
VLAD Encoded Deep Convolutional Features for
Unconstrained Face Verification

Jingxiao Zheng1, Jun-Cheng Chen1, Navaneeth Bodla1, Vishal M. Patel2 and Rama Chellappa1
1. Center for Automation Research, UMIACS, University of Maryland, College Park, Maryland, 20740

2. Rutgers University, 94 Brett Road, Piscataway, NJ 08854
jxzheng@umiacs.umd.edu, pullpull@cs.umd.edu, nbodla@umiacs.umd.edu, vishal.m.patel@rutgers.edu, rama@umiacs.umd.edu

Abstract—We present a method for combining the Vector of
Locally Aggregated Descriptor (VLAD) feature encoding with
Deep Convolutional Neural Network (DCNN) features for uncon-
strained face verification. One of the key features of our method,
called the VLAD-encoded DCNN (VLAD-DCNN) features, is that
spatial and appearance information are simultaneously processed
to learn an improved discriminative representation. Evaluations
on the challenging IARPA Janus Benchmark A (IJB-A) face
dataset show that the proposed VLAD-DCNN method is able to
capture the salient local features and yield promising results for
face verification. Furthermore, we show that additional perfor-
mance gains can be achieved by simply fusing the VLAD-DCNN
features that capture the local variations with the traditional
DCNN features which characterize more global features.

I. INTRODUCTION

Learning invariant and discriminative features from images
and videos is one of the central goals of research in many com-
puter vision tasks such as object recognition, object detection
and face recognition. Many approaches have been proposed in
the literature that extract over-complete and high-dimensional
features from images to handle large data variations and noise.
For instance, the high-dimensional multi-scale Local Binary
Pattern (LBP) [3] features extracted from local patches around
facial landmarks is reasonably effective for face recognition.
Face representation based on Fisher vector (FV) has also
been shown to be effective for face recognition [24], [19],
[5]. Some of the other feature encoding methods that have
been successfully used in many computer vision applications,
include Bag-of-Visual-Words (BoVW) model [7], Vector of
Locally Aggregated Descriptor (VLAD) [12] and Super Vector
Coding [27].

In recent years, deep convolutional neural networks
(DCNN) have demonstrated impressive performances on sev-
eral computer vision problems such as object recognition
[16][25] [10], object detection [8], and face verification [23],
[20]. It has been shown that a DCNN model can not only

This research is based upon work supported by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation thereon. We
thank Mr. Rajeev Ranjan [21] for providing the facial landmarks used in the
experiments.

anchoranchor

neg

pos

Learning

pos

neg

Triplet Metric Learning

VLAD

Encoding

conv53

Joint Bayesian Metric 

Learning

pos

neg

Metric Learning

fc
pool5

VLAD score

pool5 score

Fc score

S
im

ila
rity

 S
co

re

Fig. 1. An overview of the proposed fusion framework to combine the
global average pooling, fully-connected layer features and VLAD features
for unconstrained face verification.

characterize large data variations but also learn a compact and
discriminative representation when the size of the training data
is sufficiently large.

In particular, several approaches have combined the DCNN
features with other feature encoding methods to obtain im-
proved results. Gong et al. [9] extracted the multi-scale deep
features followed by VLAD for feature encoding and demon-
strated promising results for image retrieval and classification
tasks. Cimpoi et al. [6] proposed a FV-DCNN approach to
combine FV with DCNN features for texture recognition.

Motivated by the success of these approaches, we propose
a face verification method which essentially combines VLAD
encoding method with DCNN features for face verification.
Figure 1 gives an overview of the proposed VLAD-DCNN
method. Unlike some of the previous approaches [6] and
[9], we take the spatial information into consideration when
performing VLAD encoding. The proposed DCNN model has
fifteen layers and is trained using the CASIA-WebFace dataset
[26] of 10,548 subjects. VLAD features are encoded by the
feature maps coming out of the last convolutional layer of the
network. These feature maps contain useful spatial information
ignored by average pooling. The spatial information is encoded
by adding two spatial coordinate dimensions into the features.
In our method, we also use the average pooling features
from the last convolutional layer and the output features
from the fully-connected layer. Given an image pair with all
three types of feature pairs, discriminative metrics learned
from the training set are applied to these pairs to compute
three similarity scores. Finally, three scores are normalized by



different scaling factors and added to obtain the final similarity
score for verification.

