
Deep Feature-based Face Detection on Mobile Devices

Sayantan Sarkar1, Vishal M. Patel2 and Rama Chellappa1

1 Center for Automation Research, University of Maryland, College Park, MD 20742

{ssarkar2, rama}@umiacs.umd.edu
2 Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854

vishal.m.patel@rutgers.edu

Abstract

We propose a deep feature-based face detector for mo-

bile devices to detect user’s face acquired by the front-

facing camera. The proposed method is able to detect faces

in images containing extreme pose and illumination varia-

tions as well as partial faces. The main challenge in devel-

oping deep feature-based algorithms for mobile devices is

the constrained nature of the mobile platform and the non-

availability of CUDA enabled GPUs on such devices. Our

implementation takes into account the special nature of the

images captured by the front-facing camera of mobile de-

vices and exploits the GPUs present in mobile devices with-

out CUDA-based frameworks, to meet these challenges.

1. Introduction

Current methods of authenticating users on mobile de-

vices are mostly PIN or pattern based, which provides au-

thentication only during the initial login. Password-based

methods are susceptible, because people sometimes set

passwords that are easy to guess or are repetitive [1] and

pattern-based systems are vulnerable to smudge attacks [2].

Once the attacker successfully bypasses the initial authenti-

cation barrier, the phone has no way of blocking or denying

the attacker. Continuous authentication systems deal with

this issue by continuously monitoring the user identity after

the initial access to the mobile device based on how the user

interacts with the mobile device. Examples of such systems

include touch gesture-based systems [3], [4], [5], face-based

systems [6], [7], [8], gait-based systems [9], stylometry-

based methods [10], speech and face-based method [11]

[12] and sensor-based methods [13], [14]. It has been shown

that face-based recognition can be very effective for contin-

uous authentication [11], [7], [15], [8].

Face detection is a very important step in face-based au-

thentication systems. There has been substantial progress

in detecting faces in images, which have impressive perfor-

mances on challenging real-world databases [16]. But such

databases are predominantly composed of general surveil-

lance or media type images and not specifically of images

captured using front-facing cameras of smartphones. As

we shall discuss later, face images captured using the front-

facing cameras of mobile devices possess some unique fea-

tures that can be used as powerful prior information to

simplify the task of face detection on mobile platforms.

This paper proposes a deep convolutional neural network

(DCNN)-based face detection scheme for mobile platforms.

1.1. Motivation

State of the art face detection techniques are based

on DCNNs [17], [18]. Variations of DCNNs have been

shown to perform well in various datasets like Face Detec-

tion Dataset and Benchmark (FDDB) [19] and Annotated

Face in-the-Wild (AFW) [20]. Though DCNN-based meth-

ods can run on serial processors like CPUs, they are pro-

hibitively slow without parallel processors like GPUs. Mo-

bile devices and consumer electronics products like cam-

eras often have in-built face detection systems, but since

they do not have much computational horsepower, simpler

detection algorithms are implemented on them, which do

not have as high a performance as DCNN-based methods

but can run on low power mobile platforms. Thus, there

is a tradeoff between high performance and hardware and

power constraints. This paper seeks to reconcile the two

competing objectives and studies the feasibility and effec-

tiveness of DCNN-based face detection methods in mobile

platforms. Clearly, the most powerful DCNN-based face

detectors that are designed to run on desktop environments

will not be a good candidate for a DCNN-based detector for

mobile platforms. Below are a few differences between the

two tasks.

1. Differences in hardware and software setup:

• The de facto hardware requirement for DCNNs

is a powerful Nvidia GPU. Clearly, mobile GPUs

are much less powerful, hence the algorithms

need to be simpler.

• Most DCNN frameworks use a CUDA backend,

but since most mobile GPUs are not made by

Nvidia, they do not support CUDA. Hence, a

more portable software stack is needed.

