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Abstract—In recent years, Sparse Representation (SR) and from training rather than using a predetermined dictionary
Dictionary Learning (DL) have emerged as powerful tools for (such as wavelet or Gabor) usually leads to better reprasent
efficiently processing of image and video data in non-tradibnal tion and hence can provide improved results in many prdctica

ways. An area of promise for these theories is object recoginn. S . e .
In this paper, we present an overview of SR and DR and applications such as restoration and classification [1][12],

examine several interesting object recognition approacteeusing [11], [12], [13], [14], [15]. Designing dictionaries basemh
these theories. We will also explore the use of non-linear keel  training is a much recent approach to dictionary learningtvh
SR as well as DL methods in many computer vision problems s strongly motivated by recent advances in the SR theory.
including quect recognition, multimodal biometrics recognition, In dictionary learning methods, given a set of examples:
and domain adaptation. L 2T . L .
[y1, - ,¥m], the objective is to find a dictionary that provides
. INTRODUCTION the best representation for each examples in this set. One ca

In recent years, the field of sparse representation a%tam this by solving the following optimization problem

dictionary learning has undergone rapid development, botlaf) X) — argmin |Y — DX||2 subject tovi [|x;]|o < To

in theory and in algorithms [1], [2], [3], [4]. It has also ’ D.X e

been chceSSfu”y app!iegl to numerous image undergtand\i,vr}gere x; represents a column oKX and 7y is a sparsity

gfﬁlr::tmns [2].’ [3]. This is partly.due to the fact thatrsags é)arameter. Here|| A||r denotes the Frobenius norm defined
ges of interest, though high dimensional, can often )

be coded using few representative atoms in some dictionay.|AllF = /22 [4i|?. Several algorithms have been pub-

Given a redundant dictionarp and a signaly, finding the lished in the literature that solve the above problem [1JoD#

sparsest representationyfn D entails solving the following the well-known algorithms for finding such dictionary are th

optimization problem method of optimal directions (MOD)[16] and the K-SVD [17]
A ) _ algorithm. Both MOD and K-SVD are iterative methods and
X = argmin |[x[|o subject toy = Dx, (1) they alternate between sparse-coding and dictionary apdat

steps. See [17] and [16] for more details.

While dictionaries are often trained to obtain good recon-
struction, training dictionaries with a specific discriraiive
Afiteria has also been considered. In what follows, we pitese
several applications of SR and DL in object recognition,
domain adaptation, and multimodal biometrics recognition

where the||x||o := [#{i : ; # 0}, which is a count for the
number of nonzero elementsin Problem (1) is NP-hard and
cannot be solved in a polynomial time. Hence, approxim
solutions are usually sought [3], [5], [6], [7]. For instanc
Basis Pursuit [5] offers the solution via minimization as

% = argmin ||x||; subject toy = Dx, (2)
* Il. SPARSEREPRESENTATIONBASED CLASSIFICATION

where ||x[|; = >, |z;|. The sparsest recovery is possible ) L
Sparse representation-based classification (SRC) [18] was

provided that certain conditions are met [8]. One can adaﬁ% f the fi hods. th b d the effecti ¢
the above framework to noisy setting, where the measureme e of the first methods that showed the efiectiveness o

are contaminated with an errgrobeying|nlls < ¢, that is SR for fac_:e_recogmtlor?. The |dea_ proposed in [18] is to
create a dictionary matrix of the training samples as column

y=Dx+mn for |n|2<e. (3) vectors. The test sample is also represented as a colunwor.vect
. . _ ._Different dimensionality reduction methods are used taced
A s_ta_ble .SOIUt'On can be obtained by solving the followmgqe dimension of both the test vector and the vectors in the
optimization problem dictionary. One such approach for dimensionality redurctio
% = argmin ||x||; subject toly — Dx|| <. (4) is random projections [19]. Random projections, using a
x generated sensing matrix, are taken of both the dictionary
The dictionaryD can be either based on a mathematicahatrix and the test sample. It is then simply a matter of
model of the data [3] or it can be trained directly from theolving an/; minimization problem in order to obtain the
data [9]. It has been observed that learning a dictionasctly sparse solution. Once the sparse solution is obtainednit ca



provide information as to which training sample the testeec v
most closely relates to. %
Let each image be represented as a vect®'inD be the i -

dictionary (i.e. training set) ang be the test image. The SRC

algorithm is as follows:

1) Create a matrix of training samplé& = [Dq, ..., D] .
for k classes, wher®, are the set of images of each '
class.