II. PROPOSED METHOD

In the training phase, each training image is first passed
through a pre-trained DCNN model. Three types of features,
the convolutional features (conv features) from the last con-
volutional layer, the average pooled features from the last
convolutional layer (pool features) and the output features of
the fully-connected layer (fc features) are extracted. Then, the
K-means clustering algorithm is applied on the convolutional
features conv. VLAD encoding is performed over these local
convolutional features to obtain conv vlad. Distance measures
are learned for each of these features. In the testing phase,
we extract the DCNN features conv, pool and fc and use the
learned cluster centers to perform VLAD feature encoding to
get conv vlad. We then apply the learned metrics to compute
the similarity scores for the three types of features. The final
similarity scores are obtained by fusing these features. In what
follows, we describe the details of each of these components.
DCNN Network: The DCNN features used in this work are
extracted from a deep convolutional neural network with 15
convolutional layers, 5 pooling layers and 2 fully connected
layers as shown in Table I. The model is trained using
the CASIA-WebFace dataset which contains 10,575 subjects
with 494,414 images. (i.e., the images of 10,548 subjects
are used for training after removing the overlapping subjects
between the CASIA-WebFace and IJB-A datasets.). We use
the parametric ReLU (PReLU) [11] as the nonlinear activa-
tion function which allows negative responses and usually
improves the network performance. The dimensionality of the
input layer is 100× 100× 3 for the RGB images. We use the
output of conv53 layer as the conv features. The pool features
are the output of pool5 layer and the fc features are the output
of fc6 layer.
VLAD encoding: Since the pool features are the average of
the conv features from the last convolutional layer, it contains
the global discriminative information of the appearance with
noise reduced by the averaging operation. Each entry of the
fc features which is the output of the fully-connected layer,
shows how the input image looks like the corresponding
person in the external training set. Different features in conv
feature maps correspond to different part of the face. Even
though the receptive fields of high level convolutional layers
are largely overlapped, especially for deep networks, spatial
information is still preserved in conv feature maps. Therefore,
we use a feature encoding method to incorporate this important
information from a feature map into a discriminative feature.

VLAD is a feature encoding and pooling method introduced
in [13]. It encodes a set of local features into a high-
dimensional vector using the clustering centers provided by
methods like the K-means algorithm. For the kth cluster center
µk, the corresponding VLAD feature is calculated as the sum
of the residuals as

vk =

N∑
i=1

αik(xi − µk) (1)

TABLE I
THE ARCHITECTURE OF DCNN MODEL USED IN THIS PAPER.

Name Type Filter Size/Ouput/Stride #Params
Conv11 convolution 3×3 / 32 / 1 0.28K
Conv12 convolution 3×3 / 64 / 1 18K
Conv13 convolution 3×3 / 64 / 1 36K
Pool1 max pooling 2×2 / 2

Conv21 convolution 3×3 / 64 / 1 36K
Conv22 convolution 3×3 / 128 / 1 72K
Conv23 convolution 3×3 / 128 / 1 144K
Pool2 max pooling 2×2 / 2

Conv31 convolution 3×3 / 96 / 1 108K
Conv32 convolution 3×3 / 192 / 1 162K
Conv33 convolution 3×3 / 192 / 1 324K
Pool3 max pooling 2×2 / 2

Conv41 convolution 3×3 / 128 / 1 216K
Conv42 convolution 3×3 / 256 / 1 288K
Conv43 convolution 3×3 / 256 / 1 576K
Pool4 max pooling 2×2 / 2