2. Differences in dataset:

• Generic face databases may have images with

multiple small faces while the front-facing cam-

era captures face images when the user is using

the phone and hence may have one large face im-

age. Therefore, we can restrict ourselves to de-

tecting a single face only. Also, given the typical

distance at which the user interacts with his or her

phone, we can make assumptions about the max-

imum and minimum sizes of the captured faces.

• The images captured by the front-facing camera

usually have the user’s face in a frontal pose. Ex-

treme pose variations are rare and one can focus

on detecting faces with minor pose variations.

• Faces captured by the front-facing camera, how-

ever, tend to be partial. A mobile face detector

should be equipped to detect partial faces, which

is not the focus of many generic face detectors.

This paper makes the following contributions:

• Exploiting the unique nature of the face detection

problem on mobile platforms, we design an effective,

simplified DCNN-based algorithm for mobile plat-

forms that need not be as powerful as general face de-

tectors, but is fine-tuned to work in a mobile setting.

• Most of the existing implementations of DCNNs use a

CUDA backend, but most mobile GPUs are not Nvidia

GPUs, hence they do not support CUDA. We develop

libraries (in OpenCL and RenderScript) to implement

DCNN-based algorithms on GPUs without resorting to

CUDA, so that the algorithm is portable across multi-

ple platforms.

Rest of the paper is organized as follows. We first sur-

vey related works that have influenced the current algorithm

and discuss their advantages and disadvantages. Section 2

introduces the algorithm in full details and ends with a dis-

cussion on the salient features of the algorithm. Section 3

explores the details of the actual implementation of the al-

gorithm on a mobile platform. Section 4 presents evaluation

results of the algorithm on two datasets, UMD-AA and MO-

BIO. Finally we draw some conclusions about the algorithm

and suggest some future directions.

1.2. Related Work

Cascade classifiers form an important and influential

family of face detectors. Viola-Jones detector [21] is a

classic method, which provides realtime face detection, but

works best for full, frontal, and well lit faces. Extending the

work of cascade classifiers, some authors [22] have trained

multiple models to address pose variations. An extensive

survey of such methods can be found in [16].

Modeling of the face by parts is another popular ap-

proach. Zhu et al. [20] proposed a deformable parts model

that detected faces by identifying face parts and modeling

the whole face as a collection of face parts joined together

using 'springs'. The springs like constraints were useful in

modeling deformations, hence this method is somewhat ro-

bust to pose and expression changes.

As mentioned before, current state-of-the-art meth-

ods involve deep networks, which have been extensively

adopted and studied both by the academic community and

industry. Current face detectors at commercial companies

like Google and Facebook use massive datasets to train

very deep and complex networks that work well on uncon-

strained datasets, but they require huge training datasets and

powerful hardware to run.

Recent studies have shown that in the absence of massive

datasets or hardware infrastructure, transfer learning can be

effective as it allows one to introduce deep networks with-

out having to train it from scratch. This is possible as lower

layers of deep networks can be viewed as feature extrac-

tors, while higher layers can be tuned to the task at hand.

Therefore, one can use the lower layers of common deep

networks like AlexNet [23] to extract general features, that

can then be used to train other classifiers. Works of Bengio

et al. [24] have studied how transfer learning works for deep

networks.

Specific to the mobile platform, Hadid et al. [6] have

demonstrated a local binary pattern (LBP)-based method

on a Nokia N90 phone. Though it is fast, it is not a ro-

bust method and was designed for an older phone. Current

phones have more powerful CPUs and more importantly,

even GPUs, which can implement DCNNs.

Finally, let us consider the datasets used for mobile face

detection. While there are many face databases available,

they are not suitable for evaluating mobile face detection

algorithms. MOBIO is a publicly available mobile dataset

[11] which consists of bi-modal (audio and video) data

taken from 152 people, but it is a very constrained one as

users are asked to keep their faces within a certain region,

so that full faces are captured. A more suitable dataset for

our purpose is the semi-constrained UMD-AA dataset [7],

which shall be described in a later section.

