

fPCA(fLBP(~ψ j;l;k)). For the resulting featuresΦ, we use Linear Discriminant
Analysis (LDA) [18] to perform face recognition. Note that we did not
concatenate the LBP features of each patch into one long histogram
and both PCA and LDA are applied to per patch histogram here.

During recognition, given two face images S1 and S2, we first divide
them into patches, pj , i where j = 1, 2 and i = 1, 2…20. We compute
the similarities between two corresponding patches in these two
faces, φi and i = 1, 2…20. The final similarity between these two face
images is Δ=∑iφi.
Fig. 7. Face patches.
3. Experiments

In this section, we present the experimental results for face recogni-
tion using the proposed features discussed in Section 2.
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3.1. Dataset

We use three datasets for face recognition, i.e., FRGC version 2.0 and
add noise to the face images, a recently published remote face dataset
[5] and PaSC dataset [2]. FRGC 2.0 is designed to promote face recogni-
tion in general with emphasis on 3D and high resolution still imaginary.
Meanwhile, there are six experimental protocols in FRGC and Experi-
ments 1, 2 and 4 are designed for still images. There are 222 subjects
showing 12,776 still images in the training set. In our case, we adopt
experiment 1 for evaluations. Experiment 1 measures performance on
16,028 frontal facial images. These images are taken under controlled
illumination and both target and query set have the same number of
samples (i.e., 16,028). The performance is reported as Verification
Rates (VR) at 0.1% False Acceptance Rate (FAR). Here, we only consider
the still images; some example faces in FRGC data set are presented in
Fig. 8(a). As shown in Fig. 8(b), we addwhite Gaussian noise to face im-
ages in FRGC data set. Here, the level of the noise is log(1/SNR), i.e., the
logarithm of the inverse of the signal-to-noise ratio (SNR). The SNR
is computed as: SNR = f(I) / f(N), where f(I) and f(N) are the power

of the input image I and the noise image N: f ðIÞ ¼ 1
n
∑
n−1

i¼0
jI2i j, f ðNÞ ¼

1
n
∑
n−1

i¼0
jN2

i j, where n is the dimensionality of the input image and

noise image.
    
(a
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Fig. 8. (a) Example images from the FRGC dataset. (b) The first row is faces with white Gauss
respectively.
For the remote face recognition problem, we use the dataset from
[5]. Some face examples are shown in Fig. 9. All the images were taken
in an unconstrained outdoor environment, at a distance varying from
10 m to 250 m. The face images are manually labeled with five points
for each face, including the left pupil, right pupil, nose tip, left mouth
corner and right mouth corner. The face images are cropped based on
thefiducial points and kept in their original resolution. The resulting da-
tabase for still color face images contains 17 subjects and 2102 cropped
face images in total. The number of faces per subject falls between
29 and 306. The captured images can be of very low resolution, with a
typical resolution of 20 by 30 pixels. Moreover, low resolution images
are often coupled with blurring effects. Also, large out-of-plane pose
variations are observed. Since the distance between the camera and
subjects is large, high magnification blur can be seen. Furthermore,
due to the motion between camera and subjects, some of the images
also suffer from motion blur. Finally, in some of the images, we see the
presence of both blur and poor illumination condition.

This dataset consists of 6 subsets. The first one is blur, which shows
the variations of blur and has 75 face images. The second one is Illum,
which shows the variations of illuminations and has 561 face images.
The third one is Illum_blur, which shows both variations of illuminations
and blur and has 128 face images. The fourth one is low_reso, which
shows the variations of low resolutions and has 90 face images. The
fifth one is pose_frontal, which shows the faces close to frontal pose
 
) 
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ian noise; the following rows are filtered by DWT, Gaussian, Wiener and Median filters,
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Fig. 9. Some example faces from the remote face dataset [5].
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and has 1166 face images. The last one is pose_non_frontal, which shows
the variations of poses and has 846 face images.

