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Abstract

Recognition of low resolution face images is a challeng-

ing problem in many practical face recognition systems.

Methods have been proposed in the face recognition litera-

ture for the problemwhen the probe is of low resolution, and

a high resolution gallery is available for recognition. These

attempts modify the probe image such that the resultant im-

age provides better discrimination. We, however, formulate

the problem differently by leveraging the information avail-

able in the high resolution gallery image and proposing a

generative approach for classifying the probe image. An

important feature of our algorithm is that it can handle res-

olution changes along with illumination variations. The ef-

fectiveness of the proposed method is demonstrated using

standard datasets and a challenging outdoor face dataset.

It is shown that our method is efficient and can perform sig-

nificantly better than many competitive low resolution face

recognition algorithms.

1. Introduction

Face recognition (FR) has been an active field of research

in biometrics for over two decades [23]. Current methods

work well when the test images are captured under con-

trolled conditions. However, quite often the performance

of most algorithms degrades significantly when they are ap-

plied to face images taken under uncontrolled conditions

where there is no control over pose, illumination, expres-

sions and resolution of the face image. Image resolution

is an important parameter in many practical scenarios such

as surveillance where high resolution cameras are not de-

ployed due to cost and data storage constraints and further,

there is no control over the distance of human from the cam-

era. Figure 1 illustrates a practical scenario where one is

faced with a challenging problem of recognizing humans

when the captured face images are of very low resolution

(LR).
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Figure 1. A typical image in remote face recognition.

Many methods have been proposed in the vision litera-

ture that can deal with this resolution problem in FR. Most

of these methods are based on some application of super-

resolution (SR) technique to increase the resolution of im-

ages so that the recovered higher-resolution (HR) images

can be used for recognition. One of the major drawbacks

of applying SR techniques is that there is a possibility that

recovered HR images may contain some serious artifacts.

This is often the case when the resolution of the image is

very low. As a result, these recovered images may not look

like the images of the same person and the recognition per-

formance may degrade significantly.

In practical scenarios, the resolution change is also cou-

pled with other variations due to pose, illumination varia-

tions and expression. Algorithms specifically designed to

deal with LR images quite often fail in dealing with these

variations. Hence, it is essential to include these parameters

while designing a robust method for low-resolution FR. To

this end, in this paper, we present a generative approach to

low-resolution FR that is also robust to illumination varia-

tions based on learning class specific dictionaries. One of

the major advantages of using generative approaches is that

they are known to have reduced sensitivity to noise than the

discriminative approaches [23].

The training stage of our method consists of three main

steps. In the first step of the training stage, given HR

training samples from each class, we use an image relight-
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ing method to generate multiple images of the same sub-

ject with different lighting so that robustness to illumina-

tion changes can be realized. In the second step, the res-

olution of the enlarged gallery images from each class is

matched with that of the probe image. Finally, in the third

step, class and resolution specific dictionaries are trained for

each class. For the testing phase, a novel LR image is pro-

jected onto the span of the atoms in each learned dictionary.

The residual vectors are then used to classify the subject. A

flowchart of the proposed algorithm is shown in figure 2.

Figure 2. Overview of our algorithm.

1.1. Paper organization

The rest of the paper is organized as follows: In Sec-

tion 2, we review a few related works. In Section 3, the

proposed approach is described. We demonstrate experi-

mental results in Section 4 and computational efficiency of

the algorithm in Section 5. Finally, Section 6 concludes the

paper with a brief summary and discussion.

2. Previous Work

In this section, we review some of the recent FR methods

that can deal with poor resolution. These techniques can be

broadly divided into the following categories.

SR-based approaches: SR is the method of estimating

a HR image x given a downgraded image y. The LR image

model is often given as

y = BHx + η (1)

where B,H and η are the down-sampling matrix, the

blurring matrix and the noise, respectively. Earlier works

for solving the above problem were based on taking multi-

ple LR inputs and combining them to produce the HR im-

age. A classical work by Baker and Kanade [4] showed that

methods based on multiple LR images and smooth priors

would fail to produce good results as the resolution factor

increases. They also proposed a face hallucination method

for super-resolving face images. Subsequently, there have

been works using a single image for SR such as example-

based SR [9], SR using neighborhood embedding [8] and

sparse representation-based SR [22]. SR based methods

have also been proposed for specifically handling the prob-

lem of low-resolution FR. In particular, an eigen-face do-

main SR method for FR was proposed by Gunturk et al. in

[11]. This method proposes to solve the FR at LR using SR

of multiple LR images using their PCA domain represen-

tation. Given a LR face image, Jia and Gong [13] propose

to directly compute a maximum likelihood identity param-

eter vector in the HR tensor space that can be used for SR

and recognition. Hennings-Yeomans et al. [12] presented

a Tikhonov regularization method that can combine the dif-

ferent steps of SR and recognition in one step.

