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ABSTRACT

Seismic sensors are widely used to detect moving targets in the
ground sensor network, and can be easily employed to discriminate
human and quadruped based on their footstep signatures. Because
of the complex environmental conditions and the non-stationary na-
ture of the seismic signals, footstep detection and classification is a
very challenging problem. The solution to this problem has various
applications such as border security, surveillance, perimeter protec-
tion and intruder detection. Previous works in the domain of seis-
mic detection of human vs. quadruped have relied on the cadence
frequency-based models. However, cadence-based detection alone
results in high false alarms. In this paper, we describe a seismic
footstep database and present classification results based on support
vector machine (SVM). We demonstrate that in addition to apply-
ing a good classification algorithm, finding robust features are very
important for seismic discrimination.

Index Terms— Seismic signatures, intrusion detection, geo-
physical signal processing, footstep detection, Wigner-Ville distri-
bution.

1. INTRODUCTION

Personnel detection is an important aspect of intelligence, surveil-
lance, and reconnaissance. It plays a vital role in perimeter and camp
protection and in curtailing illegal border crossings [1, 2]. All these
applications involve deployment of sensors for a prolonged time;
these sensors are often camouflaged so as not to be noticeable by an
intruder’s visual inspection [3]. Currently, multimodal unattended
ground sensors (UGSs) are deployed across our county’s border to
detect illegal aliens. These UGSs, once deployed, should operate
for a prolonged period of time because of their low power consump-
tion. Some of the sensors that require low power are E-field, acous-
tic, seismic and magnetic. In most UGSs, the imaging sensors are
dormant and only wake up to take a picture once the non-imaging
sensors determine that there is a viable human target present in the
vicinity.

Personnel detection using seismic sensors has been considered
by several authors [4, 1, 2] in the literature. Seismic sensors are small
enough that they can be easily hidden away so as to not be noticeable
from an intruder’s visual inspection. Moreover, the creation of artifi-
cial vibrations intended to cause confusion in the recognition process
is very difficult. Primarily, the seismic sensors are used to estimate
the cadence of a person walking [3, 5]. Bland [6] has discussed the
use of autoregressive coefficients in designing a footstep detection

scheme from acoustic and seismic sensors. Succi et al. [7] proposed
the use of signal kurtosis as a test statistic for detection of human
footstep signals. Park et al. [8] have considered the problem of de-
tecting and classifying perimeter intrusion using geophones. Iyengar
et al. [9] fused acoustic and seismic signals for footstep detection.
Their work discusses a novel approach based on canonical correla-
tion analysis and copula theory to establish a likelihood ratio test.
Houston and McGaffigan [5] have proposed using cadence features
for detection of footsteps.

Most of the cadence-based methods mentioned above are prone
to false alarms because humans and animals have similar walking
mechanisms and generate similar rhythmic temporal seismic pat-
terns. Furthermore, any quadruped ambling around with a slow ca-
dence can generate the same cadence frequency as the one from a
human, or a fast-moving human can generate the same cadence fre-
quency as that of the quadruped. Therefore, it is imperative to come
up with robust features and a method that can be used to differentiate
quadrupeds from humans based on their walk.

In order to study and develop robust algorithms for discrim-
inating humans from animals using seismic signatures, we have
put together a database in which a significant number of footsteps
are recorded using geophones under unconstrained outdoor envi-
ronments. The data is collected using humans and horses. We
evaluated a state-of-the-art algorithm on this dataset using support
vector machines (SVM) and studied the effect of different features.
Based on our limited experiments using this dataset, we make the
following observations: extraction of robust features is as important
as the recognition algorithms that are used. The performance of
recognition algorithms improves gradually as the number of train-
ing samples increases. The recognition accuracy varies from low
fifties to mid nineties depending on the features and the number of
available training data.

This paper is organized as follows: In Section 2, we describe
the remote seismic footstep dataset collected by the authors’ group.
Section 3 describes the classification algorithm along with various
features used for classification. We demonstrate experimental results
in Section 5 and Section 6 concludes the paper with a brief summary
and discussion.

2. DATA COLLECTION

When humans or animals walk, their footsteps generate impulsive
seismic signals that propagate through the earth. Seismic signals
propagate via body waves (compressional and shear waves) and sur-
face waves (Rayleigh and Love waves). Geophones are used to cap-



ture signals generated by these waves. We recorded the seismic data
generated by the footsteps of the walking subjects using geophones
at a horse farm. The layout of the sensors deployed and the path
trajectory of the walking subject is shown in Fig. 1. In Fig. 1, other
sensors such as ultrasonic and microphones were also used to col-
lect the data simultaneously. But in this paper, we only study the
seismic data. The walking subjects chosen were humans and horses.
Primarily, we want to discriminate biped from quadruped on the ba-
sis of their footstep signatures. The reason we chose horses in our
quadruped category is that they can be easily controlled by the rider.
Another reason of choosing horses is that they can generate good
seismic data because of their heavy weight. The heavy weight of
horses transfer more energy into the ground which results in good
seismic signals.

