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Abstract Over the last five years, methods based on

Deep Convolutional Neural Networks (DCNNs) have

shown impressive performance improvements for ob-

ject detection and recognition problems. This has been

made possible due to the availability of large annotated

datasets, a better understanding of the non-linear map-

ping between input images and class labels as well as the

affordability of GPUs. In this paper, we present the de-

sign details of a deep learning system for unconstrained

face recognition, including modules for face detection,

association, alignment and face verification. The quan-

titative performance evaluation is conducted using the

IARPA Janus Benchmark A (IJB-A), the JANUS Chal-

lenge Set 2 (JANUS CS2), and the LFW dataset. The

IJB-A dataset includes real-world unconstrained faces

of 500 subjects with significant pose and illumination

variations which are much harder than the Labeled

Faces in the Wild (LFW) and Youtube Face (YTF)

datasets. JANUS CS2 is the extended version of IJB-A

which contains not only all the images/frames of IJB-

A but also includes the original videos for evaluating

the video-based face verification system. Some open is-

sues regarding DCNNs for face verification problems

are then discussed.
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1 Introduction

Face verification is a challenging problem in computer

vision and has been actively researched for over two

decades [106]. In face verification, given two videos or

images, the objective is to determine whether they be-

long to the same person. Many algorithms have been

shown to work well on images and videos that are col-

lected in controlled settings. However, the performance

of these algorithms often degrades significantly on im-

ages that have large variations in pose, illumination,

expression, aging, and occlusion. In addition, for an

automated face verification system to be effective, it

also needs to handle errors that are introduced by al-

gorithms for automatic face detection, face association,

and facial landmark detection.

Existing methods have focused on learning robust

and discriminative representations from face images and

videos. One approach is to extract an over-complete

and high-dimensional feature representation followed

by a learned metric to project the feature vector onto a

low-dimensional space and then compute the similarity

scores. For example, high-dimensional multi-scale local

binary pattern (LBP) [16] features extracted from lo-

cal patches around facial landmarks and Fisher vector

(FV) [81,19] features have been shown to be effective

for face recognition. Despite significant progress, the

performance of these systems has not been adequate

for deployment. However, given the availability of mil-

lions of annotated data, faster GPUs and a better un-

derstanding of the nonlinearities, DCNNs are provid-

ing much better performance on tasks such as object

recognition [53,86], object/face detection [36,70], face

verification/recognition [79,68]. It has been shown that

DCNN models can not only characterize large data vari-

ations but also learn a compact and discriminative rep-
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resentation when the size of training data is sufficiently

large. In addition, it can be generalized to other vision

tasks by fine-tuning the pre-trained model on the new

task [31].

In this paper, we present an automated face veri-

fication system. Due to the robustness of DCNNs, we

build each component of our system based on separate

DCNN models. Modules for detection and face align-

ment use the DCNN architecture proposed in [53]. For

face verification, we train two DCNN models trained

using the CASIA-WebFace [102] dataset. Finally, we

compare the performance of our approach with many

face matchers on the IJB-A dataset which are being

carried out or have been recently reported [1]1The pro-

posed system is fully automatic. Although the IJB-A

dataset contains significant variations in pose, illumi-

nation, expression, resolution and occlusion which are

much harder than the Labeled Faces in the Wild (LFW)

datasets, we present verification results for the LFW

dataset too.

The system described in this paper, which integrates

DCNN-based face detection [70] and fiducial point de-

tection [55] modules differs from its predecessor [18] in

the following ways: (1) uses more robust features from

two networks which take faces as input with different

resolutions (Section 3.4) are used and (2) employs a

more efficient metric learning method [78] which uses

inner-products based constraints between triplets to op-

timize for the embedding matrix as opposed to norm-

based constraints used in other methods (Section 3.5).

In the experimental section, we also demonstrate the

improvement due to media-sensitive pooling and the

fusion of two networks.

The rest of the paper is organized as follows. We

briefly review closely related works in Section 2. In Sec-

tion 3, we present the design details of a deep learning

system for unconstrained face verification and recog-

nition, including face detection, face association, face

alignment, and face verification. Experimental results

using IJB-A, CS2, and LFW datasets are presented in

Section 4. Some open issues regarding the use of DC-

NNs for face recognition/verification problems are dis-

cussed in Section 5. Finally, we conclude the paper in

Section 6 with a brief summary and discussion.

1 While this paper was under review, several recent
works have also reported improved numbers on the IJB-A
dataset [72] and its successive version Janus Challenge Set 3
(CS3) [10]. We refer the interested readers to these works for
more details.

2 Related Work

A typical face verification system consists of the follow-

ing components: (1) face detection and (2) face asso-

ciation across video frames, (3) facial landmark detec-

tion to align faces, and (4) face verification to verify a

subject’s identity. Due to the large number of published

papers in the literature, we briefly review some relevant

works for each component.

2.1 Face Detection

The face detection method introduced by Viola and

Jones [90] is based on cascaded classifiers built using

Haar wavelet features. Since then, a variety of sophis-

ticated cascade-based face detectors such as Joint Cas-

cade [27], SURF Cascade [59] and CascadeCNN [58]

have demonstrated improved performance. Zhu et al.

[109] improved the performance of face detection al-

gorithm using the deformable part model (DPM) ap-

proach, which treats each facial landmark as a part

and uses HOG features to simultaneously perform face

detection, pose estimation, and landmark localization.

A recent face detector, Headhunter [65], demonstrated

competitive performance using a simple DPM. How-

ever, the key challenge in unconstrained face detection

is that features like Haar wavelets and HOG do not cap-

ture the salient facial information at different poses and

illumination conditions. To overcome these limitations,

several deep CNN-based face detection methods have

been proposed in the literature such as Faceness [101],

DDFD [35] and CascadeCNN [58]. It has been shown

in [31] that a deep CNN pre-trained with the Imagenet

dataset can be used as a meaningful feature extractor

for various vision tasks. The method based on Regions

with CNN (R-CNN) [74] computes region-based deep

features and attains state-of-art face detection perfor-

mance. In addition, since the deep pyramid [37] removes

the fixed-scale input dependency in deep CNNs, it is

attractive to be integrated with the DPM approach to

further improve the detection accuracy across scale [70].

2.2 Face Association

Video-based face verification systems [20] requires consistently-

tracked faces to capture diverse pose and spatial-temporal

information for analysis. In addition, there is usually

more than one person present in the videos, and thus

multiple face images from different individuals should

be correctly associated across the video frames. Sev-

eral recent techniques have tracked multiple objects by

modeling the motion context [103], track management



Unconstrained Still/Video-Based Face Verification with Deep Convolutional Neural Networks 3

neg

posanchoranchor

neg

pos

Learning

(3) Face Alignment

(2) Face Association

(4) Face Verification

(1) Face Detection

Image Pyramid 

Level 7

Level 1

3

3

C

C

256

256

256

max
5

pyramid 

Level 7

Level 1 Level 1

norm
5

pyramid 

Level 7

(5) Root-filter DPM

Component 1

Component C

Detected Face 

in the image

256

Detection 

Scores Level 7

Level 1

For each 

pyramid level l

(output Layer is max
5
)

(1/16th spatial resolution of 

the image)

(2) Deep Pyramid CNN

(1) Color Image Pyramid
(3) Max5 Feature Pyramid (4) Norm5 Feature Pyramid (6) DPM Score Pyramid

(7) Detector Output

Tracking results

Video 

frames

Tracklet

Linking

Face 

Tracker

Face 

Detector

Track Creation 

and Updating

�����_��� = 5


�����_��� ≠ 5


[	… 	]���∗�

Deep Descriptor NetworkGlobal Shape Indexed

Features 

Learning Linear 

Projection ��

�
�

DCNN-S Face model

neg

posanchoranchor

neg

pos

Learning

������

Triplet Similarity Embedding DCNN-L Face model

Triplet Similarity Embedding

Fig. 1 An overview of the proposed DCNN-based face verification system.