Metric learning-based approaches: Though the LR

faces are directly not suitable for face recognition purpose,

it is also not necessary to super-resolve the image before

recognition, as the problem of recognition is not the same

as SR. Based on this motivation, some different approaches

to this problem have been suggested. The Coupled Met-

ric Learning method [16] attempts to solve this problem by

mapping the LR image to a new subspace, where higher

recognition can be achieved. Extension of this method was

recently proposed in [17]. A similar approach for improving

the matching performance of the LR images using multidi-

mensional scaling was recently proposed by Biswas et al.

in [6].

Other methods: Additional methods for LR FR include

correlation filter-based approach [1] and a support vector

data description method [15]. 3D face modeling has also

been used to address the LR face recognition problem in

[18] [20]. There have been efforts to solve the problem of

unconstrained low resolution FR using videos. In particular,

Arandjelovic and Cipolla [3] use a video database of LR

face images with pose and illumination variations.

3. Proposed Approach

In this section, we present the details of our proposed

low-resolution FR algorithm based on learning class spe-

cific dictionaries.

3.1. Image Relighting

As discussed earlier, the resolution change is usually

coupled with other parameters such as illumination vari-

ation. In this section, we introduce an image relighting

method that can deal with this illumination problem in LR

face recognition. Rather than modifying the LR image,

the idea is to capture various illumination conditions in the

training samples.

We assume the Lambertian reflectance model for the fa-

cial surface. The surface normals, albedo and the intensity



image are related by an image formation model. For Lam-

bertian objects, the diffused component of the surface re-

flection is modeled using the Lambert’s Cosine Law given

by

I = ρ max(nT s, 0), (2)

where I is the pixel intensity, s is the light source direc-

tion, ρ is the surface albedo and n is the surface normal of

the corresponding surface point. Using this model, a non

stationary stochastic filtering framework was recently pro-

posed in [5] to estimate the albedo from a single image. We

adapt this method to first estimate the albedo map from a

given face image. Then, using the estimated albedo map,

we generate new images under any illumination condition

using the image formation model (2). This can be done by

combining the estimated albedo map with the average facial

information [7].

It was shown in [14] that an image of an arbitrarily il-

luminated object can be approximated by a linear combi-

nation of the image of the same object in the same pose,

illuminated by nine different light sources placed at prese-

lected positions. Hence, the image formation equation can

be rewritten as

I =

9∑

i=1

aiIi, (3)

where Ii = ρ max(nT si, 0), and {s1, · · · , s9} are the pre-
specified illumination directions. Since, the objective is to

generate HR gallery images which will be sufficient to ac-

count for any illumination in the probe image, we generate

images under pre-specified illumination conditions and use

them in the gallery. Figure 3 shows some relighted HR im-

ages along with the corresponding input and LR images.

Furthermore, as the condition is true irrespective of the res-

olution of LR image, the same set of gallery images can be

used for all resolutions.

Figure 3. Examples of (a) original image and the corresponding

(b) relighted and (c) LR images with different lighting from the

PIE dataset.

3.2. Low Resolution Dictionary Learning

Suppose that we are given C distinct face classes and a

set of mi HR training images per class, i = {1, · · · , C}.
Here,mi corresponds to the total number of images in class

i including the relighted images. We identify an rH × qH

gray-scale image as an NH -dimensional vector, x, which

can be obtained by stacking its columns, whereNH = rH×
qH . Let

X̃i = [xi1, · · · ,ximi
] ∈ R

NH×mi

be anNH × mi matrix of training images corresponding to

the ith class. For resolution robust recognition, the matrix

X̃i is pre-multiplied by a down-samplingB and blurringH

matrices. Here,H has a fixed dimension of NH × NH and

B will be of size NL × NH , where NL = rL × qL, the LR

probe being a gray-scale image of rL × qL. The resolution

specific training matrix,Xi is thus created as

Xi = BHX̃i = (X̃i) ↓ (4)

As the columns of Xi define a subspace (Equation 3),

we seek to learn a class-specific dictionaryDi ∈ R
NL×K ,

K being the number of prototype atoms, such that columns

of Xi are best represented by linear combination of its

atoms. We further impose a sparsity constraint on the num-

ber of atoms of dictionary used in the representation to con-

straint the solution space of representation problem. One

can obtain this by finding Di and a sparse matrix Γi that

minimizes the following representation error

(D̂i, Γ̂i) = arg min
Di,Γi

‖Xi − DiΓi‖
2

F s. t. ∀k ‖γk‖0 ≤ T0

(5)

where γk represent the columns of Γi and the ℓ0 sparsity

measure ‖.‖0 counts the number of nonzero elements in

the representation. T0 is the desired sparsity level. Here,

‖A‖F denotes the Frobenius norm defined as ‖A‖F =√∑
ij A2

ij . We implemented above optimization problem

using the well-known K-SVD algorithm [2].

