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Abstract—In recent years, Sparse Representation (SR) and
Dictionary Learning (DL) have emerged as powerful tools for
efficiently processing of image and video data in non-traditional
ways. An area of promise for these theories is object recognition.
In this paper, we present an overview of SR and DR and
examine several interesting object recognition approaches using
these theories. We will also explore the use of non-linear kernel
SR as well as DL methods in many computer vision problems
including object recognition, multimodal biometrics recognition,
and domain adaptation.

I. I NTRODUCTION

In recent years, the field of sparse representation and
dictionary learning has undergone rapid development, both
in theory and in algorithms [1], [2], [3], [4]. It has also
been successfully applied to numerous image understanding
applications [2], [3]. This is partly due to the fact that signals
or images of interest, though high dimensional, can often
be coded using few representative atoms in some dictionary.
Given a redundant dictionaryD and a signaly, finding the
sparsest representation ofy in D entails solving the following
optimization problem

x̂ = argmin
x

‖x‖0 subject toy = Dx, (1)

where the‖x‖0 := |#{i : xi 6= 0}|, which is a count for the
number of nonzero elements inx. Problem (1) is NP-hard and
cannot be solved in a polynomial time. Hence, approximate
solutions are usually sought [3], [5], [6], [7]. For instance,
Basis Pursuit [5] offers the solution vial1 minimization as

x̂ = argmin
x

‖x‖1 subject toy = Dx, (2)

where ‖x‖1 =
∑

i |xi|. The sparsest recovery is possible
provided that certain conditions are met [8]. One can adapt
the above framework to noisy setting, where the measurements
are contaminated with an errorη obeying‖η‖2 < ǫ, that is

y = Dx + η for ‖η‖2 < ǫ. (3)

A stable solution can be obtained by solving the following
optimization problem

x̂ = argmin
x

‖x‖1 subject to‖y − Dx‖ < ǫ. (4)

The dictionaryD can be either based on a mathematical
model of the data [3] or it can be trained directly from the
data [9]. It has been observed that learning a dictionary directly

from training rather than using a predetermined dictionary
(such as wavelet or Gabor) usually leads to better representa-
tion and hence can provide improved results in many practical
applications such as restoration and classification [1], [2], [10],
[11], [12], [13], [14], [15]. Designing dictionaries basedon
training is a much recent approach to dictionary learning which
is strongly motivated by recent advances in the SR theory.

In dictionary learning methods, given a set of examplesY =
[y1, · · · ,ym], the objective is to find a dictionary that provides
the best representation for each examples in this set. One can
obtain this by solving the following optimization problem

(D̂, X̂) = argmin
D,X

‖Y − DX‖2

F subject to∀i ‖xi‖0 ≤ T0

where xi represents a column ofX and T0 is a sparsity
parameter. Here,‖A‖F denotes the Frobenius norm defined
as‖A‖F =

√

∑

ij |Aij |2. Several algorithms have been pub-
lished in the literature that solve the above problem [1]. Two of
the well-known algorithms for finding such dictionary are the
method of optimal directions (MOD)[16] and the K-SVD [17]
algorithm. Both MOD and K-SVD are iterative methods and
they alternate between sparse-coding and dictionary update
steps. See [17] and [16] for more details.

While dictionaries are often trained to obtain good recon-
struction, training dictionaries with a specific discriminative
criteria has also been considered. In what follows, we present
several applications of SR and DL in object recognition,
domain adaptation, and multimodal biometrics recognition.

II. SPARSEREPRESENTATION-BASED CLASSIFICATION

Sparse representation-based classification (SRC) [18] was
one of the first methods that showed the effectiveness of
SR for face recognition. The idea proposed in [18] is to
create a dictionary matrix of the training samples as column
vectors. The test sample is also represented as a column vector.
Different dimensionality reduction methods are used to reduce
the dimension of both the test vector and the vectors in the
dictionary. One such approach for dimensionality reduction
is random projections [19]. Random projections, using a
generated sensing matrix, are taken of both the dictionary
matrix and the test sample. It is then simply a matter of
solving an ℓ1 minimization problem in order to obtain the
sparse solution. Once the sparse solution is obtained, it can



provide information as to which training sample the test vector
most closely relates to.