2. Deep Features-based Face Detection on Mo-

bile Devices

As mentioned briefly before, transfer learning is an ef-

fective way to incorporate the performance of deep net-

works. The first step of the Deep Features based Face De-

Figure 1. Overview of the proposed deep feature-based face detection algorithm for mobile devices.

tection on Mobiles (DFFDM) algorithm is to extract deep

features using the first 5 layers of Alexnet. Different sized

sliding windows are considered, to account for faces of dif-

ferent sizes and an SVM is trained for each window size to

detect faces of that particular size. Then, detections from

all the SVMs are pooled together and some candidates are

suppressed based on an overlap criteria. Finally, a single

bounding box is output by the detector. In the following

subsections, the details of the algorithm and model training

are provided. Figure 1 provides an overview of the entire

system.

2.1. Dataset

The UMD-AA dataset is a database of 720p videos and

touch gestures of users that are captured when the user per-

forms some given tasks on a mobile device (iPhone) [7].

There are 50 users (43 males and 7 females) in the database,

who perform 5 given tasks (eg, typical tasks like scrolling,

reading, viewing images etc.) in three illumination condi-

tions (a room with natural light, a well-lit room and a poorly

lit room). A total of 8036 images, spread over all users and

all sessions, were extracted from these video recordings and

manually annotated with bounding boxes for faces. Of these

6429 images had user's faces in the frame and 1607 were

without faces, or with faces at extreme poses, with eyes and

nose not visible or a very small partial face visible in the

frame, which are all the cases when we can safely say there

is no face present in the frame.

2.2. Training SVMs

For training, 5202 images from the UMD-AA database

is used. Analysing the distribution of face sizes, we find

that the height of faces vary from around 350 to 700 and the

Figure 2. A histogram showing distribution of bounding box

widths and heights.

width varies from 300 to 600. A 2D histogram of the height

and widths of the faces in the dataset are shown in Figure 2.

Now the images are captured at 720p resolution (1280

rows x 720 columns). But since that resolution is too high

for our purpose, we resize it to 640 x 360. Therefore typical

faces range from 175 to 350 rows and 150 to 300 columns

in this reduced resolution.

First we extract deep features from these resized im-

ages by forwarding them through AlexNet [23]. We tap the

network at the 5th convolutional layer (after max-pooling).

The standard AlexNet reduces an image by a factor of 16

in both dimensions. Thus, if the kth input image is of size

pk × qk, the output is of dimensions wk × hk × 256, where

the feature space width wk and height hk are given by (1)

wk = ⌈pk/16⌉ , hk = ⌈qk/16⌉ . (1)

The 3rd dimension is 256 because the 5th layer of

AlexNet uses 256 filters. Given the typical face dimensions

in the last paragraph, they are reduced by a factor of 16

in the feature space to heights ranging from 10 to 22 and

widths ranging from 9 to 19 approximately. Obviously, a

single sized sliding window cannot account for these vary-

ing sizes, therefore we consider windows of width starting

from 8 and increasing to 20 in steps of 2, and height starting

from 9 and increasing in steps of 2 to 23. In total we get 56

different window sizes for which we need to train 56 differ-

ent SVMs. We denote a window by Wij , where i denotes

its window height and j denotes its window width.

Let wk and hk, as defined in (1), denote the width and

height of the deep feature for the face in the kth training

image. The face from the kth training image is used as a

positive sample for the SVM Wij , if Eq. (2) is satisfied.

|i− hk| ≤ tp & |j − wk| ≤ tp, (2)

for some threshold for selecting positive samples, tp. That

is, we select those faces for Wij whose sizes are comparable

and close to the window's dimensions.