[33], and guided tracking using the confidence map of

the detector [11]. Multi-object tracking methods based

on tracklet linking [46,75,8] usually rely on the Hun-

garian algorithm [4] to optimally assign the detected

bounding boxes to existing tracklets. Roth et al. [75]

adapted the framework of multi-object tracking meth-

ods based on tracklet linking approach to track multiple

faces; Several face-specific metrics and constraints have

been introduced to enhance the reliability of face track-

ing. A recent study [22] proposed to manage the tracks

generated by a continuous face detector without rely-

ing on long-term observations. In unconstrained scenar-

ios, the camera can undergo abrupt movements, which

makes persistent tracking a challenging task. Du et al.

proposed a conditional random field (CRF) framework

for face association in two consecutive frames by utiliz-

ing the affinity of facial features, location, motion, and

clothing appearance [32]. Our face association method

utilizes the KLT tracker to track a face initiated from

the face detection. We continuously update the face

tracking results for every fifth frame using the detected

faces. The tracklet linking [8] is utilized to link the frag-

mented tracklet. We present a robust face association

method based on existing works in [34,8,80]. In addi-

tion, recently developed object trackers [7,44,49] and

face trackers [92,62] can be integrated to potentially im-

prove the robustness of face association method. More

details are presented in Section 3.2.

2.3 Facial Landmark Detection

Facial landmark detection is an important component

for a face verification system to align the faces into

canonical coordinates and to improve the performance

of verification algorithms. Pioneering works such as Ac-

tive Appearance Models (AAM) [23] and Active Shape

Models (ASM) [24] are built using the PCA constraints

on appearance and shape. In [25], Cristinacce et al.

generalized the ASM model to a Constrained Local

Model (CLM), in which every landmark has a shape

constrained descriptor to capture the appearance. Zhu

et al. [109] used a part-based model for face detection,

pose estimation and landmark localization assuming

the face shape to be a tree structure. Asthana et al. [6]

combined the discriminative response map fitting with

CLM. In addition, Cao et. al. [14] followed the proce-

dure as cascaded pose regression (CPR) proposed by

Dollár et. al. [30]: feature extraction followed by a re-

gression stage. However unlike CPR which uses pixel

difference as features, it trains a random forest based on

local binary patterns. In general, these methods learn a

model that directly maps the image appearance to the

target output. Nevertheless, the performance of these

methods depends on the robustness of local descrip-

tors. In [53], the deep features are shown to be robust

to different challenging variations. Sun et al. [84] pro-

posed a cascade of carefully designed CNNs, in which

at each level, outputs of multiple networks are fused
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for landmark estimation and achieve good performance.

Unlike [84], we use a single CNN, carefully designed to

provide a unique key-point descriptor and achieve bet-

ter performance. Besides using a 2D transformation for

face alignment, Hassner et al. [42] proposed an effective

method to frontalize faces with the help of generic 3D

face model. However, the effectiveness of the method

also highly relies on the quality of the detected facial

landmarks (i.e., the method usually introduces unde-

sirable artifacts when the quality of facial landmarks is

poor).

2.4 Feature Representation for Face Recognition

Learning invariant and discriminative feature represen-

tations is a critical step in designing a face verifica-

tion system. Ahonen et al. [3] showed that the Local

Binary Pattern (LBP) is effective for face recognition.

Chen et al. [16] demonstrated good results for face ver-

ification using high-dimensional multi-scale LBP fea-

tures extracted from patches extracted around facial

landmarks. However, recent advances in deep learning

methods have shown that compact and discriminative

representations can be learned using a DCNN trained

with very large datasets. Taigman et al. [88] built a

DCNN model on the frontalized faces generated with a

general 3D shape model from a large-scale face dataset

and achieved better performance than many traditional

methods. Sun et al. [85] achieved results that surpass

human performance for face verification on the LFW

dataset using an ensemble of 25 simple DCNN with

fewer layers trained on weakly aligned face images from

a much smaller dataset than [88]. Schroff et al. [79]

adapted a state-of-the-art object recognition network

to face recognition and trained it using a large-scale un-

aligned private face dataset with triplet loss. Parkhi et

al. [68] trained a very deep convolutional network based

on VGGNet for face verification and demonstrated im-

pressive results. These studies essentially demonstrate

the effectiveness of the DCNN model for feature learn-

ing and detection/recognition/verification problems.

2.5 Metric Learning

Learning a similarity measure from data is the other key

component for improving the performance of a face ver-

ification system. Many approaches have been proposed

in the literature that essentially exploit label informa-

tion from face images or face pairs. For instance, Wein-

berger et al. [93] used the Large Margin Nearest Neigh-

bor (LMNN) metric which enforces the large margin

constraint among all triplets of labeled training data.

Guillaumin et al. [40] proposed two robust distance

measures: Logistic Discriminant-based Metric Learning

(LDML) and Marginalized kNN (MkNN). The LDML

method learns a distance by performing a logistic dis-

criminant analysis on a set of labeled image pairs and

the MkNN method marginalizes a k-nearest-neighbor

classifier to both images of the given test pair using a set

of labeled training images. Mignon et al. [66] proposed

an algorithm for learning distance metrics from sparse

pairwise similarity/dissimilarity constraints in high di-

mensional input space. The method exhibits good gen-

eralization properties when projecting the features from

a high-dimensional space to a low-dimensional one. Nguyen

et al. [67] used an efficient and simple metric learning

method based on the cosine similarity measure instead

of the widely adopted Euclidean distance. Taigman et

al. [87] employed the Mahalanobis distance using the In-

formation Theoretic Metric Learning (ITML) method

[28]. Chen et al. [15] used a joint Bayesian approach for

face verification which models the joint distribution of

a pair of face images and uses the ratio of between-class

and within-class probabilities as the similarity measure.

Hu et al. [45] learned a discriminative metric within

the deep neural network framework. Schroff et al. [79]

and Parkhi et al. [68] optimized the DCNN parame-

ters based on the triplet loss which directly embeds the

DCNN features into a discriminative subspace and pre-

sented promising results for face verification.

3 Proposed System

The proposed system is a complete pipeline for perform-

ing automatic face verification. We first perform face de-

tection to localize faces in each image and video frame.

Then, we associate the detected faces with the common

identity across video frames and align the faces into

canonical coordinates using the detected landmarks. Fi-

nally, we perform face verification to compute the sim-

ilarity between a pair of images/videos. The system is

illustrated in Figure 1. The details of each component

are presented in the following sections.

3.1 Face Detection

All the faces in the images/video frames are detected

using a DCNN-based face detector, called the Deep

Pyramid Deformable Parts Model for Face Detection

(DP2MFD) [70], which consists of two modules. The

first module generates a seven level normalized deep

feature pyramid for any input image of arbitrary size,

as illustrated in the first part of Figure 1. The architec-

ture of Alexnet [53] is adopted for extracting the deep
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features. This image pyramid network generates a pyra-

mid of 256 feature maps at the fifth convolution layer

(conv5). A 3 × 3 max filter is applied to the feature

pyramid at a stride of one to obtain the max5 layer.