Conv51 convolution 3×3 / 160 / 1 360K
Conv52 convolution 3×3 / 320 / 1 450K
Conv53 convolution 3×3 / 320 / 1 900K
Pool5 avg pooling 7×7 / 1

Dropout dropout (40%)
Fc6 fully connection 10548 3305K
Cost softmax
total 6995K

where {xi} is the set of local features from an image I , αik is
the association of data xi to µk with αik ≥ 0 and

∑K
k=1 αik =

1. For hard association, we simply find the nearest neighbor
of xi among centers {µk}. As a result,

αik =

{
1 if ‖xi − µk‖2 ≤ ‖xi − µl‖2 ∀ l 6= k

0 otherwise.
(2)

Then, the overall VLAD feature Φ(I) for image I is stacked
by the residuals for each center as Φ(I) = [· · ·vTk · · · ]T .

As shown in [24], spatially encoded local features are
useful for face verification. Thus, we augment the original
conv features with the normalized x and y coordinates as
[axy,

x
w −

1
2 ,

y
h −

1
2 ]
T , where axy is the DCNN descriptor

at (x, y), and w and h are the width and height of the
conv feature map, respectively. By adding the two augmented
dimensions, the clustering method will not only cluster the
training features in the feature space, but also consider their
spatial relationships. The features that are closer in spatial
domain will be more likely to be clustered together. Features
that are far away will be more likely to be assigned to different
clusters.

We chose VLAD as the feature encoding method due to its
model simplicity compared to other bag-of-word approaches
like FV. It only involves the K-means clustering procedure and
a nearest neighbor procedure for hard assignment to a cluster
which can be done efficiently using a k-d tree. After finding
the nearest neighbor for each feature, the encoding is simply
a summation of the feature residues.
Metric Learning: After obtaining the encoded conv vlad
features by VLAD, because of their high dimensionality, it is
important to project them into a lower-dimensional discrimina-
tive space, or learn a similarity metric that is as discriminative
as possible. The same metric learning procedure is needed
for two other types of features, pool and fc. For the face



verification task, the standard protocol defines the same and
different pairs for comparison which can be used to train a
discriminative similarity function to improve the verification
performance. In this work, we mainly focus on learning two
kinds of metrics based on triplet distance embedding method
and the joint Bayesian (JB) method.

The triplet distance embedding has been widely used in the
literature for different applications [22]. This embedding is
obtained by solving the following optimization problem
argmin

W

∑
xa,xp,xn∈T

max{0, α+ (xa − xp)
TWTW(xa − xp)−

(xa − xn)
TWTW(xa − xn)}, (3)

where xa, xp and xn are the anchor feature, positive feature
and negative feature in the training triplet set T, respectively.
The idea of this embedding is to maximize the gap of the
Euclidean distance between the positive pair and the negative
pair with the same anchor in a triplet in the embedded space.
The optimization problem can be solved using the Stochastic
Gradient Descent (SGD) method and the corresponding update
step is given by
Wt+1 = Wt−ηWt[(xa−xp)(xa−xp)

T+(xa−xn)(xa−xn)
T ]

(4)
when the update criterion α+(xa−xp)

TWT
t Wt(xa−xp)−

(xa − xn)
TWT

t Wt(xa − xn) > 0 is met. Here, we use a
hard negative mining strategy introduced in [22]. Given any
anchor feature, the negative feature is chosen as the closest
feature in the embedded space to the anchor feature among
a random subset of the negative candidates, which is xn =
argminx∈C(xa) ‖xa − xn‖2, where C(xa) is a random subset
of the negative candidates of anchor xa. Given a testing pair xi
and xj , the similarity score is the squared Euclidean distance
between two features in the embedded space, which is

s(i, j) = ‖W(xi−xj)‖22 = (xi−xj)
TWTW(xi−xj). (5)

Another metric learning method we use is the JB approach,
which has been widely used in the literature for face verifica-
tion tasks [3][2]. We directly optimize the JB distance measure
in a large-margin framework and update the model parameters
using SGD as follows
argmin
W,V,b