2) Reduce the dimension of the training images and a test (a)
image by any dimensionality reduction method. Denote

the resulting dictionary and the test vectorlasandy, Fig. 1. Iris images with low SCI values in the ND dataset. Ntbtet the

respectively, images in (a), (b) and (c) suffer from high amounts of blurglesion and
3) Normalize the columns df) and y. segmentation errors, respectively .
4) Solve the following¢; minimization problem TABLE |

N . ’ . - =, RECOGNITIONRATE ON ND DATASET [20].
X =argmin || x" [|; subjecttoy =Dx', (5)
X

. Image Quality NN Masek’s Implementation] SRC
5) Calculate the residuals Good 98.33 975 99.17
N o Blured 95.42 96.01 96.28
ri(¥) = |y — D (%)]]2, Occluded || 85.03 89.54 90.30
) . . Seq. E 78.57 82.00 91.36
for i = 1,...,k wheres; a characteristic function that ©g. =rror

selects the coefficients associated with tHeclass.

6) ldentify(y)=argmin; r;(y). o _ _ _ S

The assumption made in this method is that given sufficiefflich is covered in this section. For simplicity, we present
training samples of thé'* class, Dy, any new test image the mu_ltlvarlate.spars_e represer_ﬁaﬂon framework in terms
y that belongs to the same class will approximately lie ifif multimodal biometrics recognition [22], however, it can
the linear span of the training samples from the clashis be used for any muIt_lmodaI or mult!channel classn‘_lca'uon
implies that most of the coefficients not associated witlsslaProblem [23]. An overview of the algorithm presented in [22]
k in % will be close to zero. Hencey' is a sparse vector. IS Shown in Fig. 2. o _
This algorithm can also be extended to deal with occlusionsCOnsider a multimodal’-class classification problem with
and random noise. Furthermore, a method of rejecting idvalt’ different biometric traits. Suppose there gig training
test samples can also be introduced within this framewo?ﬁmples in each biometric trait. For each biometric trait
[18]. In particular, to decide whether a given test sample is= 1+ -+ D; we denote
a valid sample or not, the notion of Sparsity Concentration Xt =[Xi, X5, ... 7XiC]

Index (SCI) has been proposed in [18]. - - -
One of the main difficulties in iris biometric is that iris®S @N7i X Pi dictionary of training samples consisting 6f

images acquired from a partially cooperating subject ofteiy-dictionariesX;’s corresponding toC different classes.

suffer from blur, occlusion due to eyelids, and speculagefl Each sub-dictionary
tions. As a result, the performance of existing iris rectigni Xj- = [x;'_ 17x;'_ S ,x;‘_p‘] c R"XP;
’ ’ »Pj

systems degrade significantly on these images. Hence, it is ; t of training data f tie modality labeled
essential to select good images before they are input to ffgresents a set of training data from #hie modality labele

recognition algorithm. To this end, the SRC framework Wa\gith the;jth class. Note that; is the fe_a'Fure dimensiqn of each
extended for cancelable iris biometric in [20], [21] thahcas"“rm)Ie and there agg number 02”3'”'”9 samples in glaﬁs
select and recognize iris images in a single step. Hence, there are a total pf=}_;_, p; many samples in the
In Figure 1, we display the iris images having the |eag_ct|onarych. In multlmodgl blometrlcs re_cognmon_ problem
SCI value for the blur, occlusion and segmentation err@fven test samples (a matri%j, which consists of) different
experiments performed on the real iris images in the UnitgersmOda“t'eS{Yla _Y27 ..., Y7} where each sampl¥’ consists
of Notre Dame ND dataset. As it can be observed, the low S€f di observationsY’ = [yi,y},...,ygl € R™*%, the
images suffer from high amounts of distortion. The recdgnit OPiective is to identify the class to which a test sample
performance of the SR based method for iris biometric [28/ongs to [221]1 [33]- b _
is summarized in Table I. As it can be seen from the tableLet T' = [[',T%,....T'”] € RP*¢ be the matrix lf)ormed
SRC provides the best recognition performance over that ¥ concatenating the coefficient matrices with=3_,”, d;,

