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ABSTRACT

We present a method to combine the Fisher vector representation and
the Deep Convolutional Neural Network (DCNN) features to gener-
ate a rerpesentation, called the Fisher vector encoded DCNN (FV-
DCNN) features, for unconstrained face verification. One of the key
features of our method is that spatial and appearance information
are simultaneously processed when learning the Gaussian mixture
model to encode the DCNN features. Evaluations on two challeng-
ing verification datasets show that the proposed FV-DCNN method
is able to capture the salient local features and also performs well
when compared to many state-of-the-art face verification methods.

1. INTRODUCTION

Learning invariant and discriminative features from images and
videos is one of the central goals of research in many computer
vision tasks such as object recognition and face recognition. Many
approaches have been proposed in the literature that extract over-
complete and high-dimensional features from images to handle large
data variations and noise. For instance, the high-dimensional multi-
scale Local Binary Pattern (LBP) [1] representation extracted from
local patches around facial landmarks is reasonably effective for
face recognition. Face representation based on Fisher vector (FV)
has also shown to be effective for face recognition problems [2], [3],
[4].

However, in recent years, deep convolutional neural networks
(DCNN) have demonstrated impressive performances on several
computer vision problems such as object recognition [5][6], object
detection [7], and face verification [8]. It has been shown that a
DCNN model can not only characterize large data variations but
also learn a compact and discriminative feature representation when
the size of the training data is sufficiently large.

Motivated by the success of FV and DCNN models for various
computer vision problems, we propose to combine them for face
verification. We adopt a network architecture similar to the one pro-
posed in [9] which has demonstrated impressive performance for
face recognition. The DCNN model is trained using the CASIA-
WebFace dataset which consists of 10,575 subjects. This model
builds a very deep architecture for convolutional neural network by
stacking small filters (i.e. 3 × 3) together as VGGNet [10] and is
trained with 10,575 subjects as the DeepID Net [11]. Finally, av-
erage pooling is applied right after the last convolutional layer to
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Fig. 1. An overview of the proposed FV-DCNN representation for
unconstrained face verification.

generate a global descriptor and reduce the number of parameters for
the fully connected layers. When average pooling is used, the spatial
information is often lost. Hence, to exploit the local appearance in-
formation, we propose to apply FV to encode the local convolutional
features from each image into a high-dimensional vector instead of
applying the average pooling operation.

Our work is somewhat similar to the previous work proposed by
Cimpoi et al. [12] for texture recognition. They also propose to com-
bine the FV and DCNN features. However, their approach does not
take into account any spatial information. Compared to textures, hu-
man faces have well-defined structure (e.g. faces are approximately
symmetric.). Thus, the main distinction between the two works is
that each local DCNN feature is augmented with spatial informa-
tion in the image when we apply FV to encode DCNN features from
an image. An example is illustrated in Section 4 to show how the
learned GMM looks like with and without incorporating the spatial
information. Furthermore, as was shown in [12], since lower layers
contain less discriminative information, we focus on the conv52 fea-
tures to incorporate the spatial information with FV.

2. RELATED WORK

In this section, we briefly review several recent works on face verifi-
cation.

Robust feature learning is a key component in a face verifica-
tion system. It can be roughly classified into two categories: hand-
crafted features and features learned directly from data. In the first
category, Ahonen et al. [13] showed that the Local Binary Pattern
(LBP) is effective for face recognition. Gabor wavelets [14] have
also been widely used to encode multi-scale and multi-orientation
information for face images. Chen et al. [1] demonstrated good
results for face verification using the high-dimensional multi-scale
LBP features extracted from patches around facial landmarks. In the



second category, Simonyan et al. [2] and Parkhi et al. [3] used the
FV encoding to generate over-complete and high-dimensional fea-
ture representation for still and video-based face recognition. Some
of the other feature encoding methods include Bag-of-Visual-Words
(BoVW) model [15], VLAD [16] and Super Vector Coding [17].

