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Abstract We present a multi-class Multiple Instance
Learning (MIL) algorithm using the dictionary learn-

ing framework where the data is given in the form of

bags. Each bag contains multiple samples, called in-

stances, out of which at least one belongs to the class

of the bag. We propose a noisy-OR model and a gen-
eralized mean-based optimization framework for learn-

ing the dictionaries in the feature space. The proposed

method can be viewed as a generalized dictionary learn-

ing algorithm since it reduces to a novel discriminative
dictionary learning framework when there is only one

instance in each bag. Various experiments using popu-

lar vision-related MIL datasets as well as the UNBC-

McMaster Pain Shoulder Archive database show that

the proposed method performs significantly better than
the existing methods.
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1 Introduction

Machine learning has played a significant role in devel-

oping robust computer vision algorithms for object de-

tection and classification. Most of these algorithms are
supervised learning methods, which assume the avail-

ability of labeled training data. Label information often

includes the type and location of the object in the im-

age, which are typically provided by a human annota-
tor. Human annotation is expensive and time consum-

ing for large datasets. Furthermore, multiple human

annotators can often provide inconsistent labels which

could affect the performance of the learning algorithm

(Leung et al, 2011) applied subsequently. However, it
is relatively easy to obtain weak labeling information

either from search queries on Internet or from amateur

annotators providing the category but not the location

of the object in the image. This necessitates the de-
velopment of learning algorithms from weakly labeled

data.

A popular approach to incorporate partial label in-

formation during training is through Multiple Instance

Learning (MIL). Unlike supervised learning algorithms,

MIL framework does not require label information for
each training instance, but just for collection of in-

stances called bags. A bag is positive if at least one of its

instances is a positive example otherwise the bag is neg-

ative. One of the first algorithms for MIL, named the

Axis-Parallel Rectangle (APR), was proposed by Di-
etterich and Lathrop (1997) which attempts to find an

APR by manipulating a hyper rectangle in the instance

feature space to maximize the number of instances from

different positive bags enclosed by the rectangle while
minimizing the number of instances from the negative

bags within the rectangle. The basic idea of APR led

to several interesting MIL algorithms. A general frame-
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Fig. 1: Motivation behind the proposed DD-based MIL

dictionary learning framework.

work, called Diverse Density (DD), was proposed by

Maron and Pérez (1998) in which the idea is to find the
optimal instance prototype in the feature space that is

close to at least one instance from every positive bag

and meanwhile far away from instances in all negative

bags. The optimal instance prototype is defined as the

one with the maximum diversity density, which is a
measure of the intersection of the positive bags minus

the union of the negative bags.

The diverse density is one of the most popular for-

mulations of MIL. An approach based on Expectation
- Maximization and DD, called EM-DD, for MIL was

proposed by Zhang and Goldman (2001). EM-DD was

later extended by Chen and Wang (2004), called DD-

SVM, that essentially trains an SVM in a feature space
constructed from a mapping defined by the maximiz-

ers and minimizers of the DD function. More recently,

an MIL algorithm for randomized trees, named MIFor-

est, was proposed by Leistner et al (2010). An inter-

esting approach, called Multiple Instance Learning via
Embedded instance Selection (MILES), was proposed

by Chen et al (2006). This method converts the MIL

problem to a standard supervised learning problem that

does not impose the assumption relating instance labels
to the bag labels. See Amores (2013), Babenko (2009)

and Zhou (2004) for an excellent review of different MIL

approaches and their applications in various computer

vision problems.

In recent years, sparse coding and dictionary learning-
based methods have gained a lot of traction in com-

puter vision and have produced state-of-the-art results

in many practical problems such as object recognition,

object detection and tracking (Wright et al, 2010; Ru-
binstein et al, 2010; Patel and Chellappa, 2011, 2013;

Song et al, 2012). In particular, non-linear dictionar-

ies have been shown to produce better results than the

linear dictionaries in object recognition tasks (Nguyen

et al, 2012a; Gao et al, 2010; Harandi et al, 2012). While

MIL algorithms exist for popular classification methods

like Support Vector Machines (SVM) (Andrews et al,

2003) and decision trees (Leistner et al, 2010), such
algorithms have been studied only recently in the liter-

ature for the dictionary learning framework.

A dictionary-based MIL algorithm was recently pro-

posed for event detection in Huo et al (2012) that itera-
tively prunes negative samples from positive bags based

on the dictionary learned from the negative bags. One

of the limitations of this approach is that, it may not

generalize well for the multi-class classification problem
where computing a negative dictionary might be diffi-

cult. In a multi-class setting, a one-vs-all approach will

consider all but one class as the negative class. Learning

a negative dictionary with these “negative” bags will

not be able to prune the “positive” bags. This is par-
tially because the “negative” bags will also have sam-

ples from the positive class. Another multi-class SVM-

based MIL method was recently proposed byWang et al

(2013) for image classification. The main goal of that
paper is to learn max-margin classifiers to classify all

patches of an image into different clusters. Although,

the authors in Wang et al (2013) call their multi-class

SVM-based MIL method a dictionary-based method,

what we propose in this paper is very different from
Wang et al (2013). While we explicitly enforce sparsity

on the coefficients in our paper, there is no notion of

sparsity in Wang et al (2013). If we have just one sam-

ple in each bag, the formulation proposed by Wang et al
(2013) reduces to an SVM; while the proposed method

reduces to a standard dictionary learning framework.

In this paper, we develop a general DD-based dic-

tionary learning framework for MIL where labels are

available only for the bags, and not for the individ-
ual samples. Instances in a bag are points in feature

space. Our goal in learning a positive concept is to find

a point in the feature space that can represent at least

one instance in each positive bag and does not represent
any of the negative instances. In practical applications,

with high dimensional feature space, it is difficult to

represent each bag with just one such point. We seek

to represent multiple such points as dictionary atoms

whose sparse linear combinations represent true pos-
itive samples well, and have high reconstruction error

for negative samples. In addition, we show in our exper-

iments that without learning a common structure from

the intersection of positive bags, the learned dictionary
does not work well in practice. We observe that learn-

ing a common structure from the set of positive bags

is much more important compared to learning a dictio-



Generalized Dictionaries for Multiple Instance Learning 3

nary that just focuses on not representing the negative

instances well.

Figure 1 provides the motivation behind the pro-
posed method. In this figure, we show instances from

1 negative bag and 3 positive bags. They can be imag-

ined intersecting at different locations. From the prob-

lem definition, the negative bag contains only negative

class samples, hence the region around the negative in-
stances is very likely to be a negative concept, even if

it intersects with positive bags. However, the intersec-

tion of positive bags, is likely to belong to the positive

concept. Traditional diverse density-based approaches
(Maron and Pérez, 1998) can find only one positive con-

cept that is close to the intersection of positive bags and

away from the negative bags. Since one point in the

feature space can not describe the positive class dis-

tribution, these approaches tend to compute different
positive concepts with multiple initializations. In this

work, we show that the multiple concepts are naturally

captured by dictionary atoms and lead to a better per-

formance. Figure 2 shows an overview of the proposed
MIL dictionary learning method.

Key contributions of our work are as follows 1:

1. We propose a general dictionary learning and sparse
coding-based framework for MIL by learning a rep-

resentation for the components common in the in-

stances of the same class bags and different for dif-

ferent class bags.

2. Under the MIL setting, we account for the non-
linearity of data by learning a dictionary in the

high dimensional feature space using a predeter-

mined kernel function.

3. We propose two models for learning the sparse fea-
tures of positive bags under the MIL setting; one is

based on the noisy-OR model and the other is based

on the Generalized Mean (GM) model.

4. We evaluate our method on various computer vision

problems and advance the state-of-the-art on pain
detection.