For negative samples, we extract random patches of size

i × j from those training samples which have no faces. If

the kth training sample has a face of size wk × hk, and for a

particular window Wij , if (3) holds,

|i− hk| > tn & |j − wk| > tn, (3)

for some threshold for selecting negative samples, tn, then

we extract a few random patches from the kth training sam-

ple that act as negative samples for Wij . That is, if the face

in an image is of a very different size from the current win-

dow Wij under consideration, we extract negative samples

from it, so that Wij gives a negative response of faces of dif-

ferent size. Finally, since the UMD-AA database does not

have many images with no faces, we extract some random

negative patches from images of the UPenn Natural Image

Database [25].

Once we have extracted the positive and negative sam-

ples for each window size, we discard those window sizes

which do not have enough positive examples. Then we con-

vert the three dimensional deep feature patches into a single

dimensional feature vector. Thus for Wij , we get a feature

vector of length i × j × 256. We estimate the mean and

standard deviation of features from each window, which are

used to normalize the features.

Next we train linear SVMs for each window. Since we

get a very long feature vector, it is difficult to train an SVM

with all positive and negative samples together. To make the

training tractable, we divide the samples into batches and

train over many cycles. Specifically, let pij be the number of

positive samples for Wij . Then we choose a small number

of negative samples say nij and train the SVM. Then we

find the scores of the nij negative training samples using the

weights we get after training and retain only those that are

close to the separating hyperplane and discard the rest. We

refill the negative samples batch with new negative samples

and continue this cycle multiple times. This procedure is

performed for each SVM.

2.3. Full Face Detection Pipeline

After the SVMs are trained, we can scan the deep fea-

ture extracted from the given image k in a sliding window

fashion for each SVM. Specifically for an image of size

wk × hk, the deep feature is of hk rows and wk columns

as given by (1) and 256 depth. Therefore, for Wij , we can

slide the window from position (1, 1), which is the top left,

to (hk − i, wk − j). Let (rij , cij) denote the position where

the SVM yields highest score. Then we say that a bounding

box, whose top left is at 16× (rij , cij) and has width 16× j
and height 16 × i is the prediction from Wij . Note that we

multiply by 16, because the feature space's height and width

is approximately 16 times smaller than that of the original

image.

Now that we have 1 prediction from each of the 56

SVMs, we need to combine them to get a single prediction.

A modified version of the non maximal suppression scheme

used by Girshick et al. [26] is used for this purpose. First

we sort the 56 proposals by their scores and then pick the

candidate with the highest score. Boxes that overlap sig-

nificantly with it and have a considerably lower score than

it are ignored. This is continued for the next highest scor-

ing candidate in the list, till all boxes are checked. After

this we process the remaining candidates by size. If a larger

box significantly overlaps a smaller box, but the larger box

has a slightly lower score than the smaller box, we suppress

the smaller box. This is useful in the following scenario: A

smaller SVM may give a strong response for part of a full

face, while the larger SVM responsible for detecting faces

of that size may give a slightly lower response. But clearly

the larger SVM is making the correct prediction, so we need

to suppress the overlapping smaller SVM's candidate. After

performing these suppressions, we pick the SVM's candi-

date that has the highest score. We then choose a suitable

threshold, and if final candidate's score is larger than that,

we declare a face is present at that location, else declare that

there is no face present.

2.4. Salient Features

Sliding window approaches usually work on the princi-

ple of extracting appropriate features and then sliding a win-

dow and deciding if an object is present in that window or

not. The proposed algorithm, DFFDM, can be thought of as

using DCNNs to extract the features for the sliding window

approach. However, to make the sliding window approach

work for detecting faces of varying scales, we need to ex-

tract features across scaled versions of the input image. The

approach followed by Ranjan et al. in [17] is based on ex-

tracting deep features at multiple resolutions of the image

and then training a single SVM to detect faces.

Clearly extracting deep features is a very costly opera-

tion because of the sheer number of convolutions involved.