Let each image be represented as a vector inR
n, D be the

dictionary (i.e. training set) andy be the test image. The SRC
algorithm is as follows:

1) Create a matrix of training samplesD = [D1, ...,Dk]
for k classes, whereDi are the set of images of each
class.

2) Reduce the dimension of the training images and a test
image by any dimensionality reduction method. Denote
the resulting dictionary and the test vector asD̃ and ỹ,
respectively.

3) Normalize the columns of̃D and ỹ.
4) Solve the followingℓ1 minimization problem

x̂ = argmin
x′

‖ x′ ‖1 subject to ỹ = D̃x′, (5)

5) Calculate the residuals

ri(ỹ) = ‖ỹ − D̃δi(x̂)‖2,

for i = 1, ..., k where δi a characteristic function that
selects the coefficients associated with theith class.

6) Identify(y)=argmini ri(ỹ).
The assumption made in this method is that given sufficient

training samples of thekth class,D̃k, any new test image
y that belongs to the same class will approximately lie in
the linear span of the training samples from the classk. This
implies that most of the coefficients not associated with class
k in x̂ will be close to zero. Hence,α′ is a sparse vector.
This algorithm can also be extended to deal with occlusions
and random noise. Furthermore, a method of rejecting invalid
test samples can also be introduced within this framework
[18]. In particular, to decide whether a given test sample is
a valid sample or not, the notion of Sparsity Concentration
Index (SCI) has been proposed in [18].

One of the main difficulties in iris biometric is that iris
images acquired from a partially cooperating subject often
suffer from blur, occlusion due to eyelids, and specular reflec-
tions. As a result, the performance of existing iris recognition
systems degrade significantly on these images. Hence, it is
essential to select good images before they are input to the
recognition algorithm. To this end, the SRC framework was
extended for cancelable iris biometric in [20], [21] that can
select and recognize iris images in a single step.

In Figure 1, we display the iris images having the least
SCI value for the blur, occlusion and segmentation error
experiments performed on the real iris images in the University
of Notre Dame ND dataset. As it can be observed, the low SCI
images suffer from high amounts of distortion. The recognition
performance of the SR based method for iris biometric [20]
is summarized in Table I. As it can be seen from the table
SRC provides the best recognition performance over that of
NN and Libor Masek’s iris identification source code.

A. Multimodal Multivariate Sparse Representation

The ideas presented in the above section can be extended
to the case of multimodal multivariate sparse representation

(a) (b) (c)

Fig. 1. Iris images with low SCI values in the ND dataset. Notethat the
images in (a), (b) and (c) suffer from high amounts of blur, occlusion and
segmentation errors, respectively .

TABLE I
RECOGNITIONRATE ON ND DATASET [20].

Image Quality NN Masek’s Implementation SRC
Good 98.33 97.5 99.17
Blured 95.42 96.01 96.28

Occluded 85.03 89.54 90.30
Seg. Error 78.57 82.09 91.36

which is covered in this section. For simplicity, we present
the multivariate sparse representation framework in terms
of multimodal biometrics recognition [22], however, it can
be used for any multimodal or multichannel classification
problem [23]. An overview of the algorithm presented in [22]
is shown in Fig. 2.

Consider a multimodalC-class classification problem with
D different biometric traits. Suppose there arepi training
samples in each biometric trait. For each biometric trait
i = 1, . . . , D, we denote

Xi = [Xi
1,X

i
2, . . . ,X

i
C ]

as anni × pi dictionary of training samples consisting ofC
sub-dictionariesXi

k ’s corresponding toC different classes.
Each sub-dictionary

Xi
j = [xi

j,1,x
i
j,2, . . . ,x

i
j,pj

] ∈ R
n×pj

represents a set of training data from theith modality labeled
with thejth class. Note thatni is the feature dimension of each
sample and there arepj number of training samples in classj.
Hence, there are a total ofp =