∑
i,j

max[1− yij(b− (xi − xj)
TWTW(xi − xj)

+2xTi VTVxj), 0]
(6)

where W and V ∈ Rd×D with d and D as the dimensionality
before and after dimension reduction. b ∈ R is the threshold,
and yij is the label of a pair: yij = 1 if person i and j are the
same and yij = −1, otherwise. Then, one can update W and
V using the SGD method. The update equations are given as
follows:

Wt+1 =

{
Wt, if yij(bt − dWt,Vt(xi,xj)) > 1
Wt − γyijWtΓij , otherwise,

Vt+1 =

{
Vt, if yij(bt − dWt,Vt(xi,xj)) > 1
Vt + 2γyijVtΛij , otherwise,

bt+1 =

{
bt, if yij(bt − dWt,Vt(xi,xj)) > 1
bt + γbyij , otherwise,

(7)

where dW,V(xi,xj) = (xi − xj)
TWTW(xi − xj) −

2xTi VTVxj , Γij = (xi−xj)(xi−xj)
T , Λij = xix

T
j +xjx

T
i

and γ is the learning rate for W and V, and γb for the bias b.
We use identity matrix to initialize both W and V if d = D.
Otherwise, the projection matrix P ∈ Rd×D for dimension
reduction is used for initialization. Both W and V are updated
only when the constraints are violated. Given a testing pair xi
and xj , the similarity score is calculated as

s(i, j) = b− (xi−xj)
TWTW(xi−xj)+2xTi VTVxj . (8)

Fusion: In our experiments, we observed that the error patterns
for pool features, fc features, and conv vlad features are
different and these features appear to contain complementary
information about the face image. As a result, we apply a
score level fusion method to fuse these features. We simply
sum up the scaled similarity scores obtained from two or more
different methods. The scaling factor is important here because
the scale of the similarity scores calculated by different metric
learning techniques, or even the same technique with different
learning parameters, will differ.

For the JB metric, the similarity score is computed by (8).
Then, given the matrices W and V ∈ Rd×D during testing,
we calculate

scale(W,V) =
1

D2
‖WTW‖2 +

1

D2
‖VTV‖2. (9)

For triplet distance embedding, the similarity score is com-
puted by (5). Then, given the projection matrix W ∈ Rd×D
during testing, we calculate

scale(W) =
1

D2
‖WTW‖2 (10)

Finally, given two similarity scores of the same pair, s1 and s2
from two different models Model1 and Model2, the fused
similarity score is given by sfusion = s1/scale(Model1) +
s2/scale(Model2).

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our method
on the recently introduced IARPA Janus Benchmark A (IJB-
A) [15] and its extension JANUS Challenge Set 2 (JANUS
CS2) unconstrained face verification datasets. Both the IJB-
A and JANUS CS2 contain 500 subjects with 5,397 images
and 2,042 videos. The IJB-A evaluation protocol consists of
verification (1:1 matching) and identification (1:N search). For
verification, each of the 10 splits contains around 11,748 pairs
of templates with 1,756 positive and 9,992 negative pairs on
average. For identification, the protocol also consists of 10
splits which evaluates the search performance. On the other
hand, in JANUS CS2, there are about 167 gallery templates
and 1763 probe templates. They are used for both identification
and verification. The training set for both IJB-A and JANUS
CS2 contains 333 subjects, while the test set contains 167
subjects.

In the experiments, each face image is first detected and
aligned using the Hyperface method introduced in [21], which



Fig. 2. IJB-A examples. Left 4 are positive pairs and right 4 are negative
pairs.

is a multi-task DCNN network that can simultaneously per-
form face detection, fiducial extraction and gender classifica-
tion on an input image. Each face is aligned into the canonical
coordinate using the similarity transform and seven landmark
points (i.e. two left eye corners, two right eye corners, nose
tip, and two mouth corners). After alignment, the face image
resolution is 125 × 125 × 3 pixels. It is then resized into
100 × 100 × 3 RGB image and fed into the proposed DCNN
network.