Passing the image at multiple resolutions through the net-

work increases the workload even more. Therefore, the pro-

posed algorithm passes the image through the DCNN only

once, but trains SVMs of different sizes to achieve scale in-

variance. Also, the different SVM sizes help in detecting

partial faces. For example, tall and thin windowed SVMs

are usually trained with left half or right half faces, while

short and fat windowed SVMs are trained for top half of

faces. SVMs whose aspect ratio match a normal full face’s

aspect ratio are trained on full faces. Thus, different sized

windows help in scale invariance as well as in detecting par-

tial faces.

3. Implementation

Current popular deep learning platforms include Caffe,

Theano and Torch. Although, these platforms have a CPU

only version, they are significantly slower than the GPU en-

abled versions. These platforms have a CUDA based back-

end that offloads the heavy, but parallelizable, computations

involved in a convolutional deep network to an Nvidia GPU.

Nvidia has been actively developing and supporting deep

learning research and has released optimized libraries such

as cuDNN. Thus, although there are multiple frameworks

in the deep learning system, the computational backend is

dominated by CUDA based-code and Nvidia GPUs.

Unfortunately, CUDA is proprietary and works only for

Nvidia’s CUDA enabled GPUs. Therefore, existing deep

learning frameworks are difficult to port on to GPUs made

by other vendors. Current mobile devices have GPUs that

are predominantly provided by Adreno, Mali and PowerVR.

Nvidia’s mobile processor Tegra does power some phones

and tablets, and these devices support CUDA, but the over-

whelming majority of devices do not have CUDA enabled

GPUs.

OpenCL [27] is an open standard, developed by Khronos

Group, to support multiple vendors and facilitate cross plat-

form heterogeneous and parallel computing. All major ven-

dors like Qualcomm, Samsung, Apple, Nvidia, Intel and

ARM conform to the OpenCL standard. Thus OpenCL is a

portable option for implementing convolutional networks in

GPUs other than those made by Nvidia. Recently though,

Google has developed RenderScript to facilitate heteroge-

neous computing on the Android platform.

Mobile devices are obviously not an ideal platform to

perform training on massive datasets. But once the model

has been trained, we can hope to run the forward pass on

mobile platforms. Thus to harness GPUs of mobile devices

to perform the convolution heavy forward pass, we have im-

plemented OpenCL and RenderScript-based libraries. The

OpenCL library is general and should work on any GPU,

while the RenderScript library is specifically tailored for

Android. An Android specific example is the use of Schrau-

dolp’s fast exponentiation [28] to approximately but quickly

compute the normalization layer in AlexNet. Full exponen-

tiation takes a significant amount of time and can become

bottlenecks in weaker mobile GPUs.

The OpenCL and RenderScript libraries implement the

primary ingredients for a basic convolutional deep network:

convolution and activation layers, max pooling layers and

normalization layers, each of which can be parallelized on

GPUs. By appropriately stacking up these layers in the

correct combination and initializing the network with pre-

trained weights we can build a CNN easily. For our purpose

we have implemented the AlexNet network as described

earlier, but we can easily build other networks given its

weights and parameters. For an image of size 360x640, a

single forward pass, running on a machine with 4th gener-

ation Intel Core i7 and Nvidia GeForce GTX 850M GPU,

takes about 1 second for the OpenCL implementation. For

an image of the same size, on the Renderscript implemen-

tation running on different phones, we summarize the run

time results in Table 1. Only about 10% or less of this

run time is due to max-pooling layer, normalization layer,

SVMs and non maximum suppression. The rest of the time

is due to the heavy computations of the convolutional layers.

Continuously running the algorithm on a Nexus 5 drains the

battery at 0.45% per minute, while leaving the phone undis-

turbed drains the battery at around 0.16% per minute.