 

Figure 2: Layout of the sensors in the barn & the path travelled by targets 

Fig. 1. Walking path and sensors layout in the barn for data collec-
tion.

In this paper, we further restricted our work in the discrimina-
tion of single walking human form a single walking horse. In our
future work, we intend to discriminate multiple people from multi-
ple quadrupeds. In order to capture footstep signatures of a walk-
ing human and a walking horse we deployed six seismic sensors as
shown in Fig 1. The data was collected with Bruel & Kjaer (B&K)
data acquisition (DAQ) system and was saved on the disk for further
processing which was done in MATLAB.

3. FEATURE EXTRACTION

Feature extraction is a process of deriving useful information from
an original signal, information that is relevant for the task and also
has a more compact representation, suitable for use in a classifier.
This can be achieved simply through selection, in which elements
of the original data vector are kept, or through a transform, which
will project the original data in a different, lower-dimensional space.
In this paper, we study the following features: short time Fourier
transform (STFT), Wigner-Ville distribution (WV), random projec-
tion (RP) and linear discriminant analysis (LDA). In what follows,
we describe them in details.

3.1. Time-frequency distributions

The footstep signatures of humans or animals obtained using seis-
mic sensors are non-stationary in nature. We employ time-frequency
(TF) representations to analyze the non-stationary signals [10]. The
goal of TF analysis is to find what frequency occurs at what time in
a signal. This means that we have to find a representation for that

signal which can relate the time and frequency information. This is
performed by mapping a one dimensional signal in the time domain,
into a two dimensional TF representation of the signal. The most
commonly used method is the STFT, and is defined as follows:

STFT (x; t, ω) =

∫
x(t+ τ) w(τ) e−jωτ dτ (1)

where w(τ) is a sliding window function (e.g., a Hamming window),
t is time, and ω is frequency. However, the TF resolution in STFT
is not good because of its fixed window size. In order to resolve TF
resolution issue, WV distribution is often used. One of the important
features of the Wigner-Ville distribution is that it has the best joint
TF resolution among all known quadratic joint TF analysis methods
[10]. One can compute the WV distribution by applying the fast
Fourier transform on the time-dependent autocorrelation as shown
in the following equation [11]:

WV (x; t, ω) =

∫
x(t+ τ/2) · x∗(t− τ/2)e−jωτdτ (2)

Despite having high resolution, WV is plagued with the pres-
ence of cross-terms interference. The cross-term interference re-
duces the readability of the TF representation. Because real-valued
signals have symmetric positive and negative frequency components,
cross-term interference exists between the positive frequency com-
ponents and the negative frequency components in the WV distribu-
tion of real-valued signals. One way to get around this problem is to
convert real-valued signals into analytic signals, the cross-term in-
terference between the positive frequency components and the neg-
ative frequency components can be suppressed because analytic sig-
nals have only the positive frequency components of real-valued sig-
nals. In practice, these interference terms can be dramatically re-
duced by smoothing in time and frequency. A related transform is
the smoothed-pseudo Wigner-Ville distribution (SPWVD) which is
defined by

WV (x; t, ω) =

∫
h(t).x(t+ τ/2) · x∗(t− τ/2)e−jωτdτ (3)

where h(t) is a smoothing window.

3.2. Linear discriminant analysis

Linear discriminant analysis is a well-known method for feature ex-
traction and dimensionality reduction for pattern recognition and
classification tasks [12]. It uses class specific linear methods for
dimensionality reduction. It selects projection matrix A in such a
way that the ratio of the between-class scatter and the within-class
scatter is maximized. The criterion function is defined as

Aopt = argmax
A

|ATΣBA|
|ATΣWA|

where |.| denotes determinant of a matrix, ΣB and ΣW are between-
class and within-class scatter matrices, respectively.

3.3. Random projections

Since we want to embed high dimensional vector into a lower di-
mensional space, it is important that the relative distances between
any two points in the feature space be preserved in the output space.
This is characterized by the Johnson-Lindenstrauss (JL) lemma [13],
[14]:



Lemma 1 (Johnson-Lindenstrauss) Let ϵ ∈ (0, 1) be given. For
every set S of ♯(S) points in RN , if n is a positive integer such

that n > n0 = O
(

ln(♯(S))

ϵ2

)
, there exists a Lipschitz mapping f :

RN → Rn such that

(1− ϵ)∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1 + ϵ)∥u− v∥2 (4)

for all u,v ∈ S.

This lemma essentially states that, a set S of points in RN can be
embedded into a lower-dimensional Euclidean space Rn such that
the pairwise distance of any two points is approximately maintained.
In fact, it can be shown that f can be taken as a linear mapping
represented by an n×N matrix Φ whose entries are randomly drawn
from certain probability distributions. This in turn implies that it is
possible to change the original form of the data and still preserve its
statistical characteristics useful for recognition.