The PaSC dataset includes 9376 still images of 293 subject balanced
with respect to distance to the camera, alternative sensors, frontal ver-
sus not-frontal views, and varying location. There are also 2802 videos
for 265 subject: a subset of the 293 subject. Some examples for the
videos and still images are shown in Fig. 10.

All these face images are cropped using the landmarks of two eyes,
and are normalized to 64 × 80. Each face is divided into patches as in
Fig. 7. Each patch is of 16 × 16. We perform the shearlet transform
for each patch ~ψ j;l;k as shown in Section 2.1. We have three levels,
i.e., j = 0, 1, 2. The first 0-level is the low frequency part. The 1- and
2-levels of shearlet transformation capture the different texture struc-
tures in different frequency parts.

In addition, SCface is a very challenging database with daytime and
nighttime protocols [21]. Collected faces in infrared spectrum are a
good way for illumination invariant face recognition. We also exploited
how to use near infrared for illumination invariant face recognition [7].

For face images in the FRGC dataset, they are manually landmarked
by us and then cropped. All themethods in Section 3.2 which are tested
over this dataset are re-implemented by us, andwe use the same setups
for these methods for fair comparison. For the remote face dataset and
(a)

Fig. 10. Some example faces from the PaSC. (a) Examples taken during four sessions. Locations
within sessions. (b) Cropped face images extracted from still images, showing lighting, motion
PaSC, these two datasets provide face landmarks. All the methods in
Sections 3.3 and 3.4 which are tested over these two datasets use the
exactly same setups.

3.2. Experimental results for FRGC

As shown in Table 1, we test several combinations between the
shearlet and LBP. Here, LBP is the method we described in Section 2.2.
DWT is the DiscreteWavelet Transform, and thewavelet used in exper-
iments is the shearlet as mentioned in Section 2.1. In other words,
shearlet transformation is equal to performing DWT for an input
image plus image reconstruction plus NSCT filtering [35]. One example
of performing DWT for one image is shown in Fig. 11. In our case, we
perform two levels of transformation and create seven subimages,
i.e., HH, LH, HL, and LL subbands for levels 1 and 2.

LBP + DWTmeans LBP feature computed over the multi-resolution
decomposition resulting from DWT (e.g., the seven subbands in
Fig. 11(b)). LBP + DWT_coef_T means that we perform the multi-
resolution decomposition for each image using DWT (see Fig. 11) and
then denoise the multi-resolution decomposition by the threshold T.
After thatwe compute the LBP feature for thewavelet-denoised images.
Here we have two kinds of thresholds (T), i.e., soft thresholding
(b)

were changed between sessions, and sensor, distance to camera and pose were changed
blur and poor focus variations.



Table 1
LBP + DWT feature computation.

LBP feature computation Threshold Band of DWT

LBP + DWT Over DWT reconstructed images Soft
LBP + DWT + coef_hard Over DWT coefficients Hard level_2(LL + HH + LH) + level_1(HL + HH + HL + LH)
LBP + DWT + coef_soft Over DWT coefficients Soft level_2(LL + HH + LH) + level_1(HL + HH + HL + LH)
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and hard thresholding [15]. In brief, to suppress the noise, the hard
thresholding applies the following nonlinear transform to the empirical
wavelet coefficients: F(x) = x·I(|x | N t), where t is a certain threshold;
I(x) is the input signal and F(x) is output. The choice of the threshold
is a very delicate and important statistical problem. For soft
thresholding the following nonlinear transform is used: S(x) =
sign(x)·(|x |−t)I(|x | N t), where t is a threshold.

We compute the shearlet plus LBP feature for faces as shown in
Section 2.4. Experimental results are shown in Tables 2, 3, 4 and 5.

In Table 2, we test the performance of themethods using shearlet to
remove the noise in the images. We perform this group of experiments
since shearlet can be used to denoise the images verywell [35,17]. Here,
LSF means LBP + shearlet + FFT and we compute the feature as shown
in Section 2.3 and using Fourier based shearlet transform to improve
the efficiency, where FFT is the fast Fourier transform. ‘pyr’ means
that we use a non-subsampled pyramid structure [10] to compute the
shearlet transform. ‘real’means thatwe only use the real part of shearlet
transform.