This paper is organized as follows. Background dis-

cussion on sparse coding and dictionary learning are

given in Section 2. Section 3 gives an overview of the
proposed method and formulates the proposed MIL dic-

tionary learning problem. The details of the optimiza-

tion steps are given in Section 4. The classification pro-

cedure using the learned dictionaries is described in Sec-
tion 5. Experimental results are presented in Section 6

and Section 7 concludes the paper with a brief summary

and discussion.

1 A preliminary version of this work appeared in Shrivas-
tava et al (2014b). Items 2, 3 and 4 are extensions to this
work.

Fig. 2: An overview of the proposed MIL dictionary

learning framework.

2 Background

In this section, we give a brief background on sparse
coding and dictionary learning.

2.1 Sparse Coding

Let D be a redundant (overcomplete) dictionary with

K elements in R
d

D = [d1, . . . ,dK ] ∈ R
d×K . (1)

The elements of D (also known as atoms) are normal-

ized to unit Euclidean norm i.e., ‖di‖ = 1 ∀i. Given a
signal yt ∈ R

d, finding the sparsest representation of yt

in D entails solving the following optimization problem

xt = argmin
x

‖x‖0 subject to yt = Dx, (2)

where ‖x‖0 := #{j : xj 6= 0}, is a count of the num-
ber of nonzero elements in x. Problem (2) is NP-hard

and cannot be solved in a polynomial time. Hence, ap-

proximate solutions are usually sought. For instance, a

stable solution can be obtained by solving the following
optimization problem, provided certain conditions are

met (Elad, 2010)

xt = argmin
x

‖yt −Dx‖2 + λ‖x‖1, (3)

where λ is a regularization parameter and ‖ · ‖p for

0 < p < ∞ is the ℓp-norm defined as

‖x‖p =





d
∑

j=1

|xj |
p





1
p

. (4)
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2.2 Dictionary Learning

Traditionally, the dictionary D in (1) is predetermined;

e.g., wavelets. It has been observed (Olshausen and

Fieldt, 1997) that learning a dictionary directly from

the training data rather than using a predetermined

dictionary usually leads to a more compact representa-
tion and hence can provide improved results in many

practical computer vision applications (Elad, 2010;Wright

et al, 2010; Patel and Chellappa, 2013).

Several algorithms have been developed for the task
of learning a dictionary from data samples (Mairal et al,

2012; Rubinstein et al, 2010; Elad, 2010). One of the

well-known algorithms is the KSVD algorithm proposed

by Aharon et al (2006). Given a data matrix Y ∈ R
d×N

with its columns as data samples yi, i = 1, . . . , N , the
goal of the KSVD algorithm is to find a dictionary D

and a sparse matrix X that minimize the following rep-

resentation error

(D̂, X̂) = argmin
D,X

‖Y−DX‖2F such that ‖xi‖0 ≤ T0 ∀i,

(5)

where xi’s denote the columns of X, ‖.‖F denotes the

Frobenius norm and T0 denotes the sparsity level. The

KSVD algorithm is an iterative method and alternates
between sparse-coding and dictionary update steps. First,

a dictionary D with ℓ2 normalized columns is initial-

ized. Then, the main iteration is composed of the fol-

lowing two stages:

– Sparse coding: In this step, D is fixed and the fol-

lowing optimization problem is solved to compute

the representation vector xi for each sample yi, i =

1, · · · , N ,

min
xi

‖yi −Dxi‖
2
2 such that ‖xi‖0 ≤ T0. (6)

Any standard technique can be used to solve this
problem. In fact, approximate solutions can be ob-

tained by solving problems similar to (3).

– Dictionary update: In KSVD, the dictionary update

is performed atom-by-atom in a computationally ef-
ficient way rather than using a matrix inversion. For

a given atom l, the quadratic term in (5) can be

rewritten as

‖Y −
∑

i6=l

dix
T
i − dlx

T
l ‖

2
F = ‖El − dlx

T
l ‖

2
F , (7)

where El is the residual matrix, dl is the lth atom

of the dictionary D and xT
i are the rows of X. The

atom update is obtained by minimizing (7) for dl

and xT
l through a simple rank-1 approximation of

El (Aharon et al, 2006).

2.3 Discriminative Dictionary Learning

Given a data matrix Y, the general cost function for

learning a dictionary takes the following form

min
D,X

‖Y −DX‖2F + λΨ(X), (8)

where λ is a parameter and columns of Y, D, and X

contain the training signals, the dictionary atoms, and
their coefficients, respectively. While these approaches

are purely generative, the design of supervised discrim-

inative dictionaries has also gained a lot of traction in

recent years (Wright et al, 2010; Patel and Chellappa,

2011). The design of such dictionaries entails modifica-
tion of the function Ψ(X) in (8) so that not only sparsity

is enforced but discrimination is also maintained. This

is often done by introducing linear discriminant analy-

sis on the sparse coefficients which essentially enforces
separability among dictionary atoms of different classes

(Mairal et al, 2009, 2012; Jiang et al, 2011; Zhang and

Li, 2010; Yang et al, 2011; Qiu et al, 2014). Manipula-

tion of Ψ(X) so that it enforces group sparsity can also

lead to the design of hierarchical dictionaries.

2.4 Non-Linear Dictionary Learning

Kernel-based non-linear sparse coding and dictionary

learning methods have also been proposed in the litera-

ture (Nguyen et al, 2013; Shrivastava et al, 2012; Zhang

et al, 2012). These methods essentially map the input

data onto a high dimensional feature space using a pre-
determined kernel function. Sparse codes and dictionar-

ies are then trained on the feature space for better rep-

resentation and discrimination. Let Φ(.) : Rd → G be a

mapping from a d-dimensional space into a dot product
space G. A non-linear dictionary can be trained in the

feature space G by solving the following optimization

problem

(Â, X̂) = argmin
A,X

‖Φ(Y) −Φ(Y)AX‖2F subject to

‖xi‖0 ≤ T0 ∀i (9)

where

Φ(Y) = [Φ(y1), · · · ,Φ(yN )].

Since the dictionary lies in the linear span of the sam-

ples Φ(Y), in (9) we have used the following model for

the dictionary in the feature space,

Φ(D) = Φ(Y)A,

where A ∈ R
N×K is a matrix with K atoms (Nguyen

et al, 2013, 2012a),

Φ(D) = [Φ(d1), . . . ,Φ(dK)].
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Notation Description
N Total number of bags
C Number of classes

li ∈ {1, . . . , C} Label of the ith bag
Mi Number of instances in the ith bag
d Dimension of each instance
M Total number of instances in all the bags
Mc Total number of instances in all the cth class bags

Y ∈ R
d×M Data matrix with columns as instances from all the bags

Yc ∈ R
d×Mc

Data matrix with columns as instances from all the cth class bags
Yi ∈ R

d×Mi Matrix with columns as instances from the ith bag
yij ∈ R

d jth instance of the ith bag
Ac ∈ R

Mc×Kc Matrix whose columns control the dictionary atoms in feature
space. It is also referred to as cth class dictionary

Kc Number of atoms (or columns) in the cth class dictionary Ac

X ∈ R
Kc×M Sparse coefficient matrix of all instances corresponding to dictio-

nary Ac

Xi ∈ R
Kc×Mi Sparse coefficient matrix ith bag instances corresponding to dic-

tionary Ac

xij jth coefficient vector of the ith bag. Vector length depends on
implicit dictionary size it is computed with

xijk kth element of xij

pij Probability that the jth instance of the ith bag belongs to a pos-
itive (cth) class

pi ∈ R
Mi Vector containing the probabilities of all the instances in the ith

bag, i.e., pi := [pi1, . . . , piMi
]

K(Yc,Yc) ∈ R
Mc×Mc

Kernel matrix computed from the cth class instances
κ Kernel function used to compute the elements of the kernel matrix

Table 1: Summary of key notations.

This model provides adaptivity via modification of the
matrix A. Through some algebraic manipulations, the

cost function in (9) can be rewritten as,

‖Φ(Y)−Φ(Y)AX‖2F

= tr((I−AX)TK(Y,Y)(I −AX)), (10)

where K(Y,Y) is a kernel matrix whose elements are
computed from

κ(i, j) = Φ(yi)
T
Φ(yj).