3.3. Classification

Given an rL × qL LR probe, it is column-stacked to give

the column vector y. It is projected onto the span of the

atoms in eachDi of theC class dictionary, using the orthog-

onal projectorPi = Di(D
T
i Di)

−1DT
i . The approximation

and residual vectors can then be calculated as

ŷi = Piy = Diα
i (6)

and

ri(y) = y − ŷi = (I − Pi)y, (7)

respectively, where I is the identity matrix and

αi = (DT
i Di)

−1DT
i y (8)

are the coefficients. As the dictionary,Di, has the best rep-

resentation for each example inXi, ‖r
i(y)‖2 will be small

if y were to belong to the ith class and large for the other

classes. Based on this, we can classify y by assigning it to



the class, d ∈ {1, · · · , C}, that gives the lowest reconstruc-
tion error, ‖ri(y)‖2:

d = identity(y)

= arg min
i

‖ri(y)‖2. (9)

3.4. Generic Dictionary Learning

The class-specific dictionary, Di, i = 1, · · · , C learned

above can be extended to use features other than intensity

images. Specifically, the dictionary can be learned using

features like Eigenbasis, F̃i extracted from training matrix

X̃i. However, as equation (4) does not hold for F̃i, the res-

olution specific feature matrix Fi is directly extracted us-

ingXi. Our Synthesis-based LR FR (SLRFR) algorithm is

summarized in figure 4.

Given a LR test sample y and C training matrices

X̃1, · · · , X̃C corresponding to HR gallery images.

Procedure:

• For each training image, use the relighting ap-
proach described in section 3.1 to generate multiple

images with different illumination conditions and

use them in the gallery.

• Learn the best dictionariesDi, to represent the res-

olution specific enlarged training matrices, Xi, us-

ing the K-SVD algorithm, where Xi = (X̃i) ↓,
i = 1, · · · , C.

• Compute the approximation vectors, ŷi, and the

residual vectors, ri(y), using (6) and (7), respec-
tively for i = 1, · · · , C.

• Identify y using (9).

Figure 4. The SLRFR algorithm.

4. Experiments

To demonstrate the effectiveness of our method, we

present experimental results on various face recognition

datasets. For all the experiments, we learned the dictionary

elements using the PCA features.

4.1. CMUPIE dataset

The PIE dataset [21] consists of 68 subjects under
different illumination conditions. Each subject has 21 face
images under different illumination conditions.

Implementation To test our method and compare with

the existing methods [17] [6], we chose first 34 subjects
with 6 randomly chosen illuminations as the training set.

For the remaining 34 subjects and the 15 illumination con-
ditions, the experiment was done by choosing one gallery

image per subject and taking the remaining as the probe im-

age. The procedure was repeated for all the images and the

final recognition rate was obtained by averaging over all the

images. The size of the HR images was fixed to 48×40. The
LR images were obtained by smoothing followed by down-

sampling the HR images. The experiments were done at

resolutions of 12× 10, 10× 8 and 7× 6, thus validating the
method across resolutions. We also tested the CLPM algo-

rithm [17] and PCA performances on the expanded gallery

to get a fair comparison. Results from other algorithms as

reported in the original papers were also tabulated.
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Figure 5. Recognition Rates for PIE data with probes at low reso-

lutions

5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

Cumulative Rank

A
v
e
ra

g
e
 R

e
c
o
g
n
it
io

n

 

 

SLRFR

PCA ext

PCA

CLPM

Figure 6. CMC Curves for PIE data with probes at 7×6 resolution

Resolution MDS [6] SLRFR

7 × 6 55.0% 76.0%
12 × 10 73.0% 83.8%
19 × 16 78.0% 87.1%

Table 1. Comparisons for rank one recognition of PIE dataset rate



Observations Figure 5, 6 and Table 1 show that the pro-

posedmethod clearly outperforms previous algorithms. The

proposed algorithms shows over 30% improvement over
PCA performance with the original gallery set at rank one

recognition rate and 8% better than the CLPMmethod at the
lowest probe resolution. PCA using the extended gallery set

also improves the performance over using a single gallery

image. This shows that our method of gallery extension can

be coupled with the existing face recognition algorithms to

improve performance at low resolutions.