Typically, the activation magnitude for a face region

decreases with the size of the pyramid level. As a re-

sult, a large face detected by a fixed-size sliding window

at a lower pyramid level will have a high detection score

compared to a small face getting detected at a higher

pyramid level. In order to reduce this bias to face size,

we apply a z-score normalization step on the max5 fea-

tures at each level. For a 256-dimensional feature vector

xi,j,k at the pyramid level i and location (j, k), the nor-

malized feature xi,j,k is computed as:

xi,j,k =
xi,j,k − µi

σi
, (1)

where µi is the mean feature vector, and σi is the stan-

dard deviation for the pyramid level i. We refer to the

normalized max5 features as norm5. Then, the fixed-

length features from each location in the pyramid are

extracted using the sliding window approach.

The second module is a linear SVM, which takes

these features as inputs to classify each location as face

or non-face, based on their scores. A root-only DPM

is trained on the norm5 feature pyramid using a linear

SVM. In addition, the deep pyramid features are ro-

bust to not only pose and illumination variations but

also to different scales. The DP2MFD algorithm works

well in unconstrained settings as shown in Figure 2. We

also present the face detection performance results un-

der the face detection protocol of the IJB-A dataset in

Section 4.

3.2 Face Association

Because there are multiple subjects appearing in the

frames of each video of the IJB-A dataset, performing

face association to assign each face to its corresponding

subject is an important step to pick the correct subject

for face verification. Thus, once the faces in the im-

ages and video frames are detected, we track multiple

faces by integrating results from the face detector, face

tracker, and a tracklet linking step. The second part of

Figure 1 shows the block diagram of the multiple face

tracking system. We apply the face detection algorithm

in every fifth frame using the face detection method

presented in Section 3.1. The detected bounding box is

considered as a novel detection if it does not have an

overlap ratio with any bounding box in the previous

frames larger than γ. The overlap ratio of a detected

bounding box bd and a bounding box btr in the previ-

ous frames is defined as

s(bd,btr) =
area(bd ∩ btr)

area(btr)
. (2)

We empirically set the overlap threshold γ to 0.2. A face

tracker is created from a detection bounding box that is

treated as a novel detection. We set the face detection

confidence threshold to -1.0 to select bounding boxes

of face detection of high confidence. For face tracking,

we use the Kanade-Lucas-Tomasi (KLT) feature tracker

[80] to track the faces between two consecutive frames.

To avoid the potential drift of trackers, we update the

bounding boxes of the tracker by those provided by the

face detector in every fifth frame. The detection bound-

ing box bd replaces the tracking bounding boxes btr of

a tracklet in the previous frame if s(bd,btr) ≤ γ. A face

tracker is terminated if there is no corresponding face

detection overlapping with it for more than t frames.

We set t to 4 based on empirical grounds.

In order to handle the fragmented face tracks result-

ing from occlusions or unreliable face detection, we use

the tracklet linking method proposed by [8] to associate

the bounding boxes in the current frames with track-

lets in the previous frames. The tracklet linking method

consists of two stages. The first stage is to associate the

bounding boxes provided by the tracker or the detec-

tor in the current frame with the existing tracklet in

previous frames. This stage consists of local and global

associations. The local association step associates the

bounding boxes with the set of tracklets, having high

confidence. The global step associates the remaining

bounding boxes with the set of tracklets of low con-

fidence. The second stage is to update the confidence

of the tracklets, which will be used for determining the

tracklets for local or global association in the first stage.

We show sample face association results for some videos

from the CS2 dataset in Figure 3.

3.3 Facial Landmark Detection

Once the faces are detected or associated, we perform

facial landmark detection for face alignment. The DCNN-

based facial landmark detection algorithm module, lo-

cal deep descriptor regression (LDDR) [55], works in

two stages. We model the task as a regression problem,

where beginning with the initial mean shape, the target

shape is reached through regression. The first step is to

perform feature extraction of a patch around a point of

the shape followed by linear regression as described in

[73,14]. Given a face image I and the initial shape S0,

the regressor computes the shape increment ∆S from
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(a) (b) (c)

Fig. 2 Sample detection results on an IJB-A image using the deep pyramid method.

Fig. 3 Sample results of our face association method for videos of JANUS CS2 which is the extension dataset of IJB-A.

the deep descriptors and updates the face shape using

(3).

St = St−1 +W tΦt(I, St−1) (3)

The CNN features (represented as Φ in 3) carefully de-

signed with the proper number of strides and pooling

(refer to Table 1 for more details), are used as features

to perform regression. We use the same CNN architec-

ture as Alexnet [53] with the pretrained weights for the

ImageNet dataset as shown in Figure 4. Then, we fur-

ther fine-tuned it with AFLW [52] dataset for face de-

tection task. The fine-tuning step helps the network to

learn features specific to faces. Furthermore, we adopt

the cascade regression, in which the output generated

by the first stage is used as an input for the next stage.

The number of stages is fixed at 5 in our system. The

patches selected for feature extraction are reduced sub-

sequently in later stages to improve the localization of

facial landmarks. After the facial landmark detection is

completed, each face is aligned into the canonical coor-

dinate using the similarity transform and seven land-

mark points (i.e., two left eye corners, two right eye

corners, nose tip, and two mouth corners).

3.4 Deep Convolutional Face Representation

In this work, we train two deep convolutional networks.

One is trained using tight face bounding boxes (DCNNS),

Stage 1 Input Size
(pixels)

conv1 max1 conv2 max2

Stage 1 92 × 92 4 2 1 1
Stage 2 68 × 68 3 2 1 1
Stage 3 42 × 42 2 1 1 2
Stage 4 21 × 21 1 1 1 1

Table 1 Input size and the number of strides in conv1, max1,
conv2 and max2 layers for 4 stages of regression [55].

21

21

11

11

3
Stride of 1 96 256

384

384

256
5

5

3
3 3

3

3

3

1
1

7
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Fig. 4 The DCNN architecture used to extract the local de-
scriptors for the facial landmark detection task [55].

and the other using large bounding boxes which include

more contextual (DCNNL) information. In Section 4,

we present results which show that both networks cap-

ture discriminative information and complement each

other. In addition, the fusion of two networks does sig-

nificantly improve the final performance. The archi-

tectures of both networks are summarized in Tables 2
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and 3.

Stacking small filters to approximate large filters

and building very deep convolutional networks reduces

the number of parameters but also increases the non-

linearity of the network as discussed in [82,86]. In ad-

dition, the resulting feature representation is compact

and discriminative. Therefore, for (DCNNS), we use the

same network architecture presented in [17] and train

it using the CASIA-WebFace dataset [102]. The dimen-

sionality of the input layer is 100 × 100 × 3 for RGB

images. The network includes ten convolutional layers,

five pooling layers, and one fully connected layer. Each

convolutional layer is followed by a parametric rectified

linear unit (PReLU) [43], except the last one, conv52.

Moreover, two local normalization layers are added af-

ter conv12 and conv22, respectively, to mitigate the ef-

fect of illumination variations. The kernel size of all

filters is 3×3. The first four pooling layers use the max

operator, and pool5 uses average pooling. The feature

dimensionality of pool5 is thus equal to the number of

channels of conv52 which is 320. The dropout ratio is

set as 0.4 to regularize Fc6 due to the large number of

parameters (i.e. 320 × 105482 .). The pool5 feature is

used for face representation. The extracted features are

further L2-normalized to unit length before the metric

learning stage. If there are multiple images and frames

available for the subject template, we use the average

of pool5 features as the overall feature representation.

Conv12 Conv22 Conv32 Conv42 Conv52

Fig. 5 An illustration of some feature maps of conv12,
conv22, conv32, conv42, and conv52 layers of DCNNS trained
for the face identification task. At upper layers, the feature
maps capture more global shape features which are also more
robust to illumination changes than conv12. The feature maps
are rescaled to the same size for visualization purpose. The
green pixels represent high activation values, and the blue pix-
els represent low activation values as compared to the green.