∑C

j=1
pj many samples in the

dictionaryXi
C . In multimodal biometrics recognition problem

given test samples (a matrix)Y, which consists ofD different
modalities{Y1,Y2, . . . ,YD} where each sampleYi consists
of di observationsYi = [yi

1,y
i
2, . . . ,y

i
d] ∈ R

n×di , the
objective is to identify the class to which a test sampleY

belongs to [22], [23].
Let Γ = [Γ1,Γ2, . . . ,ΓD] ∈ R

p×d be the matrix formed
by concatenating the coefficient matrices withd =

∑D

i=1
di,

then we can seek for the row-sparse matrixΓ by solving the
following ℓ1/ℓq-regularized least square problem

Γ̂ = arg min
Γ

1

2

D
∑

i=1

‖Yi − XiΓi‖2

F + λ‖Γ‖1,q (6)



Fig. 2. Overview of multimodal multivariate sparse representation-based classification algorithm [22].

whereλ is a positive parameter andq is set greater than1
to make the optimization problem convex. Here,‖Γ‖1,q is a
norm defined as‖Γ‖1,q =

∑p

k=1
‖γk‖q whereγk ’s are the

row vectors ofΓ. OnceΓ̂ is obtained, the class label associated
to an observed vector is then declared as the one that produces
the smallest approximation error

ĵ = argmin
j

D
∑

i=1

‖Yi − Xiδi
j(Γ

i)‖2

F , (7)

whereδi
j is the matrix indicator function defined by keeping

rows corresponding to thejth class and setting all other rows
equal to zero. Note that the optimization problem (6) reduces
to the conventional Lasso [24] whenD = 1 and d = 1. The
resulting classification algorithm reduces to SRC [18]. In the
case, whenD = 1 (6) is referred to as multivariate Lasso [25].
This model can be extended to handle noise and occlusion
[22]. Furthermore, using the kernel methods, it can be made
nonlinear [22].

III. D ISCRIMINATIVE DICTIONARY LEARNING

Dictionaries can be trained for both reconstruction and
discrimination applications. In the late nineties, Etemand and
Chellappa proposed a Linear Discriminant Analysis (LDA)
based basis selection and feature extraction algorithm for
classification using wavelet packets [26]. Recently, similar
algorithms for simultaneous sparse signal representationand
discrimination have also been proposed in [27], [28]. The
basic idea in learning a discriminative dictionary is to addan
LDA type of discrimination on the sparse coefficients which
essentially enforces separability among dictionary atomsof

different classes. Some of the other methods for learning
discriminative dictionaries include [29], [30], [31], [32], [27],
[11]. Additional techniques may be found within these refer-
ences.

A. Information-theoretic Dictionary Learning

In particular, a dictionary learning method based on infor-
mation maximization principle was proposed in [33] for action
recognition. Given the initial dictionaryDo, the objective is to
compress it into a dictionaryD∗ of sizek, which encourages
the signals from the same class to have very similar sparse
representations.

Let L denote the labels ofM discrete values,L ∈ [1, M ].
Given a set of dictionary atomsD∗, define P (L|D∗) =

1

|D∗|

∑

di∈D∗ P (L|di). For simplicity, denoteP (L|d∗) as
P (Ld∗), andP (L|D∗) asP (LD∗). To enhance the discrimi-
native power of the learned dictionary, the following objective
function is considered

arg max
D∗

I(D∗; Do\D∗) + λI(LD∗ ; LDo\D∗) (8)

where λ ≥ 0 is the parameter to regularize the emphasis
on appearance or label information andI denotes mutual
information. One can approximate (8) as

arg max
d∗∈Do\D∗

[H(d∗|D∗) − H(d∗|D̄∗)]

+λ[H(Ld∗ |LD∗) − H(Ld∗ |LD̄∗)], (9)

whereH denotes entropy. One can easily notice that the above
formulation also forces the classes associated withd∗ to be
most different from classes already covered by the selected



atomsD∗; and at the same time, the classes associated withd∗

are most representative among classes covered by the remain-
ing atoms. Thus the learned dictionary is not only compact,
but also covers all classes to maintain the discriminability.