Phone Runtime GPU CPU

Moto G 36.7 s Adreno

305

Qualcomm

Snapdragon 400

HTC One

(M7)

31.2 s Adreno

320

Qualcomm

Snapdragon 600

Samsung

Galaxy S4

28.0 s Adreno

320

Qualcomm

Snapdragon 600

Nexus 5 11.9 s Adreno

330

Qualcomm

Snapdragon 800

LG G3 10.3 s Adreno

330

Qualcomm

Snapdragon 801

Nexus 6 5.7 s Adreno

420

Qualcomm

Snapdragon 805
Table 1. Run times of DFFDM on different mobile platforms

4. Evaluation and Results

For evaluation, we consider common metrics like

Precision-Recall plots, F1 scores and Accuracy. We com-

pare the performance of our algorithm on the UMD-AA [7]

and MOBIO [12] [11] datasets with Deep Pyramid De-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

Precision−Recall plot

DFFDM

DP2MFD

DPM

Figure 3. Precision Recall plot corresponding to the UMD-AA

dataset.

formable Part Model (DP2MFD) [17], which is among the

state-of-the-art algorithms for some challenging datasets

like AFW and FDDB, deformable part model for face de-

tection (DPM) [20] and Viola Jones detector (VJ) [21].

We compute detections based on 50% intersection over

union criteria. Let d be the detected bounding box, g be

the ground truth box and s be the associated score of the

detected box d. Then for declaring a detection to be valid,

we need Eq. (4) to be satisfied for some threshold t

area(d ∩ g)

area(d ∪ g)
> 0.5 & s ≥ t. (4)

4.1. UMD-AA Dataset

Results on UMD-AA dataset are summarized in Table 2.

Metric DFFDM DP2MFD DPM VJ

Max F1 92.8% 89.0% 84.1% 67.7%

Max Ac-

curacy

88.0% 82.3% 76.4% 58.0%

Recall at

95% pre-

cision

85.7% 81.7% 72.6% -

Table 2. Comparision of different metrics for various detectors on

UMD-AA database

To check the robustness of the detector, we vary the

intersection-over-union threshold as defined in Eq. (4) from

0.1 to 0.9 and plot the resulting F1 score in Figure 4 and

accuracy in Figure 5. We see that the DFFDM algorithm

gives better performance at higher overlap thresholds too.

A few example positive and negative detections are

shown in Figure 7. The detections are marked in red, while

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU threshold

F1
 s

co
re

F1−Threshold plot

DFFDM
DP2MFD
DPM

Figure 4. Plot showing variation of F1 score with respect to overlap

threshold corresponding to the UMD-AA dataset.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU threshold

A
c
c
u

ra
c
y

Accuracy−Threshold plot

DFFDM

DP2MFD

DPM

Figure 5. Plot showing variation of accuracy with respect to over-

lap threshold corresponding to the UMD-AA dataset.

the ground truth is in yellow. The first row shows a few

examples of positive detections with partial faces and the

second row shows positive detections with pose variations.

The third row shows some false detections, or detections

with score lesser than 1. The detector is quite robust to il-

lumination change and is able to detect partial or extremely

posed faces.

4.2. MOBIO Dataset

Results on MOBIO dataset are summarized in Table 3.

The MOBIO dataset has full frontal faces only, therefore

we get very high performance. DP2MFD beats our algo-

rithm for this dataset, which can be attributed to the fact

that DP2MFD is one of the best algorithms, trained on a

large, varied dataset, and for full frontal faces it has near

perfect performance over multiple scales. For DFFDM,

Figure 6. Examples of positive detections (with pose variations

and occlusion, in first 2 rows) and examples of negative detections

(due to insufficient overlap or low score in 3rd row) on UMD-AA.

The detector's output is in red, while ground truth is in yellow.

SVMs of different sizes were trained, based on the typical

size of faces captured by the front camera. But sometimes

for very large or small faces, the training dataset of UMD-

AA may not have enough samples, therefore for extremely

scaled faces, DFFMD may fail. This can be remedied by

training on a larger database, and also by training SVMs

on more scales. A few example positive and negative de-

tections are shown in Figure 7. The first row shows posi-

tive detections while the second row shows failures. As the

examples show, there are some false detectiosn for really

large faces, of which we did not have many examples in the

UMD-AA training dataset on which DFFDM was trained.