On the other hand, for DCNNL, the deep network

architecture closely follows the architecture of the AlexNet

2 The list of overlapping subjects is available at http://

www.umiacs.umd.edu/~pullpull/janus_overlap.xlsx

[54] with some notable differences: reduced number of

parameters in the fully connected layers; use of Para-

metric Rectifier Linear units (PReLU’s) instead of ReLU,

since they allow a negative value for the output based

on a learnt threshold and have been shown to improve

the convergence rate [43].

The reason for using the AlexNet architecure in the

convolutional layers is due to the fact that we initialize

the convolutional layer weights with weights from the

AlexNet model which was trained using the ImageNet

challenge dataset. Several recent works ([104],[61]) have

empirically shown that this transfer of knowledge across

different networks, albeit for a different objective, im-

proves performance and more significantly reduces the

need to train using a large number of iterations. To

learn more domain specific information, we add an addi-

tional convolutional layer, conv6 and initialize the fully

connected layers fc6-fc8 from scratch. Since the net-

work is used as a feature extractor, the last layer fc8 is

removed during deployment, thus reducing the number

of parameters to 15M. When the network is deployed.

the features are extracted from fc7 layers resulting in

a dimensionality of 512. The network is trained using

the CASIA-WebFace dataset [102]. The dimensionality

of the input layer is 227× 227× 3 for RGB images.

In Figure 5, we show some feature activation maps

of the DCNNS model. At upper layers, the feature maps

capture more global shape features which are also more

robust to illumination changes than Conv12 where the

green pixels represent high activation values, and the

blue pixels represent low activation values compared to

the green.

3.5 Triplet Similarity Embedding

To further improve the performance of our deep fea-

tures, we obtain a low-dimensional discriminative pro-

jection of the deep features, called the Triplet Similar-

ity Embedding (TSE) that is learnt using the training

data provided for each split of IJB-A. The output of the

procedure is an embedding matrix W ∈ Rn×M where

M is the dimensionality of the deep descriptor (320 for

DCNNS and 512 for DCNNL) and we set n = 128,

thus achieving dimensionality reduction in addition to

an improvement in performance.

In addition, for the TSE approach, the objective

was two-fold (1) to achieve as small dimensionality as

possible for both networks (2) to obtain a more dis-

criminative representation in the low dimensional space

which means to push similar pairs together and dis-

similar pairs apart in the low-dimensional space. For

learning W, we solve an optimization problem based

on constraints involving triplets - each containing two

http://www.umiacs.umd.edu/~pullpull/janus_overlap.xlsx
http://www.umiacs.umd.edu/~pullpull/janus_overlap.xlsx
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Name Type Filter Size/Stride #Params

conv11 convolution 3×3 / 1 0.84K
conv12 convolution 3×3 / 1 18K
pool1 max pooling 2×2 / 2

conv21 convolution 3×3 / 1 36K
conv22 convolution 3×3 / 1 72K
pool2 max pooling 2×2 / 2

conv31 convolution 3×3 / 1 108K
conv32 convolution 3×3 / 1 162K
pool3 max pooling 2×2 / 2

conv41 convolution 3×3 / 1 216K
conv42 convolution 3×3 / 1 288K
pool4 max pooling 2×2 / 2

conv51 convolution 3×3 / 1 360K
conv52 convolution 3×3 / 1 450K
pool5 avg pooling 7×7 / 1

dropout dropout (40%)
fc6 fully connected 10548 3296K
loss softmax 10548

total 5M

Table 2 The architectures of DCNNS .

Name Type Filter Size/Stride #Params

conv1 convolution 11×11 / 4 35K
pool1 max pooling 3×3 / 2
conv2 convolution 5×5 / 2 614K
pool2 max pooling 3×3 / 2
conv3 convolution 3×3 / 2 885K
conv4 convolution 3×3 / 2 1.3M
conv5 convolution 3×3 / 1 885K
conv6 convolution 3×3 / 1 590K
pool6 max pooling 3×3 / 2

fc6 fully connected 1024 9.4M
dropout dropout (50%)

fc7 fully connected 512 524K
dropout dropout (50%)

fc8 fully connected 10548 5.5M
loss softmax 10548

total 19.8M

Table 3 The architecture of DCNNL.

similar samples and one dissimilar sample. Consider a

triplet {a, p, n}, where a (anchor) and p (positive) are

from the same class, but n (negative) belongs to a dif-

ferent class. Our objective is to learn a linear projection

W from the data such that the following constraint is

satisfied:

(Wa)T · (Wp) > (Wa)T · (Wn) (4)

In our case, {a, p, n} ∈ RM are deep descriptors

which are normalized to unit length. As such, (Wa)T ·
(Wp) is the dot-product or the similarity between a, p

under the projection W. The constraint in (4) requires

that the similarity between the anchor and positive

samples should be higher than the similarity between

the anchor and negative samples in the low dimensional

space represented by W. Thus, the mapping matrix W

pushes similar pairs closer and dissimilar pairs apart,

with respect to the anchor point. By choosing the di-

mensionality of W as n×M where n < M , we achieve

dimensionality reduction in addition to better perfor-

mance. For our work, we fix n = 128 based on cross

validation.

Given a set of labeled data points, we solve the fol-

lowing optimization problem:

argmin
W

∑
a,p,n∈T

max(0, α+ aTWTWn− aTWTWp)

(5)

where T is the set of triplets and α is a margin pa-

rameter chosen based on the validation set. In practice,

the above problem is solved in a Large-Margin frame-

work using Stochastic Gradient Descent (SGD) and the

triplets are sampled online. The update step for solving

(5) with SGD is:

Wt+1 = Wt − η ∗Wt ∗ (a(n− p)T + (n− p)aT ) (6)

where Wt is the estimate at iteration t, Wt+1 is the

updated estimate, {a, p, n} is the triplet sampled at the

current iteration and η is the learning rate which is set

to 0.01 for the current work.

The entire procedure takes 3-5 minutes per split

using a standard C++ implementation. More details

regarding the optimization algorithm can be found in

[78]. At each iteration, we sample 1000 instances from

the whole training set to choose the negatives. Since the

training set is relatively small for the datasets consid-

ered in this experiment, the entire training set is held in

memory. Going forward this could be made efficient by

using a buffer which will be replenished periodically,

thus requiring a constant memory requirement. The

computational complexity of each iteration is O(M2),

that is, the complexity varies quadratically with the di-

mension of the deep descriptor. The technique closest to

the one presented in this section, which is used in recent

works ([68],[79]) computes the embedding W based on

satisfying the distance constraints given below:

argmin
W

∑
a,p,n∈T

max{0, α+ (a− p)TWTW(a− p)− (7)

(a− n)TWTW(a− n)} (8)

To be consistent with the terminology used in this pa-

per, we call it Triplet Distance Embedding (TDE). It

should be noted that the TSE formulation is differ-

ent from TDE, in that, the current work uses inner-

product based constraints between triplets to optimize

for the embedding matrix as opposed to norm-based
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constraints used in the TDE method. To choose the

dimensionality, we test the values 64,128,256 using a 5

fold validation scheme for each split. The learning rate

is chosen as 0.02 and is fixed throughout the procedure.

The margin parameter is chosen as 0.1. We find from

our experiments that the lower margin works better but

since we perform hard negative mining at each step, the

method is not particularly sensitive to the margin pa-

rameter.

In general, to learn a reasonable distance measure

directly using pairwise or triplet metric learning ap-

proach requires huge amount of data (i.e.,, the state-

of-the-art approach [79] uses 200M images). In addi-

tion, the proposed approach decouples the DCNN fea-

ture learning and metric learning steps due to memory

constraints. To learn a reasonable distance measure re-

quires generating the informative pairs or triplets. The

batch size used for SGD is limited by the memory size

of the graphics card. If the model is trained end-to-

end, then only a small batch size is available for use.