FromTable 2,we canfind that LBP+DWT_coef_Tworksmuchbetter
than LBP+DWT and LBP, especially for high level of noise. However, the
different thresholding methods (i.e., soft and hard) change the perfor-
mance marginally. One explanation is that shearlets detect the edges
well even with high level of noise, and LBP describes these edges in
faces well. Further, LSF+ ‘pyr’-real outperforms significantly compared
to LBP + DWT_coef_T, i.e., 86.18% vs. 71.48% and 72.45% for the high
level of noise. It shows that LSF + ‘pyr’-real works well for high level
of noise and the ‘pyr’ (i.e., nonsubsampled pyramid structure) is good
for the face recognition when the faces are with noise.

In Table 3, we test LSF with different filters, i.e., ‘pyr’ and +‘pyrexc’.
Here ‘pyr’ means that we use a non-subsampled pyramid structure as
mentioned before. ‘pyrexc’means that we use nonsubsampled pyramid
2LL

2LH

Fig. 11. (a) Original image, (b) multi-resolutio
structure but exchanging the two highpass filters [10]. ‘real’ means we
only use the real part and ‘imag’ means we only use the imaginary
part. LSF+ ‘pyr’-real+ imagmeans that we use both the real and imag-
inary parts.

From Table 3, we can find that LSF + ‘pyr’-real works the best.
The performances between LSF + ‘pyr’-real and LSF + ‘pyrexc’-real
are close. It means that by exchanging the two highpass filters for
the pyramid structure the performance can be improved marginally.
However, if we use the imaginary part of shearlet transform, the perfor-
mance changes significantly. Even when we combine both real and
imaginary parts, the performance is not as good as that of only using
the real part. One explanation is that the imaginary part cannot detect
the edges well in images and is also easily affected by the noise in the
images. In the following, we will use LSF to represent LSF + ‘pyr’-real
for short.

In Table 4, we compare our method with others for FRGC, e.g., LBP
plus several filters for noisy faces, e.g., Wiener, Gaussian, and Median.
Specifically, we use Matlab function for these filters. For the median
filter, the neighborhood size takes the default value (3 × 3). For the
Wiener filter, it automatically estimates the additive noise power be-
fore doing the filtering and the neighborhood size takes the default
value (3 × 3). For Gaussian filter, it filters an image with a 2-D Gaussian
smoothing kernel with standard deviation of 0.5. For the DWTdenoising,
we use the method NSCT proposed in [10].

FromTable 4,we can find that LSFworks the best, especiallywith the
high level of noise, 86.18% compared to LBP + Gabor (64.25%), and LBP
(25.68%). In addition, LBP plus differentfilters, i.e.,Wiener, Gaussian and
Median are not as good as LSF. One explanation is that these filters
blur the edges in the image, while these edges help face recognition.
However, shearlets perform well in detecting edges with the high
level of noise as shown in Fig. 5.
2HL

2HH 1HL

1HH1LH

n transformation by DWT for one image.



Table 2
Performance comparison (%) of the components of shearlet plus LBP over FRGC by adding white Gaussian noise.
(LSF = LBP + shearlet+ FFT and real = real part of shearlet).

Methods log(1/SNR)

0 0.020 0.022 0.025 0.028 0.033 0.040 0.050 0.067 0.100 0.200

LBP 95.53 93.64 91.54 91.86 91.46 90.37 89.67 86.42 78.64 56.48 25.68
LBP + DWT 96.34 96.15 96.23 96.37 96.78 95.43 94.82 91.76 86.42 76.18 58.94
LBP + DWT + coef_hard 97.86 97.98 97.43 97.57 97.66 98.21 97.32 97.16 94.21 85.49 71.48
LBP + DWT + coef_soft 97.86 97.84 97.65 97.42 97.81 98.24 97.93 97.87 94.69 85.76 72.45
LSF + ‘pyr’-real 98.13 98.16 98.27 98.31 98.34 97.56 97.38 97.24 97.16 92.18 86.18

Bold number means the best performance of each row.