The proposed DCNN model is trained with 10,548 subjects
and 490,356 face images from the CASIA-WebFace dataset
[26] using caffe [14], without finetuning on the JANUS
training set. The data is augmented with horizontally flipped
faces. For training, we use 128 as the batch size, set the initial
negative slope for PReLU to 0.25, and set the weight decay of
all convolutional layers to 0 and of the final fully connected
layer to 5e-4. Finally, the learning rate is initially set equal to
1e-2 and reduced by half for every 100,000 iterations. The
momentum is set equal to 0.9. The snapshot of 720,000th
iteration is used for all our experiments.

For each image, the pool feature from pool5 layer is
320 dimensional. The fc feature from fc6 layer is 10548
dimensional, and the intermediate conv feature map from
conv53 layer is 7 × 7 × 320. The conv features from the
training set are normalized after taking the square root (with
sign preserved). Two additional dimensions are added as extra
spatial information. K-means clustering is then applied on the
normalized and augmented features with K=16. The features
are encoded using the VLAD technique with (320+2)×16 =
5152 dimensions. After conv vlad, pool and fc features are
extracted, media averaging is applied so that the features
coming from the same media (image or video) are averaged.

The training data used for metric learning is the JANUS
training set only. Both JB and triplet distance embedding met-
rics are learned for conv vlad features. Before metric learning,
the high dimensional VLAD features are first projected onto a
200-dimensional space by the matrix P (200× 5152) learned
using the whitening Principle Component Analysis (WPCA).
For JB, the learned matrices W and V are both 200 × 200
(d = D = 200). The learning rates γ and γβ are both set to
1e-2. The margin α is 1e-3. The proportion between positive
pairs and negative pairs in the training set is 1:1. For triplet
embedding, the learned projection matrix W is also 200×200.
The learning rate γ and margin α are both 1e-3. Hard negatives
are chosen from 100 randomly picked negatives for a given
anchor. We call the scores obtained by triplet embedding as
A, and the scores obtained by the JB metric learning as B.

For both pool and fc features, 128-dimensional triplet em-
beddings are learned. The learning hyperparameters are the

same as A. We call the scores obtained from pool after triplet
embedding as C and the scores obtained from fc after triplet
embedding as D. Finally, we fused A with D and B with C,
using the scaling factor calculated by (9) and (10).

For comparison, we also do the same experiment using FV
encoding [24] rather than VLAD encoding. Similar to VLAD,
for FV we learned a 16-component GMM. The FVs (say
conv fv) are computed from conv feature maps after square
root normalization and spatial encoding. The encoded FVs are
of (320+2)×32 = 10304 dimensions. Triplet embedding with
200 dimensions is learned with the same hyperparameters as
A, C and D. We denote this result by E.

A baseline method is also implemented. It is based on a
10-layer DCNN network introduced in [4] which is fine tuned
on the JANUS training set. For face alignment, the fiducial
extraction method proposed in [17] is used. A triplet similarity
embedding method introduced in [22] is applied on the pool5
output features of the network to produce the final similarity
scores. We denote this method by F. We also compare our
methods with two recent methods [1] and [18]. The verification
and identification results corresponding to different methods
on the CS2 and IJB-A datasets are shown in Table II, III and
Figure 3.

To clarify the notation again, in the following tables and
figures, A is conv vlad with triplet embedding. B is conv vlad
with JB metric. C is pool with triplet embedding. D is fc with
triplet embedding. E is conv fv with triplet embedding and
F is the baseline method. B+C and A+D correspond to two
kinds of score level fusion.