Thus, in this work, we perform DCNN model training

and metric learning independently. In addition, for the

publicly available deep model [68], it is also trained first

with softmax loss and followed by finetuning the model

with verification loss while freezing the convolutional

and fully connected layers except the last one so that

the transformation which is equivalent to the proposed

approach can be learned.

4 Experimental Results

In this section, we present the results of the proposed
automatic system for both face detection and face ver-

ification tasks on the challenging IARPA Janus Bench-

mark A (IJB-A) [51], its extended version Janus Chal-

lenging set 2 (JANUS CS2) dataset, and the LFW dataset.

The JANUS CS2 dataset contains not only the sampled

frames and images in the IJB-A, but also the original

videos. In addition, the JANUS CS2 dataset3 includes

considerably more test data for identification and veri-

fication problems in the defined protocols than the IJB-

A dataset. The receiver operating characteristic curves

(ROC) and the cumulative match characteristic (CMC)

scores are used to evaluate the performance of different

algorithms for face verification. The ROC curve mea-

sures the performance in verification scenarios, where

the vertical axis is true acceptance rate (TAR) which

represents the degree to correctly match the face image

(i.e., deep features) from the same person and the hor-

izontal axis shows false acceptance rate (FAR) which

3 The JANUS CS2 dataset is not publicly available yet.

represents the degree to falsely match the biometric in-

formation from one person to another. The CMC score

measures the accuracy in closed set identification sce-

narios.

4.1 Face Detection on IJB-A

The IJB-A dataset contains images and sampled video

frames from 500 subjects collected from online media

[51], [21]. For face detection task, there are 67,183 faces

of which 13,741 are from images and the remaining

are from videos. The locations of all faces in the IJB-

A dataset have been manually annotated. The sub-

jects were captured so that the dataset contains wide

geographic distribution. Nine different face detection

algorithms were evaluated on the IJB-A dataset [21],

and the algorithms compared in [21] include one com-

mercial off the shelf (COTS) algorithm, three govern-

ment off the shelf (GOTS) algorithms, two open source

face detection algorithms (OpenCV’s Viola Jones and

the detector provided in the Dlib library), and GOTS

ver 4 and 5. In Figure 7, we show the precision-recall

(PR) curves and the ROC curves, respectively corre-

sponding to the method used in our work and one of

the best reported methods in [21]. We see that the

face detection algorithm used in our system outper-

forms the best performing method reported in [21] by

a large margin. In Figure 8 (b), we illustrate typical

faces in the IJB-A dataset that are not detected by

DP2MFD, and we can find the faces to be usually in

very extreme conditions which contain limited informa-

tion for face verification. However, in Figure 8 (a), we

also show that the DP2MFD algorithm can handle very

difficult faces but relatively reasonable as compared to

those in 8 (b). As shown in Figure 6, the DP2MFD

algorithm also achieves top performance in the chal-

lenging FDDB benchmark [48] for face detection with

a large performance margin compared to most algo-

rithms. Some of the recent published methods com-

pared in the FDDB evaluation include Faceness[101],

HeadHunter [65], JointCascade [27], CCF [98], Squares-

ChnFtrs-5 [65], CascadeCNN [58], Structured Models

[97], DDFD [35], NDPFace [60], PEP-Adapt [57] and

TSM [108]. More comparison results with other face

detection data sets are available in [70]. Since the CS2

dataset has not been released to public, we are not able

to provide comparisons with other existing face detec-

tors.
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Fig. 7 Face detection performance evaluation on the IJB-A dataset: (a) Precision vs. recall curves. (b) ROC curves [70].
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Fig. 6 Face detection performance evaluation on the FDDB
dataset [70].

4.2 Facial Landmark Detection on IJB-A

We also evaluate the performance of our facial land-

mark detection method on the IJB-A dataset. For the

training data, we take 3148 images in total from the

LFPW [9], Helen [56] and AFW [108] datasets and test

on the IJB-A dataset. The subjects were captured so

that the dataset contains wide geographic distribution.

The challenge comes through the wide diversity in pose,

illumination and resolution. Our method produces 68

facial landmark points following MultiPIE [39] markup

format. We evaluate the performance using the Nor-

malized Mean Square Error and average pt-pt error

(normalized by face size) vs fraction of images plots of

different methods. Since IJB-A is annotated only with

(a)

(b)

Fig. 8 (a) shows the difficult faces in the IJB-A dataset that
are successfully detected by DP2MFD, and (b) shows faces
that are not detected by DP2MFD. From the results, we can
see that DP2MFD can handle difficult occlusion, partial face,
large illumination and pose variations.

3 key-points on the faces (two eyes and nose base) by

human annotators, the interoccular distance error was

normalized by the distance between nose tip and the

midpoint of the eye centers. In Figure 9, we present a

comparison of our algorithm with [108], [5] and [50].

For the Helen dataset, we show the performance of 49-

point and full 68-point results in Table 4. Our deep

descriptor-based global shape regression method out-

performs the above mentioned state-of-the-art methods

in both high-quality (Helen) and low-quality (IJB-A)

images. Samples detected landmarks results are shown
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in Figure 10. More evaluation results for landmark de-

tection on other standard datasets may be found in [55].

Once the facial landmark detection is completed, we

choose seven landmark points (i.e. two left eye corners,

two right eye corners, nose tip, and two mouth corners)

out of the detected 68 points and apply the similarity

transform to warp the faces into canonical coordinates.

Method 68-pts 49-pts

Zhu et al. [108] 8.16 7.43
DRMF [5] 6.70 -
RCPR [13] 5.93 4.64
SDM [96] 5.50 4.25

GN-DPM [89] 5.69 4.06
CFAN [105] 5.53 -
CFSS [107] 4.63 3.47

LDDR(Ours) 4.76 2.36

Table 4 Averaged error comparison of different methods on
the Helen dataset [55].
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Fig. 9 Average 3-pt error (normalized by eye-nose distance)
vs fraction of images in the IJB-A dataset [55].

4.3 IJB-A and JANUS CS2 for Face Verification

For face verification task, both IJB-A and JANUS CS2

datasets contain 500 subjects with 5,397 images and

2,042 videos split into 20,412 frames, 11.4 images and

4.2 videos per subject. Sample images and video frames

from the datasets are shown in Figure 11. (i.e., the

videos are only released for the JANUS CS2 dataset.)

The IJB-A evaluation protocol consists of verification

(1:1 matching) over 10 splits. Each split contains around

Fig. 10 Sample facial landmark detection results.

11,748 pairs of templates (1,756 positive and 9,992 neg-

ative pairs) on average. Similarly, the identification (1:N

search) protocol also consists of 10 splits, which are used

to evaluate the search performance. In each search split,

there are about 112 gallery templates and 1,763 probe

templates (i.e. 1,187 genuine probe templates and 576

impostor probe templates). On the other hand, for the

JANUS CS2, there are about 167 gallery templates and

1,763 probe templates and all of them are used for both

identification and verification. The training set for both

datasets contains 333 subjects, and the test set contains

167 subjects without any overlapping subjects. Ten ran-

dom splits of training and testing are provided by each

benchmark, respectively. The main differences between

IJB-A and JANUS CS2 evaluation protocols are that

(1) IJB-A considers the open-set identification problem

and the JANUS CS2 considers the closed-set identifi-

cation and (2) IJB-A considers the more difficult pairs

which are subsets of JANUS CS2 dataset.