42 J. Chen et al. / Image and Vision Computing 64 (2017) 34–46
In addition, we also compare with other existing descriptors in
Table 5, such as LBP + Gabor [58], Completed Local Binary Pattern
(CLBP) [20], Dominant Local Binary Patterns (DLBP) [34], Local Ternary
Patterns (LTP) [51], Local Phase Quantization (LQP) [46], Discriminant
Face Descriptor (DFD) [31], DL [24], and denoising autoencoders (dA)
[53]. ForDL, we use Caffe and the othermethods are implemented by us.

From Table 5, one can find that LSF works comparable to state-
of-the-art methods for low level of noise (e.g., log(1/SNR) = 0.020)
and outperforms them significantly for the high level of noise
(e.g., log(1/SNR) = 0.200). LBP + Gabor, CLBP, DLBP, LTP and DFD
work quite well for low level of noise but their performances drop
with the increase in the level of noise, especially for high level of noise
since the faces are blurred seriously (see Fig. 8). DL also works well for
low level of noise but the performance also drops with the increase of
the level of noise. dA improves the performance since we use the
noisy images as input and the noise free images as output to fine tune
the neural network. However, the performance is not as good as LSF
for high level of noise. One reason that DL and dA work not so well as
the other descriptors for high level of noise might be that the training
set is not large enough to train a well-performed network (i.e., 16,028
images for training and 16,028 images for testing).

DLBPworks the best for noise free images but its performance drops
quickly when white Gaussian noise is added. A possible reason is that
noise may change the pattern type of a dominant pattern present
in the noise-free case. Therefore, the noise may possibly reshape the
dominant pattern histogram in some cases by assigning some of the
dominant pattern's occurrence to other types of patterns.
Table 3
Performance comparison (%) using different filters and real/imaginary part for shearlet over FR

Methods log(1/SNR)

0 0.020 0.022 0.025 0.0

LBP 95.53 93.64 91.54 91.86 91.
LSF + ‘pyr’-real 98.13 98.16 98.27 98.31 98.
LSF + ‘pyrexc’-real 98.32 98.25 98.31 98.45 98.
LSF + ‘pyr’-real + imag 98.27 98.05 98.13 98.24 98.
LSF + ‘pyr’-imag 78.64 78.42 77.96 76.58 76.

Bold number means the best performance of each row.

Table 4
Performance comparison (%) using different filters to filter out the noise over FRGC by adding

Methods log(1/SNR)

0 0.020 0.022 0.025 0.028

LBP 95.53 93.64 91.54 91.86 91.46
LBP + Gabor 97.46 97.35 96.89 96.87 94.56
LBP + Wiener 92.46 92.17 91.97 91.93 92.06
LBP + Gaussian 87.65 87.34 88.76 87.95 88.63
LBP + Median 93.54 92.84 91.27 91.89 92.68
LSF 98.13 98.16 98.27 98.31 98.34

Bold number means the best performance of each row.
In addition, the performance comparison of LSF and existing
methods for FRGC without noise is shown in Fig. 12. Here, LBP, CLBP,
LQP, DFD, LBP + Gabor [58], and LSF use the same setups for classifica-
tion but using different features. The results of Ding [13], Huwang
[28], Liu [37], and Su [48] are quoted directly from the original papers.
From this figure, one can find that LSF gets the best results over this
dataset. In addition, LBP, CLBP, DFD, Su, DL and LBP+ Gabor also achieve
very good results. We also use CLBP to replace LBP to combine with
shearlet and find that the performance difference between CLBP +
shearlet and LBP+ shearlet is not significant. Thus, we use LBP+ shearlet
in the following experiments.