TABLE II
CS2 AND IJB-A VERIFICATION RESULTS

CS2 and IJB-A Verification Results

FAR CS2 IJB-A (1:1)
1e-3 1e-2 1e-1 1e-3 1e-2 1e-1

A 82.92% 92.44% 97.71% 73.64% 87.65% 96.16%
B 82.34% 92.14% 97.76% 73.31% 87.11% 96.17%
C 83.42% 91.71% 97.53% 77.09% 88.21% 96.18%
D 84.04% 92.05% 97.52% 77.88% 88.70% 96.22%

B+C 84.43% 92.66% 97.90% 76.62% 88.70% 96.56%
A+D 84.69% 92.72% 97.85% 77.36% 88.85% 96.66%

E 81.83% 91.46% 97.53% 72.94% 86.63% 95.80%
F 80.02% 90.09% 96.02% 72.05% 85.52% 94.54%

[1] - 89.7% 95.9% - 78.7% 91.1%
[18] 82.4% 92.6% - 72.5% 88.6% -

TABLE III
CS2 AND IJB-A IDENTIFICATION RESULTS

CS2 and IJB-A Identification Results

FAR CS2 IJB-A
rank 1 rank 5 rank 10 rank 1 rank 5 rank 10

A 89.20% 94.80% 96.00% 90.40% 95.30% 96.30%
B 89.10% 94.70% 95.90% 90.40% 95.20% 96.20%
C 89.30% 94.60% 95.90% 90.50% 95.20% 96.50%
D 89.70% 94.70% 96.00% 90.90% 95.30% 96.60%

B+C 89.90% 95.00% 96.40% 91.00% 95.70% 96.80%
A+D 90.20% 95.10% 96.40% 91.30% 95.60% 96.90%

E 88.80% 94.60% 96.10% 90.00% 95.20% 96.60%
F 87.40% 93.70% 95.30% 88.31% 94.60% 96.00%

[1] 86.5% 93.4% 94.9% 84.6% 92.7% 94.7%
[18] 89.8% 95.6% 96.9% 90.6% 96.2% 97.7%

From the tables and curves we can see that before fusion,
D has the best IJB-A verification result. The best CS2 at 1e-2



(a) (b)

Fig. 3. Results on the JANUS CS2 and IJB-A datasets. (a) the average ROC curves for the JANUS CS2 verification protocol and (b) the average ROC curves
for IJB-A verification protocol over 10 splits.

result is achieved by A, which implies that VLAD encoding
does extract more information from the features maps of
the last convolutional layer, instead of directly doing average
pooling. Its IJB-A performance is also comparable with C and
D. After fusing B+C, CS2 at 1e-2 increases about 0.9% from
C. IJB-A at 1e-2 also has a 0.5% gain, which shows the the
effectiveness of our scaled fusion strategy. After fusing A+D,
we obtain the best results on both CS2 at 1e-2 and IJB-A at
1e-2. Also, A performs better than E at both CS2 1e-2 and
IJB-A 1e-2 with a gap of about 1%. All of the above results
show that based on DCNN features in this scenario, VLAD
encoding is very competitive and is superior to FV encoding.

Also, it is obvious that the performance of F is much lower
than others based on features from the new 15-layer network.
This is because the 15-layer network is five layers deeper than
the one presented in [4]. Also the new features are extracted
from the face images aligned using Hyperface [21], which is a
more powerful face detection and fiducial extraction method.
Thus finetuning is not that effective when the alignment is of
high quality.

Compared to [1] and [18], our methods performs consis-
tently better for verification task on both CS2 and IJB-A.
For identification task at Rank 5 and 10, our performance
is slightly lower but still comparable to [18]. It is because
in [18] the CASIA WebFace dataset is expanded to over 2.4
Million images for training using 3D synthesized image. But
our model is trained using the original CASIA dataset without
any augmentation.