It is apparent that the objective function is feasible
since it only involves a matrix of finite dimension K ∈

R
N×N , instead of dealing with a possibly infinite di-

mensional dictionary.

An important property of this formulation is that

the computation ofK only requires dot products. There-
fore, one can employ Mercer kernel functions to com-

pute these dot products without carrying out the map-

ping Φ. Some commonly used kernels include polyno-

mial kernels

κ(x,y) = 〈(x,y〉 + a)
b

and Gaussian kernels

κ(x,y) = exp

(

−
‖x− y‖2

c

)

,

where a, b and c are the parameters.

Similar to the optimization of (5) using the lin-
ear KSVD algorithm, the optimization of (9) involves

sparse coding and dictionary update steps in the fea-

ture space which results in the kernel KSVD algorithm.

Details of the optimization can be found in the paper

by Nguyen et al (2013).

Supervised dictionary learning methods (both linear
and nonlinear) have shown to produce sate-of-the-art

results in many classification tasks (Zhang and Li, 2010;

Jiang et al, 2011; Yang et al, 2011; Nguyen et al, 2013).

However, as will be shown in Section 6, in the presence
of label ambiguity such as in MIL, the supervised dic-

tionary learning methods don’t work well in practice.

As a result, a new dictionary learning framework for

MIL is necessary. In fact, many previous papers have

investigated whether standard supervised learning al-
gorithms perform comparably to MIL algorithms. It

has been shown that for a variety of datasets and al-

gorithms, using the MIL framework results in better

performance and they outperform supervised learning
approaches in practice by a large margin (Dietterich

and Lathrop, 1997; Ray and Craven, 2005; Bunescu and

Mooney, 2007; Viola et al, 2005).
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3 Overview and Problem Formulation

In this section, we give an overview of the proposed MIL

dictionary learning framework. We then formulate the

proposed multi-class MIL dictionary learning problem.

3.1 Overview of the Proposed Approach

Assume that we are given N labeled bags Yi and their

corresponding labels li for all i = 1, . . .N . Each label
can be from one of the C classes, i.e. li ∈ {1, . . . , C}. A

bag Yi can have one or more samples, called instances,

denoted by yij , j = 1, . . .Mi where Mi is the number of

instances in the ith bag. In a multi-class MIL setting,
if the label of a bag is li, at least one of its instances

should belong to class li. In many computer vision ap-

plications a bag corresponds to an image and its in-

stances can be created by varying the scale, position or

region of interest. For example, in tracking by detection
application (Babenko et al, 2009) multiple overlapping

patches are used as instances and in object recognition

application multiple regions of an image are treated as

instances (Chen and Wang, 2004; Mohan et al, 2001;
Leistner et al, 2010).

The main focus of this work is to obtain a good rep-

resentation by learning a dictionary for each class with

the given labeled training bags. We represent each in-

stance as a sparse linear combination of the dictionary
atoms that are representative of the true class. How-

ever, when learning the underlying structure in each

class, it is important to consider only those instances

which belong to the bag’s class and disregard the in-
stances from other classes. Existing algorithms for dic-

tionary learning need samples as input and can not

work with bags. Hence, in this work we propose a gen-

eral DD-based dictionary learning algorithm that can

learn the representation of each class from bags under
the MIL setting.

In a two class problem, the probability of an in-

stance in a positive bag can be better estimated if the

dictionary atoms of positive class do not share the struc-
ture of the negative class. In the multi-class scenario,

when the noisy samples in a bag are from the back-

ground, the learned dictionary should be designed not

to learn the structure of the background so that the

probability of the background instance stays small. In
the multi-class case, when the noise is from different

classes, we propose to classify a test sample based on

the reconstruction error, which would work only if the

dictionary atoms do not share structure from different
classes. Furthermore, the sparse coefficients would be

more discriminative if the atoms of a class do not re-

construct well the samples of the other classes. Learning

dictionaries independently for each class helps achieve

these objectives.

We learn a dictionary

Φ(Dc) = Φ(Yc)Ac

for each class c in a high-dimensional feature space,

where the matrixYc contains all the instances of the cth

class bags, and Ac is a matrix that we want to learn as

a part of the non-linear dictionary learning process. We

learn Φ(Dc) by adapting columns of Ac. The instances
in bag Yc that truly have the bag label c, should be

well represented by this dictionary. Towards achieving

this goal, we define the probability of an instance yij

belonging to the cth class as,

pij := exp (−‖Φ(yij)−Φ(Yc)Acxij‖
2
2/σ), (11)

where xij is the sparse coefficient corresponding to yij ,

and ‖Φ(yij)−Φ(Yc)Acxij‖2 is the reconstruction error

in the feature space. Here, σ is a hyper-parameter that
controls the sharpness of the probability distribution.

Our goal is to learn Φ(Dc) via Ac for which at

least one instance in each bag of class c is well rep-

resented (i.e., the probability is high) and the bags of

all the other classes (i.e., not c) are poorly represented.
This objective can be captured by computing positive

bag probabilities as the maximum probability of its in-

stances

J̃ =
∏

i:li=c

(

max
j

pij

)

∏

i:li 6=c

(

Mi
∏

j=1

(1− pij)
)

. (12)

Note that, for J̃ to be high, at least one instance from

each bag of class c should have high pij , while all the

instances in the bags of other classes should have low
probability. If we maximize the cost in (12) with respect

to the matrixAc, we can learn the structure common to

all the cth class bags and absent from the bags of other

classes. Since max operation is highly non-smooth, we
need to approximate it with a smooth function to be

able to optimize the cost. A practical approach explored

in many MIL works (Maron and Pérez, 1998; Zhang and

Goldman, 2001; Viola et al, 2005) is to approximate the

max function with a smooth noisy-OR (NOR) model
defined as

SNOR(pi) = 1−

Mi
∏

j=1

(1 − pij), (13)

where pi := [pi1, . . . , piMi
]T . Note that if one instance

in the ith bag is positive with a very high probability,
the product term is going to be close to zero and the

bag probability will be close one. One limitation of this

model is that the probability is biased towards bag size
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and for a large bag the product term diminishes very

fast even if each instance has very low probability. For

example, a bag of 100 instances each with probability

0.05 will result in SNOR(pi) = 0.9941 which is very

high considering that true maxj pij = 0.05. Learning a
dictionary with noisy-OR model with this bag will be

very hard because the probability of the bag is very high

and there is nothing to optimize. Another approxima-

tion of the max function can be formulated in the form
of generalized mean as explored by Viola et al (2005)

and Sikka et al (2013). This model is not sensitive to

the bag size but averages out the instance probabilities

after raising them to a high power as defined by

SGM (pi) =
( 1

Mi

Mi
∑

j=1

prij

)1/r

, (14)

where r is a parameter that controls the approxima-

tion of SGM to the true max function. A higher value

of r results into a better approximation. However, a

very high value can result in numerical instability. In

our experiments, we set it equal to 10. For the previ-
ous example of 100 instances in a positive bag, each

with probability of 0.05, the bag probability will be

computed as ( 1

100
100 ∗ (0.05r))

1
r = 0.05 and the op-

timization will effectively use this bag for learning the
dictionary. In our experiments, the Pain Localization

dataset has large bags and we use the Generalized Mean

(GM) approach for learning the dictionary. The GM ap-

proximation under-estimates the true max value while

the NOR model over-estimates it. For a smaller bag
size where a few instances have much higher proba-

bility compared to the rest of them, NOR model is

a better approximation. For example, consider a case

where a positive bag has two instances with their re-
spective probabilities of belonging to positive class as

0.9 and 0.1. A GM approximation in this case is 0.84

while NOR results in a better approximation of 0.91.

To summarize, for the small bag sizes, noisy-OR model

can be used; however, for the large number of instances
per bag, this may easily saturate the bag probabilities.

