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ABSTRACT

This paper describes the IEEE ICME Grand Challenge on
Heterogeneous Face Recognition (Polarimetric Thermal to
Visible Matching), presents the submitted face recognition al-
gorithms, and details the evaluation results. The challenge
problem, sponsored by ICME and Polaris Sensor Technolo-
gies, is motivated by nighttime face recognition and com-
pares state-of-the-art domain adaptive algorithms for cross-
spectrum face recognition. Using unique databases contain-
ing corresponding polarimetric thermal and visible facial im-
agery, the algorithms were developed and independently eval-
uated. A brief summary of each algorithm is described, and
the face verification performances in term of equal error rate
(EER) and area under the curve (AUC) are reported. The best
performing algorithm was a GAN-based approach submitted
by the Rutgers University Team.

Index Terms— heterogeneous face recognition

1. INTRODUCTION

Facial biometrics are becoming increasingly popular and ef-
fective for use in security, surveillance, and forensic based
applications. While deep learning based approaches have
demonstrated robust performance for face recognition using
imagery acquired in the visible spectrum, there has been sig-
nificantly less research on the topic of heterogeneous face
recognition, especially related to matching thermal (i.e., mid-
wave and longwave) infrared and visible faces. Thermal
imagery, which does not require active illumination since
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thermal radiation is naturally emitted from faces, is ideal
for nighttime face recognition. The primary challenge with
acquiring thermal imagery for face recognition is the lack
of databases/watchlists containing thermal facial signatures.
Therefore, a thermal probe image must be matched against
visible imagery within an existing biometric database.

Hu et al. [1] proposed a one-versus-all framework using
partial least squares (PLS) classifiers to facilitate thermal-
to-visible face recognition. In this framework, they use a
few positive exemplars imagery and many negative exem-
plars from visible spectrum imagery to build a classifier for
each person. For added classifier robustness in the thermal-
to-visible face recognition task, negative thermal samples are
used to augment the negative exemplars. In [2] a deep per-
ceptual mapping (DPM), which maps visible to thermal rep-
resentations, demonstrated improved results.

More recently, polarimetric thermal imaging has been
used to enhance cross-spectrum face recognition perfor-
mance. Polarimetric thermal imagery is represented by
Stokes parameters: S0, S1, S2, where S0 is conventional ther-
mal image, S1 captures the differences between the the 0 de-
gree and 90 degree polarization states, and S2 captures the
difference between the 45 degree and 135 degree polarization
states. From the Stokes representation the Degree of Linear
Polarization can be computed as DoLP =

√
S2
1 + S2

2/S0.
Short et al. [3, 4] proposed the use of polarization state infor-
mation for improving performance for nighttime face recog-
nition by using a composite image created by a uniformly
weighted combination of Stokes representations.

The objective of this grand challenge is for participants to
submit state-of-the-art approaches for polarimetric thermal-
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to-visible matching for independent testing and evaluation.
The datasets and protocol for this challenge are described in
Section 2.

2. DATABASES AND EVALUATION PROTOCOL

The ARL Polarimetric Thermal Face Database [5], which
contains polarimetric thermal and visible imagery from 60
subjects at three different physical distances (2.5m, 5m, and
7.5m) with neutral (baseline) and variable expression condi-
tions, is provided to each participant for algorithm training.
Further details about this dataset can be found in [5]. ARL
also collected a more recent dataset at a different location,
which served as the sequestered dataset for evaluation of the
submitted algorithms. This dataset contains corresponding
visible and polarimetric thermal imagery from 51 subjects
collected at 2.5m with baseline and expression conditions.
Notable differences, other than time and location of two col-
lections, include: relative sensor placement (i.e., differences
in field of views), subject diversity (e.g., race, sex, gender),
and ambient temperature. These differences introduce some
degree of variability between the two datasets that test the ro-
bustness of the submitted algorithms.

For this challenge, we independently evaluate each sub-
mitted algorithm using the face verification protocol, which
takes a pair of images and returns a match score indicating
the degree of similarity between the two images. The key dif-
ference in this challenge compared to a typical face verifica-
tion experiment is that the image pairs do not come from the
same imaging modality. Instead, a match score is returned for
a polarimetric thermal and visible image pair. For this chal-
lenge, we use the 51 subject collection to evaluate submit-
ted algorithms, which are trained using the ARL Polarimetric
Thermal Database. Using the 51 subject collection, we gen-
erated 1500 polarimetric thermal and visible image pairs that
are comprised of 500 matching pairs and 1000 non-matching
pairs for algorithm test and evaluation. There are approxi-
mately 10 matching pairs and 20 non-matching pairs per sub-
ject that cover a variety of facial expressions at a single range.

3. CHALLENGE SUBMISSIONS

Three teams: Rutgers University, National University of Sin-
gapore (NUS), West Virginia University (WVU) submitted
algorithms to this ICME heterogenous face recognition chal-
lenge. In this section, we provide a brief overview of each
approach.

The Rutgers University Team proposed a Generative
Adversarial Network (GAN) based multi-stream feature-level
fusion technique to synthesize high-quality visible images
from polarimetric thermal images. This type of synthesis
based approach is motivated by initial work in [6]. The pro-
posed GAN-based network consists of a generator, a dis-
criminator sub-network and a deep guided sub-network (see

Fig. 1: An overview of the proposed GAN-based multi-
stream encoder-decoder network from Rutgers Univerisy.
The generator contains a multi-stream feature-level fusion
encoder-decoder network. In addition, a deep-guided subnet
is stacked at the end of the encoding part. The discriminator
is composed of a multi-scale patch-discriminator structure.
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Fig. 2: Proposed framework from NUS team that finds correlation
between visible (top) and S2 (bottom) images.