The reason that FV does not perform as well as VLAD
using the DCNN features is that the 2nd order statistics are
not useful in this scenario. The bag-of-words method is usually
designed for low-level local features like SIFT, SURF or HoG,
which are basically histograms. In these cases, for a set of
histograms of local features, both the 1st order (mean of the
histograms) and the 2nd order (variance of every entry of
the histograms) statistics contain discriminative information.
But for DCNN features, the 2nd order statistics are much less
important than the 1st order ones. Different from the traditional

local features, the DCNN features extracted from the high level
layers themselves are already very discriminative features. As
mentioned above, they are not as local as the traditional local
features since their receptive fields in the input image are
getting bigger as the network is getting deeper. Therefore,
the variance of the set of DCNN features from the same
image is more likely to contain noise than useful information
since these DCNN features are from receptive fields with large
overlaps. When computing FV, we need to scale each entry
of the feature according to its variance and aggregate these
shifted and scaled features together as

Φ
(1)
ik =

1

N
√
wk

N∑
p=1

αk(vp)

(
vip − µik

σik

)
, (11)

Φ
(2)
ik =

1

N
√
2wk

N∑
p=1

αk(vp)

(
(vip − µik)

2

σ2
ik

− 1

)
. (12)

If the variances are not reliable enough, it will degrade the
performance.

In contrast, since the DCNN features are robust and dis-
criminative, the 1st order statistics still contain important
information (even more robust after taking the average over the
neighborhood). VLAD only considers the 1st order statistics
and will not be affected by the noise variance. Thus compared
to FV encoding, VLAD encoding preserves useful informa-
tion.

To examine the above assumption, we design another exper-
iment based on the verification protocols of CS2 and IJB-A
Split 1. We first learn a GMM of 16 components based on
the training set of Split 1. Then we randomly choose one
position in the 7 × 7 feature map of conv features. Given
an image, instead of average pooling the 49 320-dimensional
local features or performing VLAD encoding to get the output
features, we directly pick the 320×1 local feature at the chosen
position from the 7× 7× 320 conv features and consider it as
the representation of this image. In this way, every image is
directly represented by the local features at a certain position



in the feature map. Then we encode them in two ways. One
follows VLAD encoding by subtracting the features by their
nearest GMM mean as xvlad = x −mnn without encoding
the variance information. The other method mimics the FV
encoding by subtracting the features by their nearest GMM
mean and dividing by the corresponding standard deviation,
which is xfv = (x−mnn)/σnn. The verification results are
calculated on CS2 and IJB-A Split 1 using the cosine distance.
The experiments are repeated 10 times. Then we average the
results for both encoding methods.

The objective of this experiment is to see whether encoding
the 2nd order statistics of our DCNN features will reduce the
quality of these local features. Since the FV feature is the
aggregation of encoded local features, if the performance of
encoded local features decreases, it will very likely affect the
performance of FV features. We evaluated the performance of
each set of these encoded local features with cosine distance.
The verification results averaged over 10 sets of local features
on CS2 and IJB-A Split 1 are shown in Table IV.

TABLE IV
CS2 AND IJB-A VERIFICATION RESULTS OF ENCODED LOCAL FEATURES

CS2 and IJB-A Verification Results of Encoded Local Features

FAR CS2 IJB-A (1:1)
1e-3 1e-2 1e-1 1e-3 1e-2 1e-1

xvlad 50.33% 67.77% 84.22% 41.26% 62.26% 80.07%
xfv 49.71% 67.43% 84.18% 40.63% 61.55% 79.81%

From the table we can see that the VLAD-like encoded
local DCNN features perform consistently better than FV-like
encoded local DCNN features, which supports our assertion
that the 2nd order statistics of our DCNN features contain
little discriminative information. It also explains why FV
features’ performance is not as good as VLAD features’ in
the dataset we used. But since there are different types of
DCNN architectures, we need to perform more experiments
to check if our assumption is also true for features from the
other DCNN networks. This is left for future work.