NN and Libor Masek’s iris identification source code. then we can seek for the row-sparse maffiby solving the

. o ] following ¢, /¢,-regularized least square problem
A. Multimodal Multivariate Sparse Representation b

The ideas presented in the above section can be extended  { _ 410 1pin 1 Z VP = X2 + AT 1 (6)
to the case of multimodal multivariate sparse represemtati r 2 "
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Fig. 2. Overview of multimodal multivariate sparse repréagon-based classification algorithm [22].

where \ is a positive parameter angis set greater than different classes. Some of the other methods for learning
to make the optimization problem convex. Heli&||. , is a discriminative dictionaries include [29], [30], [31], [B427],
norm defined agT|j1, = >.7_, [7¥"|l; where~v*’s are the [11]. Additional techniques may be found within these refer
row vectors ofl". Oncel is obtained, the class label associateeinces.
to an observed vector is then declared as the one that preduce i L ,
the smallest approximation error A. Information-theoretic Dictionary Learning
D In particular, a dictionary learning method based on infor-
j = arg minz 1Y — X%;(I”)H%, @) matlon_maxm!zauon ppr_u;lple_wgs proposed in _[33]_ for_anu
recognition. Given the initial dictionar®, the objective is to

compress it into a dictionarp* of size k, which encourages

whered; is the matrix indicator function defined by keepingy,qo signals from the same class to have very similar sparse

rows corresponding to thgh class and setting all other rOWSepresentations

equal to zero. Note that the optimization problem (6) reduce | ot 1 genote the labels of/ discrete valuesl € [1, M].

to the conventional Lasso [24] wheb = 1 andd = 1. The Given a set of dictionary atom®*, define P(L|D*) =

resulting classification algorithm reduces to SRC [18].Hat 1 > P(L|d;). For simplicity, denoteP(L|d*) as
dieD* 1) 1

case, wherD = 1 (6) is referred to as multivariate Lasso [25]}D *]‘Jd*), and P(L|D*) as P(Lp- ). To enhance the discrimi-

Tzrgs lr:nodhel can be e_xtenﬁledk to hlandleh n((j)lse_ and ECCIUS ive power of the learned dictionary, the following objes
[22]. Furthermore, using the kernel methods, it can be maéﬁ ction is considered

nonlinear [22].

i=1

* o * .
I1l. DISCRIMINATIVE DICTIONARY LEARNING argl%aiXI(D $ DAD™) 4 M(Lp+; Lpeyp-) ®
Dictionaries can be trained for both reconstruction anghere A\ > 0 is the parameter to regularize the emphasis
discrimination applications. In the late nineties, Etechand on appearance or label information adddenotes mutual
Chellappa proposed a Linear Discriminant Analysis (LDAnhformation. One can approximate (8) as
based basis selection and feature extraction algorithm for

classification using wavelet packets [26]. Recently, simil argd*er%%)\(D*[H(d*|D*) — H(d"|D")]
algorithms for simultaneous sparse signal representatich AAH (La-|Lp-) — H(La-|Lp-)), ©)

discrimination have also been proposed in [27], [28]. The

basic idea in learning a discriminative dictionary is to ad whereH denotes entropy. One can easily notice that the above
LDA type of discrimination on the sparse coefficients whicformulation also forces the classes associated witho be
essentially enforces separability among dictionary atarhs most different from classes already covered by the selected



atomsD*; and at the same time, the classes associateddvithproblem (10) that has the following form:
are most representative among classes covered by the remain D* — 3(Y)A 11
ing atoms. Thus the learned dictionary is not only compact, =&(Y) (11)
but also covers all classes to maintain the discrimingbilit for some A € R"*KX. As a result, one can seek an optimal