In such cases, GM can be used for modeling the bag

probabilities.

Let us denote this general soft-max function by S,

where S can be replaced by either SNOR or SGM , i.e.,

max
j

pij ≈ S(pi).

Hence, the objective (12) can be approximated as

J̃ =
∏

i:li=c

S(pi)
∏

i:li 6=c

(

Mi
∏

j=1

(1− pij)
)

. (15)

Once the dictionaries are learned for each class by

minimizing the above objective with the sparsity con-

straint, one can concatenate them to form a global dic-

tionary and compute the representation of the instances

using this dictionary. Features can be computed for
each bag from this representation and classified using

the popular classification algorithms such as Support

Vector Machine (SVM). Figure 3 presents an overview

of our method. We refer to this method as Generalized
Dictionaries for MIL (GD-MIL).

Table 1 summarizes the notations used in this pa-

per. We would like to draw the reader’s attention to

subtle but important difference between subscript and

superscript of Y and M , where the subscript refers to

the bag index while the superscript refers to the class
index.

Fig. 3: Block diagram of the proposed GD-MIL method.

3.2 Problem Formulation

We denote the data matrix by Y = [Y1, . . . ,YN ] ∈
R

d×M . Here, M = M1+ · · ·+MN is the total number of

instances in all the bags, Mi is the number of instances

in the ith bag and d is the dimension of the features for

each instance. Let Yc be the concatenation of all the

cth class bags, i.e, Yc = [Yi : li = c] ∈ R
d×Mc

. Note
that the subscript i in Yi denotes the bag index and su-

perscript c in Yc denotes the matrix of all the bags that

belong to class c. Similarly, M c is the total number of

instances in all the cth class bags, i.e. M c =
∑

i:li=cMi.
For simplicity of notation, we re-index instances of all

the cth class bags and write Yc = [yc
1, . . . ,y

c
Mc ], where

yc
i is the ith instance of the cth class after re-indexing.



8 Ashish Shrivastava et al.

Our objective is to learn a dictionary Φ(Dc) defined

as Φ(Yc)Ac for each class in the feature space, where

columns of Ac ∈ R
Mc×Kc are optimized to learn the

non-linear dictionary. For simplicity, we refer to Ac as

the dictionary for the cth class. Given Ac, we can rep-
resent an instance y as a sparse linear combination of

the columns of Φ(Yc)Ac in the feature space as follows

Φ(y) = Φ(Yc)Acx+ ǫ, (16)

where Φ(Yc) = [Φ(yc
1), . . . ,Φ(yc

Mc)] and ǫ is the error

term. The sparse coefficient x can be obtained by solv-

ing the following optimization problem (Mairal et al,
2009)

x = argmin
z

‖Φ(y) −Φ(Yc)Acz‖
2
2 + λ‖z‖1. (17)

Next, we represent the jth instance of the ith bag
using the dictionary Ac and write its probability pij in

terms of the representation error as follows,

pij(Ac,xij) = exp
(

− ‖Φ(yij)−Φ(Yc)Acxij‖
2
2/σ

)

= exp
(

−K(yij ,yij)− xT
ijA

T
c K(Yc,Yc)Acxij

+ 2K(yij ,Y
c)Acxij

)

, (18)

where xij is the sparse coefficient of yij . For clarity of

notation, we have ignored σ which can be easily ab-

sorbed in the kernel function. Next, the elements of
kernel matrices are computed as follows:

[K(Yc,Yc)]i,j = [〈Φ(Yc),Φ(Yc)〉]i,j

= Φ(yc
i )

T
Φ(yc

j) = κ(yc
i ,y

c
j),

K(yij ,yij) = κ(yij ,yij), and

K(yij ,Y
c) = [κ(yij ,y

c
1), . . . , κ(yij ,y

c
Mc)] ∈ R

1×Mc

.

To learn the dictionary Ac = [a1, · · · , aKc
] for class

c, we need to optimize the cost in (15) with respect

to Ac and all the sparse coefficients xij . We denote all
the sparse coefficients for the cth class dictionary by

the matrix X = [X1, . . . ,XN ] ∈ R
Kc×M where Xi =

[xi1, . . . ,xiMi
] ∈ R

Kc×Mi . In other words, Xi contains

the sparse coefficients for all the instances of the ith bag
and X contains all the sparse coefficients from all the

bags. Note that, for notational simplicity, we have not

used any subscript/superscript c with X, Xi and xij

to indicate that these sparse coefficients are computed

using the cth class dictionary. Next, we take the negative
log of the cost J̃ in (15), and introduce a parameter α

that controls the influence of the non-cth class bags,

J (Ac,X) = −
∑

i:li=c

logS(pi)

− α
∑

i:li 6=c

Mi
∑

j=1

log(1− pij). (19)

In a multi-class scenario, each bag may contain the sam-

ples of different classes. This may create a problem since

negative bags for learning the cth class dictionary may

contain the samples for the cth (positive) class. The way

we handle this problem is by focusing on learning the
common structure from the positive class and reducing

the effect of negative bags by setting a small α value. In

the extreme case, setting α = 0 will eliminate this prob-

lem completely, however, this will adversely affect the
discriminative capability of the learned cth dictionary.

We choose a middle ground by setting this parameter

to a very small value in such cases.

The resulting problem of learning the non-linear

dictionaries can be captured in following optimization

problem,

Âc, X̂ = arg min
Ac,X

J (Ac,X) + λ‖X‖1, (20)

where ‖X‖1 =
∑

n ‖xn‖1. Note that J (Ac,X) is a

function of pij . The atoms of a dictionary are normal-
ized to unit norm. This can be enforced by adding the

following constraint in the optimization problem (20),

(Φ(Yc)am)T (Φ(Yc)am) = aTmK(Yc,Yc)am = 1.

Hence, the overall optimization problem (20) can be

re-written as

Âc, X̂ = arg min
Ac,X

J (Ac,X) + λ‖X‖1,

subject to

aTmK(Yc,Yc)am = 1,m = 1, . . . ,Kc. (21)

4 Optimization Approach

In this section, we develop an approach to solve (21) by

alternatively optimizing the dictionary Ac and coeffi-

cient matrixX. Similar to the KSVD approach (Aharon
et al, 2006), for updating the dictionary, we optimize

one atom at a time while keeping the others fixed. To

satisfy the unit norm constraint on the atoms, we re-

normalize the atom at each step of the proposed gra-
dient descent algorithm. We first write instance prob-

abilities pij as a function of ak, and then utilize it to

update ak.
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4.1 Instance Probabilities pij in terms of ak

Using (18), we can re-write pij as a function of the kth

atom ak as

pij(ak, xijk) = exp
(

− ‖Φ(yij)−Φ(Yc)Acxij‖
2
2

)

= exp
(

− ‖Φ(yij)−Φ(Yc)

Kc
∑

m=1

m 6=k

amxijm

−Φ(Yc)akxijk‖
2
2

)

= exp (−‖Φ(rij)−Φ(Yc)akxijk‖
2
2). (22)

Here, xijk is the kth element of the sparse vector xij

and

Φ(rij) = Φ(yij)−Φ(Yc)

Kc
∑

m=1

m 6=k

amxijm.

One can clearly see the similarity between this expres-

sion and (7).

After a few algebraic manipulations, pij in (22) can
be rewritten in terms of the kernel matrices as follows

pij(ak, xijk) = exp
(

−K(rij , rij)− x2
ijka

T
k K(Yc,Yc)ak

+ 2xijkK(rij ,Y
c)ak

)

, (23)

where,

K(rij , rij) = K(yij ,yij) +

Kc
∑

m=1

m 6=k

x2
ijmaTmK(Yc,Yc)am

− 2

Kc
∑

m=1

m 6=k

xijmaTmK(Yc,yij), and (24)

K(rij ,Y
c) = K(yij ,Y

c)−

Kc
∑

m=1

m 6=k

xijmaTmK(Yc,Yc).