The high-dimensionality of feature vectors makes these meth-
ods difficult to train and scale to large datasets. However, recent
advances in deep learning methods have shown that compact and
discriminative representation can be learned using DCNN from very
large datasets. Taigman et al. [18] learned a DCNN model on the
frontalized faces generated with a general 3D shape model from a
large-scale face dataset. Sun et al. [19][11] achieved results surpass-
ing human performance for face verification on the LFW dataset us-
ing an ensemble of 25 simple DCNNs with fewer layers trained on
weakly aligned face images from a much smaller dataset than the for-
mer. Schroff et al. [8] adapted the state-of-the-art deep architecture
in object recognition to face recognition and trained on a large-scale
unaligned private face dataset. Parkhi et al. [20] trained a very deep
convolutional network based on VGGNet for face verification and
demonstrated impressive results. These works essentially demon-
strate the effectiveness of the DCNN model for feature learning and
detection/recognition/verification problems.s

3. PROPOSED METHOD

An overview of our FV-DCNN method for face verification is shown
in Figure 1. Each training image is first passed through a pre-trained
DCNN model to extract the convolutional features. Then, we learn
the Gaussian mixture model over them and perform FV encoding
over these local convolutional features which have already encoded
the rich face feature information. Finally, we learn the metric. In
the testing phase, we extract the DCNN features and use the learned
GMM to perform FV feature encoding. We then apply the learned
metric to compute the similarity scores. In what follows, we describe
the details of each of these components.

Face Preprocessing: Each face image is detected and aligned
using the open-source library dlib [21] [22]. Each face is aligned into
the canonical coordinate using the similarity transform and seven
landmark points (i.e. two left eye corners, two right eye corners,
nose tip, and two mouth corners). After alignment, the face image
resolution is 100 × 100 pixels.

Fisher Vector Encoding: The FV is one of bag-of-visual-word
approaches which encodes a large set of local features into a high-
dimensional vector according to the parametric generative model fit-
ted for the features. The FV representation is computed by encoding
the local features with the derivatives of the log-likelihood of the
learned model with respect to the model parameters. Similar to [23],
we use a GMM in our work. The first-and second-order statistics of
the features with respect to each component for the FV representa-
tion are computed as follows:
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where wk, µk, Σk = diag(σ1k, ...,σdk) are the weights, means,
and diagonal covariances of the kth mixture component of the

GMM. Here, vp ∈ Rd×1 is the pth feature vector and N is the
number of feature vectors. The parameters are learned from the
training data using the EM algorithm. αk(vp) is the posterior
of vp belonging to the kth mixture component. The FV rep-
resentation, Φ(I), of an image I is obtained by concatenating
all the Φ
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is D = 2Kd where K is the number of mixture components, and
d is the dimensionality of the local feature vector where we use
d = 322 in this work.

Metric Learning: For the face verification task, the standard
protocol defines the same and different pairs for comparison which
can be also used to train discriminative similarity function to im-
prove the verification performance. In this work, our focus is on ro-
bust feature representation, and thus we choose to use joint Bayesian
approaches which are widely used for face verification [24]. The
joint Bayesian approach models both intra-class, P (xi,xj |HI) ∼
N(0,ΣI), and inter-class, P (xi,xj |HE) ∼ N(0,ΣE), joint fea-
ture distribution of ith and jth images as Gaussians. In addition,
each face feature vector is modeled as x = µ+ε, where µ stands for
the identity and ε for pose, illumination, and other variations. Both
µ and ε are also assumed to be independent zero-mean Gaussian
distributions, N(0,Sµ) and N(0,Sε), respectively.

The closed-form log likelihood ratio of intra- and inter-classes,
r(xi,xj), can be written as

r(xi,xj) = log
P (xi,xj |HI)
P (xi,xj |HE)

= xTi Mxi+xTj Mxj−2xTi Rxj ,

(4)
where M and R are both negative semi-definite matrices [24]. If we
let B = R −M, then (4) can be rewritten as (xi − xj)

TM(xi −
xj)− 2xTi Bxj . With this, one can directly optimize the distance in
a large-margin framework as follows:

argmin
M,B,b

∑
i,j

max[1−yij(b−(xi−xj)
TM(xi−xj)+2xTi Bxj), 0],

(5)
where b is the bias, M = WTW, and B = VTV (i.e., W,
V ∈ Rd̂×D and d̂� D. We use d̂ = 100 in this paper). The model
parameters can be updated using the stochastic gradient descent
algorithm. More details can be found in [4].