In Fig. 3, we present the recognition accuracy on thgictionary through optimizing\ instead ofD. By substituting
Keck gesture dataset with different dictionary sizes aner ovEq. 11 into Eq. 10, the problem can be re-written as follows:
different global and local features [33]. Leave-one-pereat ] 9 ,
setup is used. That is, sequences performed by a person afe§ i [2(Y) = 2(Y)AX][ st [[xillo < To,Vi. (12)
left out, and the average accuracy is reported. Initiaiatetry ’ ) _
size | D°| is chosen to be twice the dimension of the input _Iq order to see _the adv_antage of_th|§ formulgnon over the
signal and sparsity 10 is used in this set of experiments. 84ginal one, we will examine the objective function. Thgbu
can be seen the mutual information-based method, denote &€ manipulation, the cost function can be re-written as:

MMI-2 outperforms the other methods. [®(Y) - ®(Y)AX|% = tr(I— AX)TK(Y,Y)(I- AX)),

whereK(Y,Y) is a kernel matrix whose elements are com-
puted fromk(i,j) = ®(y;)T®(y;). It is apparent that the
objective function is feasible since it only involves a natf
finite dimensionK € R™*", instead of dealing with a possibly
infinite dimensional dictionary. An important property &iig
formulation is that the computation @& only requires dot
products. Therefore, we are able to empldgrcer kernel
P om0 Pocenysiep 0 functions to compute these dot products without carrying ou
(a) (b) the mapping®.
Fig. 3. Recognition accuracy on the Keck gesture datasdt different . To SO.Ive. the .above optimization problem for learning non-
features and dictionary sizes (shape and motion are gleaires. STIP is linear dictionaries, we have proposed variants of MOD and
a local feature.) [33]. The recognition accuracy usingiahitlictionary D°:  K-SVD algorithms in the feature space [34]. The procedure
(a) 0.23 (b) 0.42. In all cases, the MMI-2 (red line) outperie the rest. essentially involves two stages: sparse coding and ditjon
update in the feature space. For sparse coding, we propose
non-linear version of orthogonal matching pursuit aldorit
[34]. Once sparse codes are found in the feature space, we
Linear representations are almost always inadequatefer r@pdate the dictionary atoms in an efficient way.

resenting nonlinear data arising in many practical apptos. A synthetic experiment was cone to examine the effective-
For example, many types of descriptors in computer visiatfess of a learned dictionary in the feature space in [34]. A
have intrinsic nonlinear similarity measure functionseThost dictionary is learned from1500 data samples generated from
popular ones include the spatial pyramid descriptor whadsu a 2-dimensional parabola
a pyramid match kernel, and the region covariance descripto 5 9
which uses a Riemannian metric as the similarity measure =yl €R” [y2 =i}

between two descriptors. Both of these distance measutgfiumns 2-4 in Fig. 4 show level curves of the projection
are highly non-linear. Unfortunately, the traditionaltibnary coefficients for three different dictionary atoms. The leve
learning methods, e.g. MOD and K-SVD, are based on linegfirves are obtained as follows. First, every pajnte R2
models. This inevitably leads to poor performances for many projected onto the selected dictionary atom to get the
datasets, e.g., object classification of Caltech-101 [&8sEt, projection coefficients. Then, points with the same pragect
even when discriminant power is taken into account durirg thoefficients are grouped together and are shown with the same
training. This motivates us to study non-linear kernel sparcolor map. Coefficients of the kernel K-SVD (Bottom row of
representations for object representation and classtfité®]. columns 2-4 in Fig. 4) change most dramatically along the
Let & : RY — F C RY be a non-linear mapping from main directions of data’s variation, while coefficients bet
R™ into a dot product spac&. One can learn a non-linearjinear K-SVD do not. This observation implies that non-tine
dictionaryD in the feature spac&” by solving the following dictionary learning method can provide good represenmtatio
optimization problem: for data with non-linear structures.
. 2 . 1) Non-linear Discriminative Dictionary Learning: The
argrain 12(Y) = DX|[ st [[xillo < To,¥i.  (10) optimization problem (12) is purely generative. It does not
' ) explicitly promote the discrimination which is importardrf
whereD € RV*X is the sought dictionaryX € RX*" is a many classification tasks. Using the kernel trick, when the
matrix whoseith column is the sparse vectry corresponding data is transformed into a high dimensional feature spaee, t
to the sampley;, with maximum ofT, non-zero entries. It was data from different classes may still overlap. Hence, gatier
shown in [34], that there exists an optimal solutibri to the dictionaries may lead to poor performance in classification