In Fig. 3, we present the recognition accuracy on the
Keck gesture dataset with different dictionary sizes and over
different global and local features [33]. Leave-one-person-out
setup is used. That is, sequences performed by a person are
left out, and the average accuracy is reported. Initial dictionary
size |Do| is chosen to be twice the dimension of the input
signal and sparsity 10 is used in this set of experiments. As
can be seen the mutual information-based method, denoted as
MMI-2 outperforms the other methods.
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Fig. 3. Recognition accuracy on the Keck gesture dataset with different
features and dictionary sizes (shape and motion are global features. STIP is
a local feature.) [33]. The recognition accuracy using initial dictionary Do:
(a) 0.23 (b) 0.42. In all cases, the MMI-2 (red line) outperforms the rest.

B. Kernel Dictionary Learning

Linear representations are almost always inadequate for rep-
resenting nonlinear data arising in many practical applications.
For example, many types of descriptors in computer vision
have intrinsic nonlinear similarity measure functions. The most
popular ones include the spatial pyramid descriptor which uses
a pyramid match kernel, and the region covariance descriptor
which uses a Riemannian metric as the similarity measure
between two descriptors. Both of these distance measures
are highly non-linear. Unfortunately, the traditional dictionary
learning methods, e.g. MOD and K-SVD, are based on linear
models. This inevitably leads to poor performances for many
datasets, e.g., object classification of Caltech-101 [34] dataset,
even when discriminant power is taken into account during the
training. This motivates us to study non-linear kernel sparse
representations for object representation and classification [9].

Let Φ : R
N → F ⊂ R

Ñ be a non-linear mapping from
R

N into a dot product spaceF . One can learn a non-linear
dictionaryD in the feature spaceF by solving the following
optimization problem:

arg min
D,X

‖Φ(Y) − DX‖2

F s.t ‖xi‖0 ≤ T0, ∀i. (10)

whereD ∈ R
Ñ×K is the sought dictionary,X ∈ R

K×n is a
matrix whoseith column is the sparse vectorxi corresponding
to the sampleyi, with maximum ofT0 non-zero entries. It was
shown in [34], that there exists an optimal solutionD∗ to the

problem (10) that has the following form:

D∗ = Φ(Y)A (11)

for someA ∈ R
n×K . As a result, one can seek an optimal

dictionary through optimizingA instead ofD. By substituting
Eq. 11 into Eq. 10, the problem can be re-written as follows:

argmin
A,X

‖Φ(Y) − Φ(Y)AX‖2

F s.t ‖xi‖0 ≤ T0, ∀i. (12)

In order to see the advantage of this formulation over the
original one, we will examine the objective function. Through
some manipulation, the cost function can be re-written as:

‖Φ(Y)−Φ(Y)AX‖2

F = tr((I−AX)T
K(Y,Y)(I−AX)),

whereK(Y,Y) is a kernel matrix whose elements are com-
puted fromκ(i, j) = Φ(yi)

T Φ(yj). It is apparent that the
objective function is feasible since it only involves a matrix of
finite dimensionK ∈ R

n×n, instead of dealing with a possibly
infinite dimensional dictionary. An important property of this
formulation is that the computation ofK only requires dot
products. Therefore, we are able to employMercer kernel
functions to compute these dot products without carrying out
the mappingΦ.

To solve the above optimization problem for learning non-
linear dictionaries, we have proposed variants of MOD and
K-SVD algorithms in the feature space [34]. The procedure
essentially involves two stages: sparse coding and dictionary
update in the feature space. For sparse coding, we propose
non-linear version of orthogonal matching pursuit algorithm
[34]. Once sparse codes are found in the feature space, we
update the dictionary atoms in an efficient way.

A synthetic experiment was cone to examine the effective-
ness of a learned dictionary in the feature space in [34]. A
dictionary is learned from1500 data samples generated from
a 2-dimensional parabola

{y = [y1, y2] ∈ R
2 | y2 = y2

1}.