3.3. Remote face recognition

The performance comparison of LSF and several existing methods is
shown in Table 6. Here, LBP, LPQ [46], BSIF [29], Gabor [58], and DFD
[31] and LSF use the same setups for classification but using different fea-
tures. In addition, the remote face dataset [5] does not provide a training
set. We thus use the training set of FRGC 2.0 Experiment 1, i.e., 16,028
frontal facial images and they are quite different from the images in the
remote face dataset [5]. In other words, we train our classifier over the
dataset in FRGC 2.0 Experiment 1 and test over the remote face dataset.

From Table 6, one can find that LSF gets the best results over this
dataset, especially for the subset Illum. One reason is the illumination
does not change the texture/edge in faces. In addition, for subsets,
Blur, Illum_blur, Pose_frontal and Pose_non_frontal, LSF achieves prom-
ising results. LBP, CLBP, DFD, Su, DL and LBP + Gabor also achieve very
GC by adding white Gaussian noise.

28 0.033 0.040 0.050 0.067 0.100 0.200

46 90.37 89.67 86.42 78.64 56.48 25.68
34 97.56 97.38 97.24 97.16 92.18 86.18
47 97.93 97.65 97.04 97.13 92.08 85.43
17 97.21 97.06 96.87 96.76 91.56 83.74
42 76.85 75.86 74.86 72.68 68.45 55.37

white Gaussian noise.

0.033 0.040 0.050 0.067 0.100 0.200

90.37 89.67 86.42 78.64 56.48 25.68
93.16 91.67 86.54 83.16 78.35 64.25
92.04 91.82 89.16 85.07 73.82 53.57
87.26 81.39 80.34 81.02 75.62 60.42
92.34 91.38 89.46 83.63 72.96 50.31
97.56 97.38 97.24 97.16 92.18 86.18



Table 5
Performance comparison with exiting methods over FRGC by adding white Gaussian noise.

Methods log(1/SNR)

0 0.020 0.022 0.025 0.028 0.033 0.040 0.050 0.067 0.100 0.200

LBP 95.53 93.64 91.54 91.86 91.46 90.37 89.67 86.42 78.64 56.48 25.68
LBP + Gabor 97.46 97.35 96.89 96.87 94.56 93.16 91.67 86.54 83.16 78.35 64.25
CLBP 96.17 95.89 95.69 94.58 93.82 92.17 91.58 88.76 78.93 58.94 30.58
DLBP 98.46 50.67 52.48 49.87 48.64 40.29 39.87 38.16 35.24 30.68 17.59
LTP 98.13 98.11 97.89 97.78 95.64 93.15 91.59 84.28 82.49 65.26 48.28
LQP 92.75 92.46 91.97 91.83 90.46 88.67 87.95 87.38 85.48 76.49 54.89
DFD 98.03 98.23 98.15 97.15 97.14 96.89 95.67 92.48 72.39 58.64 26.53
Shearlet 90.26 90.35 90.63 90.36 89.56 89.37 88.56 88.47 88.67 84.61 75.39
DL 97.32 96.95 94.68 93.29 93.57 92.64 92.46 91.56 72.36 47.26 26.18
dA 97.43 97.09 97.12 96.34 95.67 94.38 92.65 87.17 82.63 76.52 68.35
LSF 98.13 98.16 98.27 98.31 98.34 97.56 97.38 97.24 97.16 92.18 86.18

Bold number means the best performance of each row.
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Fig. 12. Performance comparison with existing methods over FRGC face dataset.
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good results. For the subset Low_reso, all the features do not work very
well since the face images are blurred seriously and the faces are of
small size, e.g., with a typical resolution of 20 by 30 pixels. Detecting
textures/edges from these faces is very difficult. Here, DL does not
work well. One explanation is that the test set is different from the
face images for training. However,DL achieves comparable performance
to othermethods for the subset Pose_frontal since this subset has similar
distribution as the training set in FRGC 2.0 Experiment 1.