4. EXPERIMENTAL RESULTS

The recognition algorithm used in this paper performs LDA followed
by a support vector machine [12]. We used a kernel SVM with radial
basis function as the kernel function. We evaluate the recognition
performance of different features using kernel SVM on the seismic
footstep dataset.

4.1. Preprocessing and feature construction

The data was collected simultaneously for all sensors such as seis-
mic, ultrasonics and acoustics, and was sampled at 32 kHz. How-
ever, the channels corresponding to seismic signals on DAQ were
later downsampled to 1 kHz for faster computation. In preprocessing
stage, the portion of data that contained footstep signatures with rea-
sonably significant energy are considered. As the data was collected
for the whole run which lasted for 60-90 seconds, only 15-20 sec-
onds of the portion contained the footsteps. The time domain (TD)
data is shown in Fig. 2. It can be seen in Fig. 2 (a) and (b) that when
a subject approaches the sensors the signal level increases and as the
subject moves away from the sensors the signal level decreases. An
enlarged portion of Fig. 2 (a) and (b) is shown in Fig. 2 (c) and (d),
respectively.

Once the data has been preprocessed, TF distributions are used
to extract the joint time-frequency information present in the signal.
Fig. 3, shows examples of Wigner-Ville distributions corresponding
to human and horse footstep signatures. Note that one can clearly
see the difference between the TF representation of human and horse
footsteps.

After the TF distributions are obtained, either LDA of RPs are
performed to transfer the data into low dimensional space. Fig. 4
(a) shows the scatter plot corresponding to the TF distribution of
the human and horse data. Fig. 4 (b) shows the scatter plot after
the linear discrimination operation. From Fig. 4 (b), we see that the
spectral components of human footstep signatures and the spectral
components of horse footstep signatures are adequately separated.
This separated data is then supplied to an SVM for classification.

4.2. Classification results

We consider the following six different types of features:

• LDA on Time domain signals (LDA-TD)

• RPs on Time domain signals (RPA-TD)
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Fig. 2. Raw data: (a) Human footstep signatures, (b) Horse foot-
step signatures, (c) Enlarged human footstep signatures, (d) Enlarged
horse footstep signatures.
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Fig. 3. Wigner-Ville distributions. Left: Human footstep signatures.
Right: Horse footstep signatures.
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Fig. 4. Linear discriminant analysis of human and animal signatures.



Table 1. Classification rates (CR) (in %) corresponding to different features.
Feature LDA-TD RPA-TD LDA-FD RPA-FD LDA-WV RPA-WV

CR 76.67 74.13 86.93 84.24 92.05 85.45

• LDA on short time Fourier transformed signals (LDA-FD)

• RPs on short time Fourier transformed signals (RPA-FD)

• LDA on Wigner-Ville transformed signals (LDA-WV)

• RPs on Wigner-Ville transformed signals (RPA-WV).

Classification is performed with different number of training
samples. The number of test samples were kept fixed at 250. Fig. 5
shows the performance of different features using kernel SVM on
this dataset. It is clearly seen that with increase in number of train-
ing sample, the classification rate (CR) for each scenario increases.
It is evident from the figure that time domain features both randomly
projected and linearly discriminated, performed poorly. However,
when the data was transformed into its spectral components and fea-
tures were obtained using RPs and LDA, then the correct classifica-
tion rate was improved significantly. Both the random projections
and LDA performed well, but the best results were obtained when
LDA was performed on the Wigner-Ville transformed signals. With
100 training vectors and 250 test vectors, the CR=92.0% is achieved
for WV-LDA case. The best classification rates for each feature type
were achieved using 100 feature vectors and are reported in Table 1.
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Fig. 5. Classification rate vs. number of training samples.

It is worth mentioning here that the test data and training data
were collected at different times at different sites. We also tested our
algorithm on the data that contained both training and test data from
the same site and collected at the same time. In this case the best
recognition rate was found to be 98.0%. This is because there was
no significant variability in the data.

5. DISCUSSION AND CONCLUSION

In this paper we presented a method of footstep signature analysis
for human and quadruped (horse) discrimination using seismic sen-
sors. Different features of the footstep signatures are used for SVM
classifier. It has been shown that human footstep signatures can be
distinguished from quadruped footstep signatures utilizing the pro-
posed method. It has also been shown that the proposed method

lowers the false alarm rates and improve classification capabilities.
The results proved that the proposed method can be used for practi-
cal situations such as protecting military assets and troop bases from
approaching unauthorized personnel and protecting borders from il-
legal aliens and drug traffickers.

In recent years there has been a great interest in applying sparse
representation-based and dictionary learning-based approached for
classification. In our future work, we plan to apply these techniques
for classification problems discussed in this paper. We also plan
to collect data from quadruped other than horses and test our ap-
proaches in human classification vs. animals. We also intend to
classify genders based on their footstep signatures.
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