Columns 2-4 in Fig. 4 show level curves of the projection
coefficients for three different dictionary atoms. The level
curves are obtained as follows. First, every pointy ∈ R

2

is projected onto the selected dictionary atom to get the
projection coefficients. Then, points with the same projection
coefficients are grouped together and are shown with the same
color map. Coefficients of the kernel K-SVD (Bottom row of
columns 2-4 in Fig. 4) change most dramatically along the
main directions of data’s variation, while coefficients of the
linear K-SVD do not. This observation implies that non-linear
dictionary learning method can provide good representation
for data with non-linear structures.

1) Non-linear Discriminative Dictionary Learning: The
optimization problem (12) is purely generative. It does not
explicitly promote the discrimination which is important for
many classification tasks. Using the kernel trick, when the
data is transformed into a high dimensional feature space, the
data from different classes may still overlap. Hence, generative
dictionaries may lead to poor performance in classification
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Fig. 4. Left: Comparison of error ratio for K-SVD and kernel K-SVD
(common logarithm scale). Right: Comparison between contours of linear K-
SVD and kernel K-SVD for three different dictionary atoms. In both figures,
the first row corresponds to K-SVD and the second row corresponds to kernel
K-SVD.

even when data is non-linearly mapped to a feature space. To
overcome this, a method for designing non-linear dictionaries
that are simultaneously generative and discriminative was
proposed in [35].

Figure 5 presents an important comparison in terms of the
discriminative power of learning a discriminative dictionary
in the feature space where kernel LDA type of discriminative
term has been included in the objective function. A scatter plot
of the sparse coefficients obtained using different approaches
show that such a discriminative dictionary is able to learn the
underlying non-linear sparsity of data as well as it provides
more discriminative representation. See [35], [34] for more
details on the design of non-linear kernel dictionaries.

C. Unsupervised Dictionary Learning

Dictionary learning techniques for unsupervised clustering
have also gained some traction in recent years. In [36], a
method for simultaneously learning a set of dictionaries that
optimally represent each cluster is proposed. To improve the
accuracy of sparse coding, this approach was later extendedby
adding a block incoherence term in their optimization prob-
lem [37]. Additional sparsity motivated subspace clustering
methods include [38], [39], [40].

In particular, scale and in-plane rotation invariant clustering
approach, which extends the dictionary learning and sparse
representation framework for clustering and retrieval of images
was proposed in [13]. Figure 6 presents and overview this
approach [13]. Given a database of images{xj}

N
j=1

and the
number of clustersK, the Radon transform [41] is used to
find scale and rotation invariant features. It then uses sparse
representation methods to simultaneously cluster the dataand
learn dictionaries for each cluster. One of the main features
of this method is that it is effective for both texture and
shape-based images. Various experiments in [13] demonstrated
the effectiveness of this approach in image retrieval experi-
ments, where the significant improvements in performance are
achieved.

D. Dictionary Learning from Partially Labeled Data

The performance of a supervised classification algorithm is
often dependent on the quality and diversity of training images,
which are mainly hand-labeled. However, labeling images is
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Fig. 6. Overview of simultaneous scale and in-plane rotation invariant
clustering and dictionary learning method [13].

expensive and time consuming due to the significant human
effort involved. On the other hand, one can easily obtain
large amounts of unlabeled images from public image datasets
like Flickr or by querying image search engines like Bing.
This has motivated researchers to develop semi-supervised
algorithms, which utilize both labeled and unlabeled data for
learning classifier models. Such methods have demonstrated
improved performance when the amount of labeled data is
limited. See [42] for an excellent survey of recent efforts on
semi-supervised learning.

Fig. 7. Block diagram illustrating Semi-Supervised Dictionary Learning [43].