3.4. PaSC

For PaSC dataset, we firstly crop the facial region from the given
video frame based on the eye coordinates provided by the organizers
[2]. The cropped facial region is aligned and scaled to a size of 64
Table 6
Rank-1 analysis on the remote face dataset [5] using five face images of each subject as gallery

Condition Descriptors Acc (%) Condition Descripto

Blur LBP 45.9 Illum LBP
LPQ 58.1 LPQ
BSIF 62.2 BSIF
Gabor 65.3 Gabor
DFD 63.5 DFD
DL 48.6 DL
Shearlet 62.5 Shearlet
LSF 67.3 LSF

Low_reso LBP 12.4 Pose_frontal LBP
LPQ 13.5 LPQ
BSIF 11.2 BSIF
Gabor 15.9 Gabor
DFD 14.5 DFD
DL 11.5 DL
Shearlet 13.8 Shearlet
LSF 19.9 LSF
× 80 pixels and transformed to gray-scale. The gray-scale images are
then used as input for the feature extraction procedure as discussed
on Section 2. During feature extraction, LSF feature sets are generated
for each still image and each processed frame of a given video sequence.

To ensure that our framework produces fixed size templates regard-
less of the number of frames in the video, we use the same procedure as
that in [47]. Before extracting features, we partition the frames of a
given video into two groups depending on the extent of the head rota-
tion (yaw) of the person shown in the video. Here, the first group con-
tains frames with yaw angles below 15°, and the second group contains
frames with yaw angles greater than 15°. Frames with negative yaw
angles are mirrored prior to feature extraction to ensure that two
frame-groups are sufficient to cover all rotation-dependent variability
of the faces.

In Fig. 13, we compare our methods with state-of-the-art methods.
Here, CAS was proposed by [27], which is based on Hybrid Euclidean-
and-Riemannian Metric Learning combined with deeply learned
features (abbr. to HERML-DeLF). It is for image set classification with
image features learned by a deep neural network. Uni-Ljwas proposed
by [47], which used the MODEST framework to represent facial images
(or frames) with various texture descriptors and using the computed
descriptors as input to a probabilistic modeling technique capable of
deriving low-dimensional representations from the extracted texture
representations. SIT was developed by [33], which use the Hierarchi-
cal-Probabilistic Elastic Part (PEP) model to approach the video face
recognition problem. The Hierarchical-PEP model builds pose-invariant
face representation by applying the PEP model hierarchically to decom-
pose a face image into face parts at different levels of detail and thus
to build pose-invariant part-based face representations. Surrey was de-
veloped by [4], which tackles the PaSC video-to-video matching by
.

rs Acc (%) Condition Descriptors Acc (%)

78.4 Illum_blur LBP 73.2
79.5 LPQ 75.6
79.3 BSIF 74.8
85.5 Gabor 75.0
83.4 DFD 75.2
80.4 DL 71.8
81.6 Shearlet 74.3
92.5 LSF 76.0
67.9 Pose_non_frontal LBP 49.9
70.6 LPQ 47.5
70.1 BSIF 49.2
76.8 Gabor 50.2
78.6 DFD 52.5
80.3 DL 49.8
77.8 Shearlet 51.7
83.8 LSF 57.2
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Fig. 13. ROC curves for the control and handheld video evaluations.
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combining a dynamic video frame selection method with a multiscale
local phase quantization (MLPQ) based frame-to-frame matching algo-
rithm and a simple voting strategy. LRPCA is the baseline, which uses
principal component analysis for local region (LRPCA) [3]. Video person
recognition evaluation for all these methods is presented in [3].

FromFig. 13,we canfind that ourmethods achieve promising results
and CAS performs the best. Here, CAS is a deep learning based method,
which is heavily trained. Firstly, it is pre-trained using “Celebrities on
the Web” (CFW) database [59] and then fine-tuned using other two
datasets. The first is the training portion of the PaSC [2]. The second is
the Institute of Computing Technology, CAS-OMRON Social Solutions
Co. Ltd.-Xinjiang University (COX) face database collected by themem-
bers of the CAS group [27].
3.5. Discussion

In this section, we will discuss the time complexity of LSF and the
reasons that LSF works for remote face recognition.