(25)

4.2 Atom Update

We propose a gradient descent method to optimize the
kth atom ak. Recall that we denote the coefficient of

the jth instance of ith bag corresponding to the kth

atom by xijk. Now, we collect the coefficients of all the

instances in ith bag into a vector xk
i := [xi1k, . . . , xiMik].

Denote the cost for optimizing ak by Jak
. Note that

Jak
, from (19), is a function of pij and, together with

the definition of pij in (23), can be written as,

Jak
(ak) = −

∑

i:li=c

logS
(

pi(ak,x
k
i )
)

− α
∑

i:li 6=c

Mi
∑

j=1

log(1− pij
(

ak, xijk)
)

. (26)

Hence, the optimization problem (21) can be reformu-

lated for the kth atom as,

âk = argmin
ak

Jak
(ak), (27)

subject to aTk K(Yc,Yc)ak = 1. (28)

Optimization of ak in (27) can be viewed as mini-

mizing the negative log likelihood and it can be solved
using the gradient descent method. To perform gradient

descent on Jak
, we need to compute the derivatives of

the softmax functions with respect to ak. For the NOR

model, we get

∂ logSNOR

∂ak
=

1− bi
bi

Mi
∑

j=1

( 1

1− pij

∂pij
∂ak

)

, (29)

where

bi := 1−

Mi
∏

j=1

(1− pij),

and
∂pij

∂ak
is the partial derivative of the instance prob-

ability with respect to the atom. Similarly, for the GM

model, we get

∂ logSGM

∂ak
=

1
∑Mi

j=1
pij

Mi
∑

j=1

(

pr−1

ij

∂pij
∂ak

)

. (30)

The derivative of pij with respect to ak is calculated as

follows

∂pij
∂ak

= 2pij [K(rij ,Y
c)ak −K(Yc,Yc)akxijk]. (31)

The derivative of the part that involves the negative

instances in (26) with respect to ak is computed in a
straight forward manner as,

∂

∂ak
log(1− pij) = −

1

1− pij

∂pij
∂ak

. (32)

Finally, from (26) the derivative of Jak
is computed as

∂Jak

∂ak
= −

∑

i:li=c

∂ logS(pi)

∂ak

− α
∑

i:li 6=c

Mi
∑

j=1

∂

∂ak
log(1− pij), (33)

where, S can be replaced with either SNOR or SGM

depending on the choice of the soft-max function.
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4.3 Coefficient Update

In this sub-section, we describe how to update the sparse

coefficients for different instances. Note that in (19)

the probabilities of the instances from negative bags
are separable while those of the instances from positive

bags are not. Hence, we update the coefficients of the

negative bags instances and the positive bags instances

differently. From (19), for each negative instance coef-
ficient, the cost can be written as,

J −
xij

(xij) = − log(1− pij(xij)) + λ‖xij‖1. (34)

Since the positive instances are not separable, we up-

date ith bag coefficient matrix Xi, if li = c, by mini-

mizing (19) w.r.t. Xi. Lets denote this cost for c
th class

bags by J+

Xi
which can be defined as,

J +

Xi
(Xi) = − logS(pi(Xi)) + λ‖Xi‖1. (35)

Note that the cost in (34) and (35) are non-differentiable

due to the ℓ1 regularization term. Multiple approaches
have been developed to minimize such functions (Schmidt

et al, 2007, 2009) when the cost without ℓ1 regular-

ization is smooth. In particular, we use the active set

method described by Schmidt et al (2009). This method
requires the computation of the derivative of the smooth

part of the cost. For the positive bags, it can be com-

puted similar to (29) or (30) depending on the choice

of the softmax function. The only difference is that we

need to compute
∂pij

∂Xi
instead of

∂pij

∂ak
which is done as

follows

∂pij
∂Xi

= 2
[

AT
c K(Yc,Yi)

−AT
c K(Yc,Yc)AcXi

]

Pi, (36)

where Pi is a diagonal matrix with instance probabili-

ties of the ith bag in its diagonal

Pi :=







pi1
. . .

piMi






. (37)

The derivative of J −
xij

w.r.t. xij is computed similar to
(32). For faster implementation, we collect the deriva-

tive of all the instances from positive as well as negative

bags to compute ∂J
∂X , and optimize J to update X.

Different steps of the optimization for Ac are sum-

marized in Algorithm 1.

Algorithm 1: Algorithm for Learning cth Class Dic-

tionary Ac

Input: Bags Yi, Labels li,∀i = 1, . . . N , Kernel
Function κ, Parameters α, λ,Kc,maxItr.

Output: Ac.
for itr = 1, . . . ,maxItr do

for k = 1, . . . ,Kc do
1. Update ak by solving (27) with the gradient
descent method.
2. Update K(rij , rij) and K(rij ,Yc) using
(24) and (25), respectively.

end

Update the coefficient matrix X as described in
section 4.3.

end

return Ac.

4.4 Connection to the Traditional Dictionary Learning

It is interesting to note that first part of our cost J in

(19) is identical to the traditional dictionary learning

cost in the feature space (Nguyen et al, 2012a; Aharon
et al, 2006), when there is only one instance in each

bag. Let this first part of the cost be denoted by J1. By

setting Mi = 1, ∀i it becomes,

J1 = −
∑

i:li=c

log
(

1−

Mi
∏

j=1

(1− pij)
)

= −
∑

i:li=c

log pi1

= −
∑

i:li=c

log exp
(

− ‖Φ(yi1)−Φ(Yc)Acxi1‖
2
2

)

=
∑

i:li=c

‖Φ(yi1)−Φ(Yc)Acxi1‖
2
2. (38)

Hence, in the case of one instance per bag, our prob-

lem formulation can also be viewed as a discriminative

dictionary learning approach where the first part J1

ensures that the instances are well represented by the
dictionary of the corresponding class, and the second

part of the cost J in (19) ensures that the samples of

the non-cth classes are not represented well by the dic-

tionary Ac .

5 Classification

Having computed dictionaries Ac, c = 1, . . . , C , for all

the classes using the method summarized in Algorithm
1, we combine them before computing the sparse codes

for learning a classification model. We denote the com-

bined dictionary in the feature space as Φ(Ỹ)A, where

Φ(Ỹ) := [Φ(Y1), . . .Φ(YC)]

and

A :=







A1,
. . .

AC






.
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This is equivalent to concatenating the dictionaries in

feature space, i.e.,Φ(D) = [Φ(D1), . . . ,Φ(DC)] . We

compute the sparse coefficients of all the training in-

stances on the combined dictionary by solving the fol-

lowing problem (Mairal et al, 2009)

xij = argmin
z

‖Φ(yij)−Φ(Ỹ)Az‖22 + λ‖z‖1. (39)

We then compute the probability pij of this instance
using (18) after replacing Ac by A and Yc by Ỹ. The

sparse representation of the training bags Yi is ob-

tained as the weighted combination of the sparse coeffi-

cients of its instances. For example, the sparse represen-
tation of the ith training bag, denote by xi is computed

as

xi =

Mi
∑

j=1

pijxij .

Once we obtain the sparse codes for the training bags,

any classification algorithm can be used to classify the
samples. In this paper, we utilize an SVM for classifi-

cation.

Instance Classification: If the task is to classify the

individual instances, we propose to use the reconstruc-
tion error for classification. Given a test sample yt, we

compute the sparse coefficient xt on dictionary A. The

class of the test instance is given by,

class of yt = argmin
c

‖Φ(yt)−Φ(Yc)Acx
c
t‖

2
2, (40)

where xc
t part of xt corresponding to dictinary Ac.