Unlike the LFW and YTF datasets, which only use

a sparse set of negative pairs to evaluate the verifica-

tion performance, the IJB-A and JANUS CS2 datasets

divide the images/video frames into gallery and probe

sets so that all the available positive and negative pairs

are used for the evaluation. Also, each gallery and probe

set consist of multiple templates. Each template con-

tains a combination of images or frames sampled from

multiple image sets or videos of a subject. For example,

the size of the similarity matrix for JANUS CS2 split1

is 167 × 1806 where 167 are for the gallery set and 1806

for the probe set (i.e. the same subject reappears multi-

ple times in different probe templates). Moreover, some

templates contain only one profile face with a challeng-

ing pose with low quality imagery. In contrast to LFW

and YTF datasets, which only include faces detected

by the Viola Jones face detector [90], the images in the

IJB-A and JANUS CS2 contain extreme pose, illumi-

nation, and expression variations. These factors essen-

tially make the IJB-A and JANUS CS2 challenging face

recognition datasets [51].
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Fig. 11 Sample images and frames from the IJB-A (top) and JANUS CS2 datasets (bottom). Challenging variations due to
pose, illumination, resolution, occlusion, and image quality are present in these images.

(a) (b)

Fig. 12 The performance evaluation for face verification tasks of (a) DCNNS and (b) DCNNL of before finetuning, with
finetuning, and with finetuning and triplet similarity embedding for the JANUS CS2 dataset under Setup 3 (semi-automatic
mode). Fine tuning is done only using the training data in each split.

4.4 Performance Evaluations of Face Verification on

IJB-A and JANUS CS2

To take different situations into account, we have con-

sidered three modes of evaluations, manual, automatic

and semi-automatic modes. This enables the handling

of cases where we are unable to detect any of the faces

(i.e., the failure of face detection.) in the images of the

given template and also to compare the performance

with the one using the metadata provided with the

dataset. We describe the setups of performance eval-

uation in details as follows:

– Setup 1 (manual mode): Under this setup, we di-

rectly use the three facial landmarks and face bound-

ing boxes provided along with the datasets.

– Setup 2 (automatic mode): In this setup when

we get a video we use the face association method to

detect and track the faces and to extract the bound-

ing box to perform fiducial detection. If it is an im-

age, we perform detection and facial landmark de-

tection independently. For every image or frame in a

template in which we are unable to detect the target

face, we are unable to compare the template with

others and thus assign all the corresponding entries

for the template in the similarity matrices to the

lowest similarity scores, -Inf.

– Setup 3 (semi-automatic mode): In this setup if

we are able to detect the target face in an image then

we follow setup 2. Otherwise, we follow setup 1 to

use the metadata of the dataset for the faces which

are not detected and tracked by our algorithms.

To evaluate the performance of two networks indi-

vidually, we present the ROC curves of DCNNS and

DCNNL of the Setup 3 (i.e., semi-automatic mode) for

the JANUS CS2 dataset in Figure 12. As shown in the

figures, the performances are consistently improved for

both networks after fine-tuning the models previously

trained using the CASIA-WebFace dataset on the train-

ing data of JANUS CS2. Triplet similarity embedding

(TSE) further increase the performance for both net-

works, especially for the TAR number at the low FAR

interval. For all the results presented here, fine tun-

ing is done using only the training data in each split.

The gallery dataset is not used for parameter fine tun-
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(a) (b)

(c)

Fig. 13 (a) and (b) show the face verification performance of the fusion model for JANUS CS2 and IJB-A (1:1) verification,
respectively, and (c) shows the face identification performance of the fusion model for IJB-A (1:N) identification for all the
three setups. Fine tuning is done only using the training data in each split.

ing or for triplet similarity embedding. Then, we per-

form the fusion of the two networks by adding the cor-

responding similarity scores together and demonstrate

the fusion results of all the three setup for the veri-

fication task of both JANUS CS2 and IJB-A in Fig-

ure 13 (a) and (b), respectively. In Figure 13 (c),

we present the CMC curve for the IJB-A identifica-

tion task. From Figure 13, it can be seen that even the

simple fusion strategy used in this work significantly

boosts the performance. Since DCNNS is trained using

tight face bounding boxes (DCNNS) and DCNNL using

the large ones which includes more context (DCNNL),

one possible reason for the performance improvement

is that the two networks contain discriminative infor-

mation learned from different scales and complement

each other. In addition, the figure also shows that the

performance of our system in Setup 2 (the automatic

mode) is comparable to Setup 1 (the manual mode) and

Setup 3 (the semi-automatic mode). This demonstrates

the robustness of each component of our system.

Besides using the average feature representation, we

also perform media averaging which is to first average

the features coming from the same media (image or

video) and then further average the media average fea-

tures to generate the final feature representation. We

show the results before and after media averaging for

both IJB-A and JANUS CS2 dataset in Table 5 and

in Table 6 respectively. It is clear that media averaging

significantly improves the performance.

Tables 7 and 8 summarize the scores (i.e., both

ROC and CMC numbers) produced by different face

verification methods on the IJB-A and JANUS CS2
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IJB-A-Verif DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)
FAR=1e-2 0.834 ± 0.036 0.844 ± 0.026 0.846 ± 0.029 0.863 ± 0.02 0.885 ± 0.014 0.889 ± 0.016
FAR=1e-1 0.956 ± 0.008 0.95 ± 0.005 0.962 ± 0.007 0.966 ± 0.05 0.954 ± 0.003 0.968 ± 0.005

IJB-A-Ident DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)
Rank-1 0.915 ± 0.011 0.907 ± 0.011 0.922 ± 0.011 0.916 ± 0.009 0.923 ± 0.01 0.942 ± 0.008
Rank-5 0.969 ± 0.007 0.955 ± 0.007 0.975 ± 0.006 0.971 ± 0.007 0.961 ± 0.006 0.98 ± 0.005
Rank-10 0.982 ± 0.005 0.965 ± 0.005 0.987 ± 0.001 0.981 ± 0.005 0.969 ± 0.004 0.988 ± 0.003

IJB-A-Ident DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)
FPIR=0.01 0.618 ± 0.05 0.64 ± 0.043 0.631 ± 0.041 0.639 ± 0.057 0.646 ± 0.055 0.654 ± 0.001
FPIR=0.1 0.799 ± 0.014 0.806 ± 0.012 0.813 ± 0.014 0.816 ± 0.015 0.827 ± 0.012 0.836 ± 0.01

Table 5 Results on the IJB-A dataset. The TAR of all the approaches at FAR=0.1 and 0.01 for the ROC curves (IJB-A 1:1
verification). The Rank-1, Rank-5, and Rank-10 retrieval accuracies of the CMC curves and TPIR at FPIR = 0.01 and 0.1
(IJB-A 1:N identfication). We also show the results before and after media averaging where m means media averaging.

CS2-Verif DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)
FAR=1e-2 0.913 ± 0.008 0.91 ± 0.008 0.922 ± 0.007 0.92 ± 0.01 0.922 ± 0.008 0.935 ± 0.007
FAR=1e-1 0.98 ± 0.004 0.967 ± 0.003 0.984 ± 0.003 0.981 ± 0.003 0.968 ± 0.003 0.986 ± 0.002
CS2-Ident DCNN (setup 1) DCNN (setup 2) DCNN (setup 3) DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3)
Rank-1 0.9 ± 0.01 0.896 ± 0.008 0.909 ± 0.008 0.905 ± 0.007 0.915 ± 0.007 0.931 ± 0.007
Rank-5 0.963 ± 0.006 0.954 ± 0.006 0.969 ± 0.006 0.965 ± 0.004 0.959 ± 0.005 0.976 ± 0.004
Rank-10 0.977 ± 0.006 0.965 ± 0.004 0.981 ± 0.003 0.977 ± 0.004 0.967 ± 0.004 0.985 ± 0.002

Table 6 Results on the JANUS CS2 dataset. The TAR of all the approaches at FAR=0.1 and 0.01 for the ROC curves. The
Rank-1, Rank-5, and Rank-10 retrieval accuracies of the CMC curves. We report average and standard deviation of the 10
splits. We also show the results before and after media averaging where m means media averaging.