Fig. 1). The generator is composed of a multi-stream encoder-
decoder network based on dense-residual blocks [7, 8, 9],
the discriminator is designed to capture features at multiple-
scales for discrimination and the deep guided sub-net aims
to guarantee that the encoded features contain geometric and
texture information to recover the visible face. To further en-
hance the network’s performance, it is guided by perceptual
loss and an identity preserving loss [10] in addition to adver-
sarial loss. Once the face images are synthesized, the vgg-
face network, pre-trained with only visible face imagery, is
used for matching.

For this challenge, vgg-face features from visible and syn-
thesized images are extracted. Using these deep features, the
cosine distance in (1) is used to produce the match score.

s = (1 + cos θ)/2 = (1 +
vvvt

‖vv‖‖vt‖
)/2 (1)

The National University of Singapore Team proposed
a simple but computationally efficient method for thermal-to-
visible face verification, as shown in Fig. 2. To overcome the
modality gap between polarimetric thermal and visible im-
agery, they first apply Principle Component Analysis (PCA)
to extract the most prominent features from each modality.
Then, they associate these features by employing Canonical



Correlation Analysis (CCA) [11] to project the the two types
of images into a unified feature space. By maximizing the
cross-covariance across two types of images, CCA captures
the crucial mutual information of visible and thermal images
for face verification. Subsequently, they apply a Whitened
Fisher Linear Discriminant (WFLD)[12] analysis on the vec-
tors in unified feature space so that their identities are dis-
tinguished. Finally, they compute the similarity of a thermal
face image and a visible face image using the cosine distance
of their WFLD feature vectors. In other words, the similarity
score s is obtained using (1), where vv and vt are the WFLD
feature vectors of visible image and thermal image respec-
tively.

The West Virginia University Team proposed a vgg-16
like network [13] for thermal-to-visible face recognition. The
vgg-16 neural network is comprised of five major convolu-
tional components which are connected in series. The main
difference between the proposed and vgg-16 networks is in
the last component, where global pooling is used instead of
the max pooling to reduce the number of parameters.

Two vgg-16 like networks: a visible spectrum (Vis-
DCNN) and a polarimetric thermal (Pol-DCNN) are coupled
(similar to a Siamese network [14] without weight sharing)
to find the latent deep features representing the common re-
lationship between the polarimetric thermal face images and
their corresponding visible ones. These two networks are
trained via a contrastive loss function [14], which minimizes
the distance between corresponding image pairs and maxi-
mizes the distance between non-corresponding image pairs in
the latent embedding subspace. An overview of the model is
shown in Fig. 3.

Similar to [14], the contrastive loss is of the form of:
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where xvisi is the visible face image, xpolj is the polarimetric
face images, ycont is a binary label, Lgen and Limp repre-
sent the partial loss functions for the genuine and impostor
pairs, respectively, and D(z1(x

vis
i ), z2(x

pol
j )) indicates the

Euclidean distance between the embedded data in the com-
mon feature subspace. The binary label, ycont, is assigned a
value of 0 for a genuine image pair. On the contrary, when the
inputs are from different classes (i.e., an impostor pair), ycont
is equal to 1. Lgen and Limp are defined as follows:
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Fig. 3: Proposed network submitted by WVU using two con-
volutional networks (Vis-DCNN and Pol-DCNN) coupled by
contrastive loss function.

After training, the deep coupled network model trans-
forms visible and polarimetric face images into a common
discriminative embedding space. After mapping visible and
polarimetric face images, the Euclidean distance is reported a
dissimilarity metric for face verification.

4. CHALLENGE RESULTS

For each algorithm submission (Section 3) and baseline al-
gorithm, we compute the set of similiary (or dissimilarity)
scores for matching and non-matching pairs. From the set of
scores, we generated receiver operating characteristic (ROC)
curves where the equal error rate (EER) and area under the
curve AUC are used for purposes of comparison.

The baseline algorithm is similar to the coupled neural
network (CpNN) method described in [15], except the simi-
larity score is provided by the cosine similarity measure (op-
posed to a discriminative PLS classification score).

Fig. 4 shows the ROC curves for each algorithm, includ-
ing the baseline. The plot shows that the Rutgers Univer-
sity Team achieved the best verification performance with
an EER of 5.77% and AUC of 98.63%. The West Virginia
University Team achieved an EER of 31.01% and AUC of
75.15%, which is similar to the baseline algorithm. Lastly,
the National University of Singapore Team achieved an EER
of 37.97% and AUC of 67.93%, which is worse than the base-
line.

The mean run times are 270.9, 260.0, and 2.74 seconds
for Rutgers, WVU, and NUS algorithms, respectively.

5. CONCLUSIONS

This challenge on polarimetric thermal-to-visible matching
provided independent testing and evaluation on a 51 subject
dataset that was collected at different time and location from
the training data. Moreover, the 51 subject dataset has no
subjects in common with the dataset used by participants to
train their algorithms. This challenge setup provides a signif-
icantly challenging task, which is motivated by the need to
develop advanced technology for nighttime face recognition.



Fig. 4: Comparison of ROC curves.

Based on performer algorithms and the evaluation protocol
for this challenge, the state-of-the-art performance for polari-
metric thermal-to-visible face verification is an EER of 5.77%
and AUC of 98.63%. Considering systems do not generally
operate at the threshold corresponding to the EER for security
related applications, the state-of-the-art algorithm achieved
approximately 84% and 67% true positive rates at 3% and
1% false positive rates, respectively. To our knowledge, this
is the first challenge on polarimetric thermal-to-visible face
recognition. The excellent results achieved by the Rutgers
University team and good results by the West Virginia Univer-
sity team demonstrate current state-of-the-art and promising
future of this technology for nighttime face recognition.
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