6 Experimental Results

This section presents the evaluation and comparison

of the proposed method with various state-of-the-art

methods on different datasets. In the first and second

sub-sections, we evaluate our method on popular datasets
for MIL like the Tiger, Fox, Elephant (Andrews et al,

2003), Musk (Dietterich and Lathrop, 1997) and the

Corel dataset (Chen et al, 2006). These experiments

are intended to compare the proposed method on MIL
datasets with standard MIL algorithms as well as new

dictionary-based baselines. Based on these experiments,

we conclude that the proposed GD-MIL algorithm works

much better compared to competing algorithms. This

encourages us to apply our method on a recently pub-
lished pain dataset (Lucey et al, 2011) for pain detec-

tion task in the third sub-section. This dataset con-

sists of multiple video sequences and labels are pro-

vided for all video sequences. Each video sequence is
divided into multiple segments and these segments can

be considered as instances while the whole video se-

quence is considered as a bag under MIL setting. The

details are provided in the third sub-section and we

find that the proposed method improves the state-of-

the-art by approximately 5% on this challenging task.

Finally, in fourth and fifth sub-sections, we evaluate

our method for multi-class problem when the bags are
corrupted by label noise; meaning a bag is guaranteed

to have only only one instance from the bag’s class and

other instances can be from other classes. The proposed

method is able to learn dictionaries for each class de-
spite the presence of significant number of noisy sam-

ples in each bag. These results also stress upon the

fact that the standard supervised dictionary algorithms

don’t always work well, especially in the multi-class set-

ting with noisy bags. We use the USPS digit (Hull,
1994) and the MSR2 action (Cao et al, 2010) datasets

for these experiments.

In our previous studies based on kernel dictionary

learning (Nguyen et al, 2013, 2012b), we have found
that the polynomial kernel performs well on various

image classification problems. As a result, we used a

polynomial kernel of degree 4 in our experiments. Sev-

eral methods have been proposed in the literature for

optimizing the choice of kernel and kernel parameters
such as cross validation and multiple kernel learning

(Shrivastava et al, 2014a). However, these methods tend

to make the optimization problem very complex and

time consuming. Furthermore, we use σ = 1 for learn-
ing dictionaries. We have included three baselines using

three different discriminative dictionary algorithms to

compute sparse codes, followed by the SVM for clas-

sification. We used the DKSVD (Zhang and Li, 2010)

method, the LC-KSVD (Jiang et al, 2011) method, and
the FDDL method (Yang et al, 2011) instead of the

proposed dictionary learning algorithm. Since these dis-

criminative dictionary algorithms need labels for each

training sample, we assigned the label of the bag to each
training instance. The classification on the sparse code

was done similar to the proposed method by learning a

SVM on the bag features. We denote these methods by

DKSVD*, LC-KSVD*, and FDDL* in the classification

tables.

6.1 MIL Benchmark Datasets

In this sub-section, we evaluate the proposed approach

on benchmark MIL datasets namely Tiger, Elephant
and Fox introduced by Andrews et al (2003), and the

Musk1 and Musk2 proposed by Dietterich and Lathrop

(1997). Each of the Tiger, Elephant, and Fox datasets

have 100 positive and 100 negative bags. A positive bag
corresponds to the true image of an animal and negative

bags are randomly drawn from the pool of other ani-

mals. The instances in each bag are created by segment-
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ing the images. Color, texture, and shape features are

used as described by Andrews et al (2003). The Musk1

and Musk2 datasets are publicly available datasets that

were introduced in drug activity problem proposed by

Dietterich and Lathrop (1997). A bag in these datasets
represent a drug molecule that can be represented by

multiple features corresponding to different low-energy

conformations.

We use the same features and experimental set up
as used by Leistner et al (2010) and compare our results

in Table 2. The numbers in the table for the competing

methods, except PPMM, have been quoted from Leist-

ner et al (2010). In this experiment, dictionaries are

learned with 40 atoms per class. The sparsity param-
eter λ = 0.001 and regularization parameter α = 0.01

were used for dictionary learning for all the datasets.

These two parameters were found using 5-fold cross-

validation. Since many competing algorithms in Table
2 use the NOR model, for a fair comparison, we also

use the same model to report the classification accura-

cies. We believe that the main reason why our method

performs better is that we learn the dictionary in such

a way that the learned atoms can represent well the
commonalities among the bags of the same class while

they result in high reconstruction error for the non-

common structure. By translating these reconstruction

error into probabilities we are able to reduce the effect
of the background of each image while computing the

bag features.

6.2 Corel Dataset

The Corel dataset consists of 20 object categories with

100 images per category. These images are taken from

CD-ROMs published by the COREL Corporation. Each

image is segmented into regions and each region is then

called an instance (Chen et al, 2006). The regions of an
image can greatly vary depending on its complexity. We

use the same instance features as used by Chen et al

(2006) and report our results in Table 3. The numbers

for the competing methods have been quoted from Chen
et al (2006). Here, we perform two categorization tasks:

first on 10 object categories (corel-1000) and then on

all the 20 object categories (corel-2000). For corel-1000

task, we analyze the class accuracy for each category

using the confusion matrix in Figure 4. Each column
in the confusion matrix corresponds to the predicted

accuracy of the test samples. As we can see from the

figure, class 2 (‘Beach’) is confused mostly with class

9 (‘Mountains and glaciers’) which is possibly due to
their similar appearances. In both tasks the sparsity

parameter is set equal to λ = 0.001 , and α = 0.001.

Dictionaries are learned with 40 atoms per class. As

before, λ and α were selected by 5-fold cross-validation.
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Fig. 4: Confusion matrix for one of the splits of Corel-

1000 image dataset.

Furthermore, to study the effect of dictionary size
on classification accuracy, we plot accuracy vs number

of atoms for one of the splits of the corel1000 experi-

ment in Figure 5. As can be seen from this plot that

the results are not very sensitive when the number of

atoms range from 30 to 45. Experiments have shown
that increasing the number of atoms beyond 50 gener-

ally decreases the performance. This is not surprising

because as more atoms are retained, the representation

gets more exact, and it has to deal with all the noise
present in the data. Whereas with fewer number of dic-

tionary atoms, a more accurate description of the inter-

nal structure of the class is captured and robustness to

noise is realized (Phillips, 1998; Rodriguez and Sapiro,

2007; Kokiopoulou and Frossard, 2008). A similar trend
is also observed with the other datasets.
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Fig. 5: Classification accuracy vs number of atoms for

corel1000 dataset.
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Algorithms Elephant Fox Tiger Musk1 Musk2
mi-SVM (Andrews et al, 2003) 82 58 79 87 84
MI-SVM (Andrews et al, 2003) 81 59 84 78 84

MILES (Chen et al, 2006) 81 62 80 88 83
SIL-SVM 85 53 77 88 87

AW-SVM (Gehler and Chapelle, 2007) 82 64 83 86 84
AL-SVM (Gehler and Chapelle, 2007) 79 63 78 86 83
EM-DD (Zhang and Goldman, 2001) 78 56 72 85 85
MILBoost-NOR (Viola et al, 2005) 73 58 56 71 61
MIForests (Leistner et al, 2010) 84 64 82 85 82

PPMM (Wang et al, 2008) 82.4 60.3 80.2 95.6 81.2
DKSVD*(Zhang and Li, 2010) 72 ± 4.2 59± 6.5 78 ± 7.6 87 ± 4.5 88± 4.5
LC-KSVD* (Jiang et al, 2011) 82 ± 2.7 63± 2.7 72 ± 2.7 84 ± 6.5 88± 8.3
FDDL* (Yang et al, 2011) 77 ± 4.5 57± 4.2 76 ± 2.7 78 ± 7.6 84± 6.5

GD-MIL (Proposed) 89± 2.2 69± 4.1 91 ± 2.2 93 ± 4.4 92± 2.7

Table 2: Average accuracy of five random splits on the benchmark datasets.