As shown in Table 7, we perform a quantitative comparison of
timing information for LSF with LBP and Gabor for an image 128
× 160. We test over 1000 face images and calculate the average time.
All of them are implemented in C++ and tested on an i5-2400 CPU@
8.0G memory. Both Gabor and LSF are speeded up using FFT. From this
table, we can find that both LSF and LBP are very efficient compared
to Gabor.

For the remote face dataset, the usual variations which degrade the
performance of face recognition are low resolution, blur and poor illu-
mination condition. Some examples showing low resolution, serious
illumination variations and blur variations and their multi-resolution
transformation by the shearlet transform are shown in Fig. 6. We can
see that the shearlet transform provides good frequency localization
and directional selectivity, especially the low frequency part and the
second level of shearlet transformation. In addition, the shadow in
the face shown in Fig. 6(a2) blurs the edges of this face. The local
textures/edges and the global features are well extracted. Likewise,
Table 7
Comparison of the average time consumption with
LBP and Gabor.

Methods Times (s)

LBP 0.0075
Gabor 1.2
LSF 0.0306
the face in Fig. 6(a3) is blurred seriously and the local and global
features are computed successfully. On the other hand, the small face
in Fig. 6(a1) has a clear appearance, so its low frequency part and the
second level of shearlet transformation show good discriminative
power. From Table 6, we can see the subset Pose_frontal gets very
good performance (i.e., 83.8%) although several faces are of low resolu-
tion. It is the same for the subset Illum (i.e., 92.5%). However, for the
blurred faces, as shown in Fig. 6(a3), its third level of shearlet transfor-
mation contains small amount of discriminative information for face
recognition. Thus, the performance of the subset blur reduces to 67.3%.
However, the discriminative information in low frequency part and
the second level of shearlet transformation still make the performance
of LSF much better than existing methods.

LSF descriptor and Gabor get comparable performance for high
quality faces (98.13% vs. 97.46%, Table 5, without noise for FRGC), but
LSF works better than Gabor for faces of poor quality (86.18% vs.
64.25%, Table 5, with high level of noise for FRGC, and also for remote
face dataset and PaSC). One explanation is that the Gabor transform
can extract local texture features (i.e., edges and their orientations) for
faces very well when the faces are in high quality. As the image quality
degrades, local textures in the faces become weak. Specifically, local
edges reduce and their orientations also change. Thus, the performance
of Gabor degrades. However, the shearlet is designed to extract the sin-
gular structures of piecewise smooth images although the image quality
degrades, as shown in Figs. 5 and 6. Thus, LSF works better than Gabor
for the faces in poor quality images.
4. Conclusion

In this paper, we proposed a robust descriptor LSF, which combines
the shearlet coefficients and LBP. We performed the shearlet transform
in the Fourier domain and tested its real and imaginary parts. We also
tested different filters for the shearlet transform. We then used LBP to
encode the textures (i.e., edges) in faces detected by the shearlet trans-
form. The resulting LSF is robust to the noise in images and achieves
very good results for face recognition. Specifically, the experimental
results over FRGC and the noisy faces show promising results. For
example, LSF achieves an accuracy of 98.13% for the dataset without
noise and 86.18% with high levels of noise, while LBP gets the accuracy
of 95.53% for the dataset without noise and 25.68% with high levels of
noise. LSF also outperforms deep learning based method (97.32% with-
out noise and 26.18%with high levels of noise) for this dataset even that
we use the denoising autoencoders version of deep learning (97.43%
without noise and 68.35% with high levels of noise). In addition, we
also test LSF over two challenging datasets, remote face dataset [5]
and PaSC. LSF also outperforms the state-of-the-art methods.
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