Two of the most popular methods for semi-supervised learn-
ing are Co-Training [44] and Semi-Supervised Support Vector
Machines (S3VM) [45]. Co-Training assumes the presence of
multiple views for each feature and uses the confident samples
in one view to update the other. However, in applications such
as image classification, one often has just a single feature
vector and hence it is difficult to apply Co-Training. Semi-
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Fig. 5. A synthetic example showing the significance of learning a discriminative dictionary in feature space for classification. (a) Synthetic data which
consists of linearly non separable 3D points on a sphere. Different classes are represented by different colors. (b) Sparse coefficients from K-SVD projected
onto learned SVM hyperplanes. (c) Sparse coefficients from anon-linear dictionary projected onto learned SVM hyperplanes. (d) Sparse coefficients from
non-linear discriminative kernel dictionary projected onto learned SVM hyperplanes [35].

supervised support vector machines consider the labels of the
unlabeled data as additional unknowns and jointly optimizes
over the classifier parameters and the unknown labels in the
SVM framework [46].

An interesting method to learn discriminative dictionaries
for classification in a semi-supervised manner was recently
proposed in [43]. Figure 7 shows the block diagram of
this method [43] which uses both labeled and unlabeled
data. While learning a dictionary, probability distribution is
maintained over class labels for each unlabeled data. The
discriminative part of the cost is made proportional to the
confidence over the assigned label of the participating training
sample. This makes the method robust to label assignment
errors. See [43] for more details on the optimization of the
partially labeled dictionary learning.

IV. D OMAIN ADAPTIVE DICTIONARY LEARNING

When designing dictionaries, training and testing domains
may be different, e.g., different view points and illumination
conditions. In [12], a function learning framework is presented
for the task of transforming a dictionary learned from one
visual domain to the other, while maintaining a domain-
invariant sparse representation of a signal. An overview of
this method is shown in Fig. 8.

Denote P signals observed inN different domains as
{Y1, ...,YN}, whereYi = [yi1, ...,yiP], yip ∈ R

n. Thus,
yip denotes thepth signal observed in theith domain.

Let Di denote the dictionary for theith domain, where
Di = [di1...diK], dik ∈ R

n. The domain dictionary learning
problem can be formulated as

arg
{Di}Ni ,X

min

N
∑

i

‖Yi − DiX‖2

F s.t. ∀p ‖xp‖o ≤ T, (13)

whereX = [x1, ...,xP], xp ∈ R
K , are the sparse codes and

T is a sparsity constant. The set of domain dictionary{Di}
N
i

learned through (13) enable the same sparse codesxp for
a signalyp observed acrossN different domains to achieve
domain adaptation.

A parametric function is used to model domain dictionaries
Di as follows

Di = F (θi,W), (14)

whereθi denotes a vector of domain parameters, e.g., view
point angles, illumination conditions, etc., andW denotes the
dictionary function parameters [12]. Applying (14) to (13),
one can formulate the domain dictionary function learning as
follows

arg
W,X

min

N
∑

i

‖Yi − F (θi,W)X‖2

F s.t. ∀p ‖xp‖o ≤ T.

(15)

Various linear and non-linear dictionary function learning
models are considered in [12] and the optimization problem is



(a) (b)

Fig. 8. Overview of the domain adaptive dictionary learningapproach proposed in [12]. Consider example dictionaries corresponding to faces at different
azimuths. (a) shows a depiction of example dictionaries over a curve on a dictionary manifold. Given example dictionaries, the approach presented in [12]
learns the underlying dictionary functionF (θ,W). In (b), the dictionary corresponding to a domain associated with observations is obtained by evaluating
the learned dictionary function at corresponding domain parameters.

solved using a simple three step procedure. See [12] for more
details on the optimization of (15) and experimental results on
various datasets.

V. CONCLUSION

In this paper, we reviewed some of the approaches to object
recognition based on the recently introduced theories of SR
and DL. Furthermore, through the use of Mercer kernels,
we showed how sparse representation and dictionary learning
methods can be made non-linear. Even though, the main
emphasis was given to object recognition, these methods can
offer compelling solutions to other computer vision and ma-
chine learning problems such as matrix factorization, tracking,
object detection, weakly supervised learning [43] and object
recognition from video [47].

An excellent review of SR and DL from the view of analysis
co-sparse model as well as a discussion on the open problems
in this field can be found in [48].
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