IJB-A-Verif [91] JanusB [1] JanusD [1] DCNNbl [76] NAN [99] DCNN3d [64]
FAR=1e-3 0.514 ± 0.006 0.65 0.49 - 0.785 ± 0.028 0.725
FAR=1e-2 0.732 ± 0.033 0.826 0.71 - 0.897 ± 0.01 0.886
FAR=1e-1 0.895 ± 0.013 0.932 0.89 - 0.959 ± 0.005 -

IJB-A-Ident [91] JanusB [1] JanusD [1] DCNNbl [76] NAN [99] DCNN3d [64]
Rank-1 0.820 ± 0.024 0.87 0.88 0.895 ± 0.011 - 0.906
Rank-5 0.929 ± 0.013 - - 0.963 ± 0.005 - 0.962
Rank-10 - 0.95 0.97 - - 0.977

IJB-A-Verif DCNNpose [2] DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3) DCNNtpe [77] TP [26]
FAR=1e-3 - 0.704 ± 0.037 0.762 ± 0.038 0.76 ± 0.038 0.813 ± 0.02 -
FAR=1e-2 0.787 0.863 ± 0.02 0.885 ± 0.014 0.889 ± 0.016 0.9 ± 0.01 0.939 ± 0.013
FAR=1e-1 0.911 0.966 ± 0.05 0.954 ± 0.003 0.968 ± 0.005 0.964 ± 0.01 -

IJB-A-Ident DCNNpose [2] DCNNm (setup 1) DCNNm (setup 2) DCNNm (setup 3) DCNNtpe [77] TP [26]
Rank-1 0.846 0.916 ± 0.009 0.923 ± 0.01 0.942 ± 0.008 0.932 ± 0.001 0.928 ± 0.01
Rank-5 0.927 0.971 ± 0.007 0.961 ± 0.006 0.98 ± 0.005 - -
Rank-10 0.947 0.981 ± 0.005 0.969 ± 0.004 0.988 ± 0.003 0.977 ± 0.005 0.986 ± 0.003

Table 7 Results on the IJB-A dataset. The TAR of all the approaches at FAR=0.1, 0.01, and 0.001 for the ROC curves (IJB-
A 1:1 verification). The Rank-1, Rank-5, and Rank-10 retrieval accuracies of the CMC curves (IJB-A 1:N identfication). We
report average and standard deviation of the 10 splits. All the performance results reported in [1], Janus B (JanusB-092015),
Janus D (JanusD-071715), DCNNbl [76], DCNN3d [64], NAN [99], DCNNpose [2], DCNNtpe [77], and TP [26] are included
in the Table. Some of these systems have produced results for setup 1 (based on landmarks provided along with the dataset)
only. In addition, we also compare the performance of the recent work, DCNNtpe [77] where the performance difference mainly
comes from the better preprocessing module and improved metric, [71].

datasets, respectively. For the IJB-A dataset, we com-

pare our fusion results (i.e., we perform finetuning and

TSE in Setup 3.) with DCNNbl (bilinear CNN [76]),

DCNNpose (multi-pose DCNN models [2]), NAN [99],

DCNN3d [64], template adaptation (TP) [26], DCNNtpe

[77] and the ones [1] reported recently by NIST where

JanusB-092015 achieved the best verification results,

and JanusD-071715 the best identification results. For

the JANUS CS2 dataset, Table 8 includes, a DCNN-

based method [91], Fisher vector-based method [81],

DCNNpose [2], DCNN3d [64], and two commercial off-

the-shelf matchers, COTS and GOTS [51]. From the

ROC and CMC scores, we see that the fusion of DCNN

methods significantly improve the performance. This

can be attributed to the fact that the DCNN model

does capture face variations over a large dataset and

generalizes well to a new small dataset. In addition,

the performance results of Janus B (Jan-usB-092015),

Janus D (JanusD-071715), DCNNbl and DCNNpose sys-

tems have produced results for setup 1 (based on land-

marks provided along with the dataset) only.

During the review period of the paper, newer results

on IJB-A datasets have been reported. The interested

readers are referred to [95,69] for more details. In ad-

dition, the NAN [100] results are based on an earlier

version [99]. More recent state of the art results are re-

ported in [69] obtained by employing the deep residual

network and L2-norm regularized softmax loss.
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CS2-Verif COTS GOTS FV[81] DCNNpose[2]
FAR=1e-3 - - - -
FAR=1e-2 0.581±0.054 0.467±0.066 0.411±0.081 0.897
FAR=1e-1 0.767±0.015 0.675±0.015 0.704±0.028 0.959
CS2-Ident COTS GOTS FV[81] DCNNpose[2]

Rank-1 0.551 ± 0.003 0.413 ± 0.022 0.381 ± 0.018 0.865
Rank-5 0.694 ± 0.017 0.571 ± 0.017 0.559 ± 0.021 0.934
Rank-10 0.741 ± 0.017 0.624 ± 0.018 0.637 ± 0.025 0.949

CS2-Verif DCNN3d [64] DCNN (setup 1) DCNN (setup 2) DCNN (setup 3)
FAR=1e-3 0.824 0.81 ± 0.018 0.823 ± 0.013 0.83 ± 0.014
FAR=1e-2 0.926 0.92 ± 0.01 0.922 ± 0.008 0.935 ± 0.007
FAR=1e-1 - 0.981 ± 0.003 0.968 ± 0.003 0.986 ± 0.002
CS2-Ident DCNN3d [64] DCNN (setup 1) DCNN (setup 2) DCNN (setup 3)

Rank-1 0.898 0.905 ± 0.007 0.915 ± 0.007 0.931 ± 0.007
Rank-5 0.956 0.965 ± 0.004 0.959 ± 0.005 0.976 ± 0.004
Rank-10 0.969 0.977 ± 0.004 0.967 ± 0.004 0.985 ± 0.002

Table 8 Results on the JANUS CS2 dataset. The TAR of all the approaches at FAR=0.1, 0.01, and 0.001 for the ROC curves.
The Rank-1, Rank-5, and Rank-10 retrieval accuracies of the CMC curves. We report average and standard deviation of the
10 splits. The performance results of DCNNpose have produced results for setup 1 only.

4.5 Labeled Faces in the Wild

We also evaluate our approach on the well-known LFW

dataset [47] using the standard protocol which defines

3,000 positive pairs and 3,000 negative pairs in total

and further splits them into 10 disjoint subsets for cross

validation. Each subset contains 300 positive and 300

negative pairs. It contains 7,701 images of 4,281 sub-

jects. We compare the mean accuracy of the proposed

deep model with other state-of-the-art deep learning-

based methods: DeepFace [88], DeepID2 [85], DeepID3

[83], FaceNet [79], Yi et al. [102], Wang et al. [91], Ding

et al. [29], Parkhi et al. [68], and human performance

on the “funneled” LFW images. The results are summa-

rized in Table 9. It can be seen that our approach per-

forms comparable to other deep learning-based meth-

ods. Note that some of the deep learning-based meth-

ods compared in Table 9 use millions of data samples

for training the model. In comparison, we use only the

CASIA dataset for training our model which has less

than 500K images.