Metric DFFDM DP2MFD DPM VJ

Max F1 97.9% 99.7% 97.8% 92.6%

Max Ac-

curacy

96.0% 99.3% 95.8% 86.3%

Table 3. Comparision of different metrics for various detectors on

MOBIO database

5. Conclusion and Future Directions

This paper presents a deep feature based face detector

for locating faces in images taken by a mobile device's front

camera. Keeping the constrained nature of the problem in

Figure 7. Examples of positive (1st row) and negative (2nd row)

detections on MOBIO. The detector's output is in red, while

ground truth is in yellow.

mind, the algorithm performs only one forward pass per im-

age and shifts the burden of achieving scale invariance to

the multiple SVMs of different sizes. As is expected from

DCNN-based algorithms, it outperforms traditional feature-

based schemes at the cost of a longer run time. Thus al-

though DCNN based methods do not seem suitable for real

time monitoring due to their run times on mobile devices,

they can still be used as a backup in case a simpler detec-

tor fails. However there is much scope of optimizations and

also mobile hardware has been getting more and more pow-

erful, which looks promising.

This study also produced OpenCL and RenderScript

based libraries for implementing DCNNs, that are more

portable and suitable for mobile devices than CUDA based

frameworks currently in popular use.

Future directions of inquiry includes code optimizations

to make the GPU utilization faster thus speeding up the

whole process. Also, we wish to explore simpler DCNNs

that may be more suited to the mobile environment than a

full blown AlexNet. Finally, the libraries used for this al-

gorithm are more portable than CUDA based libraries and

we hope to expand on them to facilitate research on deep

networks on mobile GPUs.

Acknowledgement

This work was supported by cooperative agreement

FA8750-13-2-0279 from DARPA.

References

[1] A. Vance. (2010, Jan) If your password is 123456, just

make it hackme. [Online; posted JAN. 20, 2010]. [Online].

Available: http://www.nytimes.com

[2] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith,

“Smudge attacks on smartphone touch screens,” in Proceed-

ings of the 4th USENIX Conference on Offensive Technolo-

gies, 2010, pp. 1–7.

[3] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song,

“Touchalytics: On the applicability of touchscreen input as

a behavioral biometric for continuous authentication,” IEEE

Transactions on Information Forensics and Security, vol. 8,

no. 1, pp. 136–148, Jan 2013.

[4] H. Zhang, V. M. Patel, M. E. Fathy, and R. Chellappa,

“Touch gesture-based active user authentication using dictio-

naries,” in IEEE Winter conference on Applications of Com-

puter Vision. IEEE, 2015.

[5] T. Feng, Z. Liu, K.-A. Kwon, W. Shi, B. Carbunar, Y. Jiang,

and N. Nguyen, “Continuous mobile authentication using

touchscreen gestures,” in IEEE Conference on Technologies

for Homeland Security, Nov 2012, pp. 451–456.

[6] A. Hadid, J. Heikkila, O. Silven, and M. Pietikainen,

“Face and eye detection for person authentication in mobile

phones,” in ACM/IEEE International Conference on Dis-

tributed Smart Cameras, Sept 2007, pp. 101–108.

[7] M. E. Fathy, V. M. Patel, and R. Chellappa, “Face-based

active authentication on mobile devices,” in IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing, 2015.

[8] P. Samangouei, V. M. Patel, and R. Chellappa, “Attribute-

based continuous user authentication on mobile devices,”

in International Conference on Biometrics Theory, Applica-

tions and Systems, 2015.

[9] M. Derawi, C. Nickel, P. Bours, and C. Busch, “Unobtru-

sive user-authentication on mobile phones using biometric

gait recognition,” in International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, Oct

2010, pp. 306–311.

[10] L. Fridman, S. Weber, R. Greenstadt, and M. Kam, “Ac-

tive authentication on mobile devices via stylometry, gps lo-

cation, web browsing behavior, and application usage pat-

terns,” IEEE Systems Journal, 2015.