4.2. FRGC Dataset

We also evaluated on Experiment 1 of the FRGC dataset

[19]. It consists of 152 gallery images, each subject having
one gallery and 608 probe images under controlled setting.
A separate training set of 183 images is also available which
was used to learn the PCA basis.

Implementation The resolution of the HR image was

fixed at 48× 40 and probe images at resolutions of 12× 10,
10 × 8 and 7 × 6 were created by smoothing and down-
sampling the HR probe images.
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Figure 7. Recognition Rates for FRGC data with probes at low

resolutions

Resolution MDS [6] S2R2 [12] VLR [24] SLRFR

6 × 6 - 55.0% - 62.9%
7 × 6 - - 55.5% 63.8%
9 × 7 58.0% - - 72.2%

Table 2. Comparisons for rank one recognition rate of FRGC

dataset

Observations The results from Figure 7 and Table 2

demonstrate that the proposed method gives better perfor-

mance over the existing methods. The CLPM algorithm

performs close to the proposed method at 7 × 6 and 10 × 8
resolutions, but its performance decreases at 12 × 10. This
shows that the method is not stable over different resolu-

tions. The proposed method, however, gives a consistent

performance over all the resolutions.

4.3. Outdoor Face Dataset

We also tested our method on a challenging outdoor face

dataset. The database consists of face images of 18 individ-
uals at different distances from camera. We chose a sub-

set of 90 low resolution images, which were also corrupted
with blur, illumination and pose variations. 5 high reso-
lution, frontal and well-illuminated images were taken as

the gallery set for each subject. The images were aligned

using 5 manually selected facial points. The gallery reso-
lution was fixed at 120 × 120 and the probe resolution at
20×20. Figure 8 shows some of the gallery images and the
low quality probe images. As the LR probes were suffering

from illumination as well as blur and pose problems, the

assumption in Equation 3 is not completely valid. Hence,

class-wise dictionaries were learned just using Eigenbasis

of original down-sampled gallery images. Furthermore, in-

stead of class-wise reconstruction error based classification,

we used robust ℓ-1 projection and SVM-based classifier for
recognition. The recognition rates for the dataset are shown

in Table 3. We compare our method with that of the Reg-

ularized Discriminate Analysis (RDA) [10] and [17]. For

the reg LDA comparison, we first used the PCA as a di-

mensionality reduction method to project the raw data onto

an intermediate space, then we used the RDA to project

the PCA coefficients onto a final feature space. These two

procedures guarantee that the within-class scatter matrix is

non-singular. Then, the final low-dimensional discriminate

features are fed into an SVM for classification.

Figure 8. Example images from the outdoor face dataset (a) HR

gallery images (b) LR probe images

Method Recognition Rate

reg LDA+SVM 60%
SLRFR 67.8%
CLPM [17] 16.7%

Table 3. Performance for the Outdoor Face Dataset

Observations It can be seen from the table that SLRFR

outperforms the other algorithms on this difficult outdoor

face dataset. The CLPM algorithm performs rather poorly

on this dataset because the dataset contains variations other

than LR and CLPM is not able to deal with these varia-

tions. During the learning phase, by keeping the sparsity

low enough, our method is able to keep the internal struc-



ture of each subject while being robust to noise and distor-

tion present in the dataset.

5. Computational Efficiency

All the experiments were conducted using 2.13GHz In-

tel Xeon processor on Matlab programming interface. The

gallery extension step using relighting took an average of 2s

per gallery image of size 48 × 40. The K-SVD Dictionary
took on an average 0.07s to train each class, while classi-

fication of a probe image was done in an average of 0.1s

at the resolution of 7 × 6. Thus, the proposed algorithm is
computationally efficient . Further, as the extended gallery

can be used for all resolutions, it can be computed once and

stored for a database.

6. Discussion and Conclusion

We have proposed an algorithm which can provide good

accuracy for low resolution images, even when a single HR

gallery image is provided per person. While the method

avoids the complexity of previously proposed algorithms, it

is also shown to provide state-of-the-art results when the LR

probe differ in illumination from the given gallery image.

The idea of exploiting information in HR gallery image is

novel and can be used to expand the limits of remote face

recognition. Future extensions to this work will be to extend

the proposed method to account for other variations such

as pose, expression, etc. The present classification using

reconstruction error can be studied further to explore a mix

of discriminative and re-constructive techniques to further

improve the recognition.
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