0.9 0.95

o
©

0.85

0.75

ecognition Accuracy
°
&

8 0.4[ —o—MmI-2
& | —e—mmi-1
k-means
0.2| —#—Liu-Shah 06

—*—ME

e
2

B. Kernel Dictionary Learning



m : 9
= q
(database) (query image)

= x 18
AN \
EPRE -
A f - / DR
o0 N
15 ¢/ O ., o e
1R al ] 1 d PRI E—
b \ ) -
| d NN
,J - A y S

= (scaleq’i‘pjta/t:ilon fscale-r'otation !
Fig. 4. Left: Comparison of error ratio for K-SVD and kernet¥/D - aligned sinogram) | |aligned sinogram) | S
(common logarithm scale). Right: Comparison between aostof linear K- _
SVD and kernel K-SVD for three different dictionary atoms.Hoth figures, dictionary
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K-SVD. \ /
v
Clusters C. .
) ) dictionaries b: R’ivxq sparse in D,
even when data is non-linearly mapped to a feature space. To
overcome this, a method for designing non-linear dictigsar - l
that are simultaneously generative and discriminative was earchfor
proposed in [35]. e x,in C,
Figure 5 presents an important comparison in terms of the ——
. . . . . . . . . . . ey L
discriminative power of learning a discriminative dictag L 9
in the feature space where kernel LDA type of discriminative { 0 Saees

term has been included in the objective function. A scati@r p

of the sparse coefficients obtained using different appresc Fig. 6.  Overview of simultaneous scale and in-plane ratatiovariant
show that such a discriminative dictionary is able to ledue t ¢ustering and dictionary learning method [13].

underlying non-linear sparsity of data as well as it proside

more discriminative representation. See [35], [34] for enor . . . N
details on the design of non-linear kernel dictionaries. expensive and time consuming due to the significant human

effort involved. On the other hand, one can easily obtain

C. Unsupervised Dictionary Learning large amounts of unlabeled images from public image dataset

Dictionary learning techniques for unsupervised clustgri like Flickr or by querying image search engines like Bing.
have also gained some traction in recent years. In [36],TRis has motivated researchers to develop semi-supervised
method for simultaneously learning a set of dictionariest thalgorithms, which utilize both labeled and unlabeled data f
optima”y represent each cluster is proposed_ To improee thzarning classifier models. Such methods have demonstrated
accuracy of sparse coding, this approach was later extandedmproved performance when the amount of labeled data is
adding a block incoherence term in their optimization profimited. See [42] for an excellent survey of recent efforts o
lem [37]. Additional sparsity motivated subspace clustgri Semi-supervised learning.
methods include [38], [39], [40].

In particular, scale and in-plane rotation invariant cuistg Labeled Data Training
approach, which extends the dictionary learning and sparse  [&" ~ Learned Dictionary
H . . . Semi S ervised
representation framework for clustering and retrievahedges Unlabeled Data Dictionary Learning

was proposed in [13]. Figure 6 presents and overview this = FENESNEY
approach [13]. Given a database of imagag}j.\’zl and the

number of clusterss, the Radon transform [41] is used to Testing

find scale and rotation invariant features. It then usessspar 7

representation methods to simultaneously cluster the atada sparse Coding = |, 8% — s Clags Label
learn dictionaries for each cluster. One of the main feature Test Image

of this method is that it is effective for both texture and _ _ . _ _ o _
shape-based images. Various experiments in [13] dethrdilg. 7. Block diagram illustrating Semi-Supervised Diatioy Learning [43].