IV. CONCLUSION

In this paper, we introduced a DCNN-based approach for
face verification using VLAD feature encoding, two types
of metric learning techniques and score level fusion. The
experiments on the challenging JANUS dataset show the
effectiveness of VLAD encoding of DCNN features and the
superior performance after score level fusion. We also compare
the performance of VLAD and FV encoding on the JANUS
dataset. What we can conclude is that VLAD encoding works
better than FV encoding in our senario because of the noisy
2nd order statistics used by FV. For future work, we plan to
design an end-to-end VLAD-DCNN network with the siamese
structure for face verification. Also, the analysis of VLAD and
FV encoding for DCNN features from other deep network
architectures will be continued, which will help understand
and introduce new feature pooling techniques.

REFERENCES

[1] W. AbdAlmageed, Y. Wu, S. Rawls, S. Harel, T. Hassner, I. Masi,
J. Choi, J. Lekust, J. Kim, P. Natarajan, R. Nevatia, and G. Medioni.
Face recognition using deep multi-pose representations. In Proceedings

of IEEE Winter Conference on Applications of Computer Vision (WACV),
Lake Placid, NY, 2016.

[2] X. D. Cao, D. Wipf, F. Wen, G. Q. Duan, and J. Sun. A practical
transfer learning algorithm for face verification. In IEEE International
Conference on Computer Vision, pages 3208–3215. IEEE, 2013.

[3] D. Chen, X. D. Cao, L. W. Wang, F. Wen, and J. Sun. Bayesian face
revisited: A joint formulation. In European Conference on Computer
Vision, pages 566–579. 2012.

[4] J. Chen, V. M. Patel, and R. Chellappa. Unconstrained face verification
using deep CNN features. CoRR, abs/1508.01722, 2015.

[5] J.-C. Chen, S. Sankaranarayanan, V. M. Patel, and R. Chellappa.
Unconstrained face verification using fisher vectors computed from
frontalized faces. In IEEE International Conference on Biometrics:
Theory, Applications and Systems, 2015.

[6] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep filter banks for
texture recognition, description, and segmentation. International Journal
of Computer Vision, pages 1–30, 2016.

[7] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. In Workshop on Statistical
Learning in Computer Vision, ECCV, pages 1–22, 2004.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition, pages
580–587, 2014.

[9] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale Orderless
Pooling of Deep Convolutional Activation Features, pages 392–407.
Springer International Publishing, Cham, 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. arXiv
preprint arXiv:1502.01852, 2015.

[12] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local
descriptors into a compact image representation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 3304–3311, 2010.

[13] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid.
Aggregating local image descriptors into compact codes. IEEE Trans.
Pattern Anal. Mach. Intell., 34(9):1704–1716, Sept. 2012.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[15] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen,
P. Grother, A. Mah, and A. K. Jain. Pushing the frontiers of uncon-
strained face detection and recognition: Iarpa janus benchmark a. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097–1105, 2012.

[17] A. Kumar, R. Ranjan, V. M. Patel, and R. Chellappa. Face alignment
by local deep descriptor regression. CoRR, abs/1601.07950, 2016.

[18] I. Masi, A. T. an Trãn, J. T. Leksut, T. Hassner, and G. Medioni. Do we
really need to collect millions of faces for effective face recognition?
arXiv preprint arXiv:1603.07057, 2016.

[19] O. M. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman. A compact
and discriminative face track descriptor. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[20] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition.
British Machine Vision Conference, 2015.

[21] R. Ranjan, V. M. Patel, and R. Chellappa. HyperFace: A Deep Multi-
task Learning Framework for Face Detection, Landmark Localization,
Pose Estimation, and Gender Recognition, Mar. 2016.

[22] S. Sankaranarayanan, A. Alavi, and R. Chellappa. Triplet similarity
embedding for face verification. CoRR, abs/1602.03418, 2016.

[23] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. arXiv preprint
arXiv:1503.03832, 2015.

[24] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman. Fisher Vector
Faces in the Wild. In British Machine Vision Conference, 2013.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
arXiv preprint arXiv:1409.4842, 2014.

[26] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from
scratch. CoRR, abs/1411.7923, 2014.

[27] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using
super-vector coding of local image descriptors. In European Conference
on Computer Vision, pages 141–154, 2010.