Deep Face Feature Representation: The DCNN model used
in this paper is similar to the one proposed in [9] which includes 10
convolutional layers, 5 pooling layers and 1 fully connected layer.
The model is trained using the CASIA-WebFace dataset which
contains 10,575 subjects. The differences between the proposed
method and the one proposed in [9] are that we train the model only
with softmax identification loss and without modeling the pair-wise
verification cost. Each activation function, the rectified linear unit
(ReLU), is replaced with the parametric ReLU (PReLU) [25] which
allows negative responses and usually improves the network perfor-
mance. The dimensionality of the input layer is 100 × 100 × 1 for
gray-scale images. Most recent works in face verification like [26]
and [27] use similar architecture as [9] and take the pool5 features
followed by L2-normalization to perform recognition. The training
details of DCNN model can be found at [28].

Since pool5 takes the average pooling to aggregate the DCNN
features of the last convolutional layer, conv52, its features contain
the global information of the appearance. However, average pooling
also causes the loss of spatial and local appearance information. In
the next Section, we combine both the FV and DCNN features to uti-
lize spatial information for face verification. Furthermore, we only



focus on the conv52 features to incorporate the spatial information
with FV as the lower layer contains less discriminative information
[12].

FV Encoded DCNN Features (FV-DCNN): For human faces,
the appearances around facial local regions are different. Thus,
instead of using the global pool5 features for the verification task
as used in [9] [27] (i.e. the pool5 feature ∈ R320×1 is the average
of 7 × 7 features of the conv52 layer ∈ R7×7×320), the spatial
information should be taken into consideration as well. In order to
incorporate the spatial information into the model, we augment two
additional dimensions (normalized x and y coordinates with respect
to image width and height, [ x

w
− 1

2
, y
h
− 1

2
]T , say spatial features)

to the original conv52 features and apply FV encoding on these
augmented features. Then the learnt GMM will not only cluster
the features with similar appearance, but also consider their spatial
relationships. Hence, the FV will mostly be encoded by the features
in the neighborhoods of the corresponding Gaussians.

To balance the strength of appearance and spatial features, we
take the square root and perform L2 normalization on appearance
features before augmenting spatial features. Moreover, we introduce
an encoding scheme called “spatial encoding”. Instead of using the
original posterior (3), by spatial encoding, we enforce the feature to
be encoded by its neighborhood, which is defined ass
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where µ̃k and Σ̃k are the mean and covariance of the two-dimensional
spatial features for the kth Gaussian. The new posterior only con-
siders the spatial distance between Gaussians and dense features,
instead of the distance calculated among all dimensions. Spatial
encoding improves the performance with well aligned images and
reliable spatial information.

(a) (b)

(c)
Fig. 2. Errors made by different methods on the split 10 of the LFW
dataset. (a) FV-DCNN errors . (b) pool5 errors. (c) FV-DCNN +
pool5 errors. Errors are significantly reduced when FV-DCNN and
pool5 features are fused for verification.

While conducting our experiments, what we observed is that the
error patterns are different between pool5 and FV-DCNN features.
Figure 2 shows the errors made in the split 10 of the LFW dataset by
FV-DCNN shown in (a) and pool5 features shown in (b). It is inter-
esting to see how much the error is reduced when the FV-DCNN and
pool5 features scores are fused. This can be seen by comparing the
errors shown in (c) with (a) and (b) where (c) is attained by summing
the similarity scores of pool5 and FV-DCNN with a linear weight.

4. EXPERIMENTAL RESULTS

We evaluate the proposed FV-DCNN method on two challeng-
ing face verification datasets: Celebrities in Frontal-Profile (CFP)
Dataset [29] and Labeled Face in the Wild (LFW) dataset [30]. The
algorithms are evaluated using various measures, including the re-
ceiver operating characteristic curves (ROC), equal error rate (EER),

area under curve (AUC), and accuracy based on the test protocols
defined for each dataset.