[11] C. McCool, S. Marcel, A. Hadid, M. Pietikainen, P. Mate-

jka, J. Cernocky, N. Poh, J. Kittler, A. Larcher, C. Levy,

D. Matrouf, J.-F. Bonastre, P. Tresadern, and T. Cootes, “Bi-

modal person recognition on a mobile phone: using mobile

phone data,” in IEEE ICME Workshop on Hot Topics in Mo-

bile Multimedia, Jul. 2012.

[12] C. McCool and S. Marcel, “Mobio database for the icpr 2010

face and speech competition,” Idiap, Idiap-Com Idiap-Com-

02-2009, 11 2009.

[13] D. Crouse, H. Han, D. Chandra, B. Barbello, and A. K. Jain,

“Continuous authentication of mobile user: Fusion of face

image and inertial measurement unit data,” in International

Conference on Biometrics, 2015.

[14] A. Primo, V. Phoha, R. Kumar, and A. Serwadda, “Context-

aware active authentication using smartphone accelerometer

measurements,” in Computer Vision and Pattern Recognition

Workshops (CVPRW), 2014 IEEE Conference on, June 2014,

pp. 98–105.

[15] H. Zhang, V. M. Patel, S. Shekhar, and R. Chellappa, “Do-

main adaptive sparse representation-based classification,” in

IEEE International Conference on Automatic Face and Ges-

ture Recognition. IEEE, 2015.

[16] C. Zhang and Z. Zhang, “A survey of recent advances in face

detection,” Microsoft Research, Tech. Rep. MSR-TR-2010-

66, 2010.

[17] R. Ranjan, V. M. Patel, and R. Chellappa, “A deep pyramid

deformable part model for face detection,” in International

Conference on Biometrics Theory, Applications and Systems,

2015.

[18] S. S. Farfade, M. Saberian, and L.-J. Li, “Multi-view face

detection using deep convolutional neural networks,” in In-

ternational Conference on Multimedia Retrieval, 2015.

[19] V. Jain and E. Learned-Miller, “Fddb: A benchmark for

face detection in unconstrained settings,” University of Mas-

sachusetts, Amherst, Tech. Rep. UM-CS-2010-009, 2010.

[20] X. Zhu and D. Ramanan, “Face detection, pose estimation,

and landmark localization in the wild,” in IEEE Conference

on Computer Vision and Pattern Recognition, June 2012, pp.

2879–2886.

[21] P. A. Viola and M. J. Jones, “Robust real-time face detec-

tion,” International Journal of Computer Vision, vol. 57,

no. 2, pp. 137–154, 2004.

[22] C. Huang, H. Ai, Y. Li, and S. Lao, “High-performance rota-

tion invariant multiview face detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 29, no. 4,

pp. 671–686, 2007.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” in

Advances in Neural Information Processing Systems, p.

2012.

[24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson,

“How transferable are features in deep neural networks?”

CoRR, vol. abs/1411.1792, 2014. [Online]. Available:

http://arxiv.org/abs/1411.1792

[25] G. Tkaik, P. Garrigan, C. Ratliff, G. Milinski, J. M.

Klein, L. H. Seyfarth, P. Sterling, D. H. Brainard,

and V. Balasubramanian, “Natural images from the

birthplace of the human eye,” PLoS ONE, vol. 6,

no. 6, p. e20409, 06 2011. [Online]. Available: http:

//dx.doi.org/10.1371%2Fjournal.pone.0020409

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation,” in Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on. IEEE, 2014, pp. 580–

587.

[27] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A

parallel programming standard for heterogeneous computing

systems,” IEEE Des. Test, vol. 12, no. 3, pp. 66–73, May

2010. [Online]. Available: http://dx.doi.org/10.1109/MCSE.

2010.69

[28] N. N. Schraudolph, “A fast, compact approximation of the

exponential function,” 1999.