Algorithms 1000-Image Dataset 2000-Image Dataset 2
MILES (Chen et al, 2006) 82.6 : [81.4, 83.7] 68.7 : [67.3, 70.1]

MI-SVM (Andrews et al, 2003) 74.7 : [74.1, 75.3] 54.6 : [53.1, 56.1]
DD-SVM (Chen and Wang, 2004) 81.5 : [78.5, 84.5] 67.5 : [66.1, 68.9]
k-means-SVM (Csurka et al, 2004) 69.8 : [67.9, 71.7] 52.3 : [51.6, 52.9]
DKSVD* (Zhang and Li, 2010) 80.1 : [79.4, 80.8] 64.7 : [63.1, 66.6]
LC-KSVD* (Jiang et al, 2011) 76.4 : [75.2, 77.6] 61.1 : [59.9, 62.2]
FDDL* (Yang et al, 2011) 77.2 : [76.1, 78.3] 62.4 : [61.5, 63.3]

GD-MIL (Proposed) 84.3 : [83.1, 85.5] 70.6 : [69.4, 71.8]

Table 3: Average accuracy along with the 95 percent confidence interval over five random test sets of Corel Dataset.

6.3 Pain detection

In the next set of experiments, we address an impor-

tant issue of detecting pain from a video sequence that

has a very useful application in medical care. In certain

scenarios, the patient may not able to communicate
his/her pain through verbal means or does not know

when to call for help due to his/her inability to judge

the severity of the pain. For example, in the case of

child care or after an operation it is convenient to mon-

itor the patient through a camera and alert the nurse
when patient is in pain. We use image data from the

UNBC-McMaster Pain Shoulder Archive as proposed

by Lucey et al (2011). This dataset consists of 200 video

sequences from 25 subjects suffering from shoulder pain
due to various medical conditions. Each frame in a video

sequence contains the face of the subject with varying

expressions indicating the degree of pain he or she is ex-

periencing due to various active and passive movements

of their limbs. Each video sequence has been rated with
Observer Pain Intensity (OPI) index ranging from 0−5,

with 0 being no pain and 5 being maximum pain. Fol-

lowing the protocols proposed by Lucey et al (2008);

Ashraf et al (2009); Sikka et al (2013) the video se-
quences were divided into two categories : (1) ‘pain’

category or positive class with OPI rating greater than

or equal to 3, (2) ‘no-pain’ category or negative class

with OPI rating equal to 0. The sequences with inter-
mediate ratings of 1 and 2 were omitted as per the pro-

tocol. Also, we included only those subjects that have

atleast one positive class video and one negative class

video sequence. This resulted in 146 video sequences
from 22 subjects. The goal is to predict the class of a

given video sequence of an unseen subject.

Many approaches have been proposed in literature

to address this problem. Ashraf et al (2009) use the ac-

tive appearance model (AAA) to decouple shape and

appearance parameters from face images. Based on the
AAM features frames were clustered into multiple groups

using K-means. Each of these clusters was given to train

a SVM classifier for pain detection. At the test time,

the score of each video frame was predicted using the
learned SVM and then average score was used to pre-

dict the class of the video sequence. Lucey et al (2008)

use the AAM-SVM-based approach as the baseline and

improve its performance by compressing the image sig-

nal in spatial domain. An MIL based approach for pain
detection was recently proposed by Sikka et al (2013)

where each video sequence was segmented into multiple

segments of contiguous frames and each segment was

considered an instance and the whole video sequence
was considered a bag under MIL setting. An off-the-

shelf MIL algorithm was applied to predict the label of

the video sequence.



14 Ashish Shrivastava et al.

Similar to the approach taken by Sikka et al (2013),

the video sequence to be analyzed is divided into dif-

ferent segments. In order to do that, first a spatial

pyramid feature is computed for each frame by max

pooling the multi-scale dense SIFT features. The video
sequence is divided into multiple segments by follow-

ing the approach proposed by Galleguillos et al (2008)

where an image is segmented into many clusters us-

ing multiple stable segmentation. The segments are ob-
tained by varying the parameters of a normalized cut.

In the case of a video sequence, the weight matrix for

the normalized cut is defined to capture similarity be-

tween frames. To restrict the segments to contain only

contiguous frames, the similarity between each frame
was defined to incorporate the distance between the

time index of two frames along with their feature simi-

larity. Recall that each cluster of frames is treated as an

instance under MIL setting. Hence, the spatial pyramid
features of each frame within a segment are max-pooled

to compute the instance feature.

Similar to the protocol used by the compared meth-

ods, we report the total classification rate computed at

Equal Error Rate (EER) on the receiver operation curve
(ROC). Our results are summarized in Table 4 which

were conducted using a leave-one-subject-out cross val-

idation strategy. The numbers for the competing meth-

ods have been quoted from Sikka et al (2013). For each
split of training and testing data, training data con-

tained video sequences from all but one subject while

the testing data contained the video sequences from the

left out subject. Thus, there was no overlap between

subjects in training and testing video sequences. In this
experiment, we learned dictionaries with 40 atoms, spar-

sity parameter λ was set equal to 0.001 and discrimi-

native parameter was set equal to 1. This parameters

were slightly optimized for the performance on one of
the splits (i.e. for one subject) and then the same pa-

rameters were used for all the data splits. Since the bag

size varies a lot in this dataset, we use the GM model

to reduce bias of bag size.

To qualitatively evaluate our method, we compute
the frame score from instance probabilities using the

approach proposed by Sikka et al (2013). Let the set

of frames that constitute feature yij be denoted by sij .

The instance probability pij is distributed to all the
frames contained in sij by employing a Hamming win-

dow. If a frame belongs to multiple segments, then its

score is computed as the maximum from all the seg-

ments. If the kth frame in the ith video sequence is

denoted by fk
i , its score pfk

i
is computed as,

pfk
i
= max

j
(w(sij) ∗ pij |f

k
i ∈ sij), (41)

Algorithms Accuracy (at EER)
ML-SVMavg 70.75
ML-SVMmax 76.19

Ashraf et al (2009) 81.21
Ashraf et al (2009) (shown

by Lucey et al (2008))
68.31

Lucey et al (2008) 80.99
Sikka et al (2013) 83.7

DKSVD* (Zhang and Li,
2010)

77.01

LC-KSVD*(Jiang et al,
2011)

79.34

FDDL*(Yang et al, 2011) 78.17
GD-MIL (Proposed) 88.18

Table 4: Classification accuracy (at EER) on pain

dataset (Lucey et al, 2011).

where w is a hamming window function centered at seg-

ment sij and ∗ is scalar multiplication. We plot these

scores for multiple subject in Figure 6 along with face
images with facial expressions of key frames. Along with

our score, we also plot the Prkachin and Solomon Pain

Intensity (PSPI) score, described by Lucey et al (2011),

for each frame. In Figure 6(a), we show an instance of
multiple pain occurrences in the video sequence. We

are able to accurately localize the pain as shown by key

face images as well as the corresponding PSPI scores.

In Figures 6(b) and (c), we plot the frame scores of a

video sequence where it is localized at just one place.
In Figure 6(b), the PSPI score is small compared to our

frame. However, we can see a facial expression that cor-

responds to significant pain. Figure 6(d) displays a case

where the intensity of pain around the frame index 300
is predicted much more than around frame index 100.

Even facial expressions around frame index 300 seem to

indicate less pain. However, we believe that the detec-

tion of pain with high intensity around frame 300 is due

to large head movements. We provide multiple video se-
quences in the supplementary material to support our

claim.

6.4 USPS digit experiment

We evaluate our method on the multi-class USPS digit

dataset and provide detailed analysis of this experiment

to gain some meaningful insights regarding our method.