the effectiveness of this approach in image retrieval axper _ .

ments, where the significant improvements in performanee ar Two of the most popular methods for semi-supervised learn-

achieved. ing are Co-Training [44] and Semi-Supervised Support Mecto
o _ _ Machines (S3VM) [45]. Co-Training assumes the presence of
D. Dictionary Learning from Partially Labeled Data multiple views for each feature and uses the confident sample

The performance of a supervised classification algorithmiis one view to update the other. However, in applicationdisuc
often dependent on the quality and diversity of trainingges as image classification, one often has just a single feature
which are mainly hand-labeled. However, labeling images v&ctor and hence it is difficult to apply Co-Training. Semi-
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Fig. 5. A synthetic example showing the significance of leayra discriminative dictionary in feature space for clfisation. (a) Synthetic data which
consists of linearly non separable 3D points on a spherder®ift classes are represented by different colors. (bjs8p=oefficients from K-SVD projected
onto learned SVM hyperplanes. (c) Sparse coefficients fromoralinear dictionary projected onto learned SVM hypeanpk (d) Sparse coefficients from
non-linear discriminative kernel dictionary projectedtmtearned SVM hyperplanes [35].

supervised support vector machines consider the labelseof Let D; denote the dictionary for the!® domain, where
unlabeled data as additional unknowns and jointly optimiz®; = [dj1...dik], dix € R™. The domain dictionary learning
over the classifier parameters and the unknown labels in fhi@blem can be formulated as
SVM framework [46]. N

An interesting method to learn discriminative dictionarie ;¢ minz [Y: —DiX||% s.t. Vp ||x,]l0 < T, (13)
for classification in a semi-supervised manner was recently{p;}~N x p
proposed in [43]. Figure 7 shows the block diagram of B K
this method [43] which uses both labeled and unlabel%\fpereX N [?(1""’XP]’ X_Il’_he R ,a;rcej the.sp(;;\_rsg codesNand
data. While learning a dictionary, probability distribari is is a sparsity constant. The set of domain dictionfid };

maintained over class labels for each unlabeled data. Tlﬁgr_nedlthro%gh (13(;) enab!s? ;hf? sam((ej sparse c&geﬁ)r
discriminative part of the cost is made proportional to th Signalyp ODSErvVed acros Ifferent domains to achieve

confidence over the assigned label of the participatingitrgi omain adapt_atmn. L N .
sample. This makes the method robust to label assignm nf parametric function is used to model domain dictionaries

errors. See [43] for more details on the optimization of the'i 35 follows
partially labeled dictionary learning. D; = F(6;, W), (14)
IV. DOMAIN ADAPTIVE DICTIONARY LEARNING where §; denotes a vector of domain parameters, e.g., view

When designing dictionaries, training and testing domaiR@int angles, illumination conditions, etc., akd denotes the
may be different, e.g., different view points and illumioat dictionary function parameters [12]. Applying (14) to (13)
conditions. In [12], a function learning framework is prel  ON€ can formulate the domain dictionary function learnieg a
for the task of transforming a dictionary learned from onfollows
visual domain to the other, while maintaining a domain- N
invariant sparse representation of a signal. An overview of arg min > [[Yi — F(0;, W)X % s.t. ¥p [[x,[lo < T.
this method is shown in Fig. 8. woX i

Denote P signals observed inV different domains as (15)
{Y1,...,Yn}, whereY; = [yi1,...,¥ir], Yip € R". Thus, Various linear and non-linear dictionary function leain
yip denotes thep!" signal observed in the!* domain. models are considered in [12] and the optimization problem i



Dyy: = F{1T°. W)
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Fig. 8. Overview of the domain adaptive dictionary learnaggproach proposed in [12]. Consider example dictionartgsesponding to faces at different
azimuths. (a) shows a depiction of example dictionaries aveurve on a dictionary manifold. Given example dictioesrithe approach presented in [12]
learns the underlying dictionary functiaRi(6, W). In (b), the dictionary corresponding to a domain assodiatéh observations is obtained by evaluating
the learned dictionary function at corresponding domairaipeters.
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