4.6 Comparison with Methods based on Annotated

Metadata

Most systems compared in this paper produced the re-

sults for setup 1 which is based on landmarks provided

along with the dataset only (i.e., except DCNNtpe.). For

DCNN3d [64], the number of face images is augmented

along with the original CASIA-WebFace dataset by aro-

und 2 million using 3D morphable models. On the other

hand, NAN [99] and TP [26] used datasets with more

than 2 million face images to train the model. However,

the networks used in this work were trained with the

original CASIA-WebFace which contains around 500K

images. In addition, TP adapted the one-shot similarity

framework [94] with linear support vector machine for

set-based face verification and trained the metric on-

the-fly with the help of a pre-selected negative set dur-

ing testing. Although TP achieved significantly better

results than other approaches, it takes more time dur-

ing testing than the proposed method since our metric

is trained off-line and requires much less time for testing

than TP. We expect the performance of the proposed

approach can also be improved by using the one-shot

similarity framework. As shown in Table 7, the pro-

posed approach achieves comparable results to other

methods and strikes a balance between testing time and

performance. In a recent work, DCNNtpe [77], adopted a
probabilistic embedding for similarity computation and

a new face preprocessing module, hyperface [71], for im-

proved face detection and fiducials where [71] is a multi-

task deep network trained for the tasks of gender clas-

sification, fiducial detection, pose estimation and face

detection. We plan to incorporate hyperface into the

current framework which may yield some improvement

in performance.

4.7 Run Time

The DCNNS model for face verification is trained on

the CASIA-Webface dataset from scratch for about 4

days and for DCNNL, it takes 20 hours to train on the

same face dataset which is initialized using the weights

of Alexnet pretrained on the ImageNet dataset. The

two networks are trained using NVidia Titan X with

cudnn v4. The running time for face detection is around

0.7 second per image. The facial landmark detection
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Method #Net Training Set Metric Mean Accuracy ± Std

DeepFace [88] 1 4.4 million images of 4,030 subjects, private cosine 95.92% ± 0.29%
DeepFace 7 4.4 million images of 4,030 subjects, private unrestricted, SVM 97.35% ± 0.25%
DeepID2 [85] 1 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 95.43%
DeepID2 25 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.15% ± 0.15%
DeepID3 [83] 50 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.53% ± 0.10%
FaceNet [79] 1 260 million images of 8 million subjects, private L2 99.63% ± 0.09%
Yi et al. [102] 1 494,414 images of 10,575 subjects, public cosine 96.13% ± 0.30%
Yi et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.73% ± 0.31%
Wang et al. [91] 1 494,414 images of 10,575 subjects, public cosine 96.95% ± 1.02%
Wang et al. 7 494,414 images of 10,575 subjects, public cosine 97.52% ± 0.76%
Wang et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.99%
Wang et al. 7 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.23% ± 0.68%
Ding et al. [29] 8 471,592 images of 9,000 subjects, public unrestricted, Joint-Bayes 99.02% ± 0.19%
Parkhi et al. [68] 1 2.6 million images of 2,622 subjects, public unrestricted, TDE 98.95 %
Human, funneled [91] N/A N/A N/A 99.20%
Our DCNNS 1 490,356 images of 10,548 subjects, public cosine 97.7% ± 0.8%
Our DCNNL 1 490,356 images of 10,548 subjects, public cosine 96.8% ± 0.6%
Our DCNNS + DCNNL 2 490,356 images of 10,548 subjects, public cosine 98% ± 0.5%
Our DCNNS + DCNNL 2 490,356 images of 10,548 subjects, public unrestricted, TSE 98.33% ± 0.7%

Table 9 Accuracy of different methods on the LFW dataset.

and feature extraction steps take about 1 second and

0.006 second per face, respectively (i.e., To compare

the speed difference, we run the feature extraction part

using CPU. it takes around 0.7 second for feature ex-

traction using a core of 16-core 3.0GHz Intel Xeon CPU

and math library atlas which is around 100 times as the

GPU time.) The face association module for a video

takes around 5 fps on average.

5 Open Issues

Given sufficient number of annotated data and GPUs,

DCNNs have been shown to yield impressive perfor-

mance improvements. Still many issues remain to be

addressed to make the DCNN-based recognition sys-

tems robust and practical. These are briefly discussed

below.

– Reliance on large training data sets: One of

the top performing networks in the MegaFace chal-

lenge needs 500 million faces of about 10 million

subjects. Such large annotated training set may not

be always available (e.g. expression recognition, age

estimation). So networks that can perform well with

reasonable-sized training data are needed.

– Invariance: While limited invariance to translation

is possible with existing DCNNs, networks that can

incorporate more general invariances are needed.

– Training time: The training time even when GPUs

are used can be several tens to hundreds of hours,

depending on the number of layers used and the

training data size. More efficient implementations of

learning algorithms, preferably implemented using

CPUs are desired.

– Number of parameters: The number of parame-

ters can be several tens of millions. Novel strategies

that reduce the number of parameters need to be

developed.

– Handling degradations in training data: : DC-

NNs robust to low-resolution, blur, illumination and

pose variations, occlusion, erroneous annotation, etc.

are needed to handle degradations in data.

– Domain adaptation of DCNNs: While having

large volumes of data may help with processing test

data from a different distribution than that of the

training data, systematic methods for adapting the

deep features to test data are needed.

– Theoretical considerations: While DCNNs have

been around for a few years, detailed theoretical un-

derstanding is just starting to develop [12][63][38][41].

Methods for deciding the number of layers, neigh-

borhoods over which max pooling operations are

performed are needed.

– Incorporating domain knowledge: The current

practice is to rely on fine tuning. For example, for

the age estimation problem, one can start with one

of the standard networks such as the AlexNet and

fine tune it using aging data. While this may be rea-

sonable for somewhat related problems (face recog-

nition and facial expression recognition), such fine

tuning strategies may not always be effective. Meth-

ods that can incorporate context may make the DC-

NNs more applicable to a wider variety of problems.

– Memory: Although Recurrent CNNs are on the

rise, they still consume a lot of time and memory

for training and deployment. Efficient DCNN algo-

rithms are needed to handle videos and other data

streams as blocks.

We also discussed design considerations for each com-

ponent of a full face verification system, including

– Face detection: Face detection is challenging due

to the wide range of variations in the appearance of
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faces. The variability is caused mainly by changes

in illumination, facial expression, viewpoints, occlu-

sions, etc. Other factors such as blurry images and

low resolution are prominent in face detection task.

– Fiducial detection: Most of the datasets only con-

tain few thousands images. A large scale annotated

and unconstrained dataset will make the face align-

ment system more robust to the challenges, includ-

ing extreme pose, low illumination, small and blurry

face images. Researchers have hypothesized that deeper

layers can encode more abstract information such as

identity, pose, and attributes; However, it has not

yet been thoroughly studied which layers exactly

correspond to local features for fiducial detection.

– Face association: Since the video clips may con-

tain media of low-quality images, the blurred and

low-resolution image makes the face detection not

reliable. This may lead to performance degradation

of face association since a face track will not be ini-

tiated due to the missing of face detection. Besides,

abrupt motion, occlusion, and crowded scene can

lead to performance degradation of tracking and po-

tential identity switching.

– Face verification: For face verification, the per-

formance can be improved by learning a discrimi-

native distance measure. However, due to memory

constraints limited by graphics cards, how to choose

informative pairs or triplets and train the network

end-to-end using online methods (e.g., stochastic

gradient descent) on large-scale datasets are still

open problems.

6 Conclusion

We presented the design and performance of our au-

tomatic face verification system, which automatically

locates faces and performs verification/recognition on

newly released challenging face verification datasets,

IARPA Benchmark A (IJB-A) and its extended version,

JANUS CS2. It is shown that the proposed DCNN-

based system can not only accurately locate the faces

across images and videos but also learn a robust model

for face verification. Experimental results demonstrate

that the performance of the proposed system on the

IJB-A dataset is much better than a FV-based method

and some COTS and GOTS matchers.
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