The USPS digit dataset consists of a total of 9298 hand
written digit images from 0 to 9. Each digit image is of

size 16×16 pixels and raw pixels are used as features for

all the methods compared in this paper. To evaluate our

method for the multi-class setting, we create 50 training
bags for each class. Each training bag of class c consists

of 4 instances out of which one is from the cth class

while the remaining 3 are randomly chosen from the
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(a) (b)

(c) (d)

Fig. 6: Frame score of multiple video sequences and comparison with PSPI rating. Please see text for details.

other classes. Our test data consists of 2000 samples,

200 from each class. Furthermore, for a fair compari-
son with other dictionary learning algorithms that do

not use an explicit SVM, classification of digits is per-

formed using the reconstruction error. Without learn-

ing the common structure present in the positive class,

reconstruction error-based classification method would
not work well. As a result, a good classification accu-

racy suggests that the dictionary of each class would

have learned the common internal structure present in

the positive bags. Note that in this experiment, we eval-
uated our method only on the instances because a test

bag with samples from different classes would have an

ambiguity in the ground truth class label. Furthermore,

to reduce the effect of positive samples in negative bags

we use a small value of α = 0.001. This helps to focus
more on learning the common structure present in the

positive bags.

We compare our method with three discriminative

dictionary based algorithms - DKSVD(Zhang and Li,
2010), LC-KSVD(Jiang et al, 2011) and FDDL(Yang

et al, 2011) and one MIL-based algorithmmi-SVM (An-

drews et al, 2003) with polynomial kernel of degree 4,

the same as our method. For the discriminative dic-

tionary learning algorithms, each training instance is
given the class of the bag. As can be seen from Ta-

ble 5, these algorithms do not perform well because

the labels are very noisy. To gain additional insight, we

plot the pre-images of the dictionary atoms of the GD-
MIL method in Figure 7(a) and compare them with

the dictionary atoms of the FDDL method in Figure

7(b). The pre-image of Φ(Y)ak is obtained by seeking

a vector dk ∈ R
d in the input space that minimizes

the cost function ‖Φ(dk) − Φ(Y)ak‖2 . Due to vari-
ous noise effects and the generally non-invertible map-

ping Φ, the exact pre-image does not always exist. How-

ever, the approximated pre-image can be reconstructed
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without venturing into the feature space using the tech-

niques described in Scholkopf and Smola (2001). Note

that the DKSVD method and the LC-KSVD method

do not label the dictionary atoms, hence, we compare

our method only with the FDDL method. However, we
believe that without considering the noise in bags, it

is difficult to learn the common structure present in

positive class. As can be seen from Figure 7, our dic-

tionary atoms look very similar to the digits for the
corresponding classes, compared to the FDDL dictio-

nary atoms that look very noisy due to the label noise.

This demonstrates that by setting a small value of α

and, thus, focusing on learning the common structure

present in positive bags, the proposed method is able
to learn a good dictionary for each class.

Algorithms Accuracy (%)
DKSVD (Zhang and Li, 2010) 56.4
LCKSVD (Jiang et al, 2011) 37.4
FDDL (Yang et al, 2011) 44.4

mi-SVM (Andrews et al, 2003) 78.7
GD-MIL (Proposed) 83.4

Table 5: Classification accuracy (%) on the USPS digit

dataset.

Furthermore, to compute the “upper bound” of the

proposed method, we compute the classification accu-

racy of the three dictionary learning algorithms in the

absence of any label noise. That is, noisy labels from

the positive bags are removed before learning the dic-
tionaries. The performance of the dictionary learning

algorithms without any label noise has been presented

in Table 6. As can be seen from this table, our algo-

rithm is able to perform quiet close to this empirical
“upper bound” despite significant label noise.

Algorithms Accuracy (%)
DKSVD (Zhang and Li, 2010) 86.7
LCKSVD (Jiang et al, 2011) 84.9
FDDL (Yang et al, 2011) 87.2

Table 6: Classification accuracy (%) on the USPS digit
dataset without the label noise. This can be consid-

ered as an empirical “upper bound” for the proposed

method.

6.5 MSR2 Action Recognition

The MSR2 action dataset has in total 54 video se-

quences and each video sequence consists of one or more

of the following three actions: (1) Clapping, (2) Hand

Waving and (3) Boxing. We randomly select 27 videos

for training and the remaining ones for testing. Each ac-

tion sample is a spatio-temporal cuboid and the most

of the video sequences have just one or two such action
cuboids per class. For each action cuboid, we added two

more cuboids with the same spatial co-ordinates over-

lapped by 50% in the temporal dimension. Most of the

bags of class c contained 2 action cuboids of the cth

class and 1 from a different class. The exact number

of instances in each bag varies depending on the action

cuboids of its class present in the video sequence. To

compute the features for each action cuboid, we use the

bag-of-words of dense spatial temporal interest points
(STIP) features (Laptev et al, 2008). Similar to the

USPS digit experiment, we compare our method with

three discriminative dictionary learning algorithms and

one MIL algorithm in Table 7. As we can see from this
table, the performance improves significantly by con-

sidering the MIL structure of the bag instead of relying

only on the discriminative capability of the dictionary

learning algorithm. Furthermore, we also compute the

classification accuracy without any label noise in the
training bags in Table 8. As can be seen, the accuracy

of the proposed method is within 4% of this “upper

bound”.

Algorithms Accuracy (%)
DKSVD (Zhang and Li, 2010) 65.9
LCKSVD (Jiang et al, 2011) 71.8
FDDL (Yang et al, 2011) 72.3

mi-SVM (Andrews et al, 2003) 75.7
GD-MIL (Proposed) 79.3

Table 7: Classification accuracy (%) on the MSR2 ac-

tion dataset.

Algorithms Accuracy (%)
DKSVD (Zhang and Li, 2010) 82.6
LCKSVD (Jiang et al, 2011) 83.1
FDDL (Yang et al, 2011) 80.5

Table 8: Classification accuracy (%) on the MSR2 ac-

tion dataset without label noise. This can be consid-

ered as an empirical “upper bound” for the proposed

method.

6.6 Timing and Convergence of the proposed method

As summarized in Algorithm 1, the proposed algorithm

iteratively updates the dictionary and the coefficient
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(a) (b)

Fig. 7: Visualization of the dictionary atoms learned on the USPS digit dataset. (a) Dictionary atoms of the

GD-MIL method and (b) the FDDL method. Each row corresponds to the dictionary atoms of a class, i.e. digits

from 0 to 9.
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Fig. 8: Empirical convergence of cost for multiple experiments. (a) Tiger dataset (b) Corel1000 dataset (c) Pain

dataset.

matrix. Updating a dictionary involves minimizing a

smooth function while a coefficient matrix is updated

by minimizing a smooth cost along with the ℓ1 regu-
larizer. Hence, a legitimate question of convergence of

the cost arises. To show the empirical convergence of

our method, we plot the cost in (19) as a function of

iterations for some of the experiments with different

datasets in Figure 8. As can be seen from these figures,
the proposed method converges in a few iterations.

The training time depends on the number of atoms

and the training data. We implemented our method

in MATLAB on a 8 core computer with 8GB RAM.

The code can be made more efficient by implement-

ing it in C/C++. With the current implementation in
MATLAB, the training and testing times on the USPS

digits experiment are given in Table 9. We compare

the proposed method with the kernel mi-SVM method

which uses a highly optimized C/C++ implementation
of the SVM library. In our method, the main compu-

tation time is taken by the gradient descent algorithm

for the atoms update step. Note that compared to the

mi-SVM algorithm, our method is efficient at the test

time.

Algorithms Training Time (sec) Test Time (sec)
mi-SVM 442 8.2

GD-MIL (Proposed) 784 2.4

Table 9: Timing comparisons of the proposed method

and the mi-SVM method on the USPS digit dataset.

7 Conclusion

We proposed a general diverse density-based dictionary
learning method for multiple instance learning. Two

DD-based approaches were proposed for learning dictio-

naries. It was shown that a special case of our method

reduces to a novel discriminative dictionary learning
formulation. Furthermore, the non-linear extension of

dictionary learning for MIL were presented. An efficient

algorithm was proposed for updating each atom of the
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dictionary and sparse coefficients of the instances. Ex-

periments on the standard MIL datasets and a pain

dataset demonstrate the effectiveness of the proposed

method.
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