For the LFW dataset, we learn sixty four Gaussians but use
spatial encoding. A whitening PCA is applied as the initialization
of joint Bayesian metric learning. For the CFP dataset, we learn 64
Gaussians and use traditional encoding. This is because the align-
ment for profile faces is not reliable. (i.e., since only half of facial
landmarks are available for the profile faces of the dataset, we use
two eye corners of either left or right eye, nose tip, one mouth corner
of either left or right side with similarity transform to the canonical
coordinate defined for the frontal face as mentioned in Section 3.)
Similarly, the whitening PCA is applied for initializing the joint
Bayesian metric learning. Given the scores from the FV metric
learning and the cosine distance of pool5 features, score level fusion
is done by summing the similarity scores of pool5 and FV-DCNN
with a linear weight.

Celebrities in Frontal-Profile Dataset (CFP)[29]: First, to investi-
gate how pose variations influence the performance of the proposed
FV-DCNN method, we conduct experiments on the recently intro-
duced CFP face verification dataset. This dataset focuses on the un-
constrained frontal to profile face verification protocol where most
profile faces are in extreme poses. Sample face pairs are shown in
Figure 3. The dataset contains 500 subjects, and each subject con-
tains 10 frontal and 4 profile images. Similar to the LFW dataset,
the CFP dataset consists of 20 splits in total, 10 for frontal-to-frontal
and the other 10 for frontal-to-profile face verification tasks. Each
split has 350 same and 350 different pairs, respectively. For this
dataset, the human performance for the frontal-to-profile verification
is 94.57% accuracy and frontal-to-frontal is 96.24% accuracy. The
dataset has been evaluated in [29] using previous state-of-the-art al-
gorithms, including Fisher vector based on SIFT features, Sub-SML
[32], and a deep learning approach which uses a similar architecture
and ReLU as the activation function without applying data augmen-
tation.

Fig. 3. Sample image pairs from the Celebrities in Frontal-to-Profile
dataset [29] where our method is able to successfully verify the pairs
whereas both FV and DCNN-based methods fail.
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Fig. 4. The ROC curves corresponding to (a) Frontal-Profile match-
ing and (b) Frontal-Frontal matching on the CFP dataset.The evaluation results and the ROC curves are shown in Table 2
and Figure 4, respectively. From the figure, even though there exists
the large performance drop in the frontal-to-profile setting, the pro-
posed FV-DCNN approach still perform comparable to the human
performance and better than pool5 features and other approaches,
including the DCNN algorithm using ReLU. Since FV-DCNN en-
codes the spatial and appearance information contained in conv52



Method #Net Training Set Metric Mean Accuracy ± Std
DeepFace [18] 1 4.4 million images of 4,030 subjects, private cosine 95.92% ± 0.29%
DeepFace 7 4.4 million images of 4,030 subjects, private unrestricted, SVM 97.35% ± 0.25%
DeepID2 [11] 1 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 95.43%
DeepID2 25 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.15% ± 0.15%
DeepID3 [31] 50 202,595 images of 10,117 subjects, private unrestricted, Joint-Bayes 99.53% ± 0.10%
FaceNet [8] 1 260 million images of 8 million subjects, private L2 99.63% ± 0.09%
Yi et al. [9] 1 494,414 images of 10,575 subjects, public cosine 96.13% ± 0.30%
Yi et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.73% ± 0.31%
Wang et al. [27] 1 494,414 images of 10,575 subjects, public cosine 96.95% ± 1.02%
Wang et al. 7 494,414 images of 10,575 subjects, public cosine 97.52% ± 0.76%
Wang et al. 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.45% ± 0.99%
Wang et al. 7 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.23% ± 0.68%
Ding et al. [26] 8 471,592 images of 9,000 subjects, public unrestricted, Joint-Bayes 99.02% ± 0.19%
Human, funneled [27] N/A N/A N/A 99.20%
pool5 cosine 1 494,414 images of 10,575 subjects, public cosine 97.82% ± 0.59%
FV-DCNN 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 97.72% ± 0.61%
FV-DCNN + pool5 cosine 1 494,414 images of 10,575 subjects, public unrestricted, Joint-Bayes 98.13% ± 0.40%

Table 1. Performance comparison of different methods on the LFW dataset dataset.
Frontal-Profile

Algorithm Accuracy EER AUC
HoG+Sub-SML 77.31 ± 1.61% 22.20 ± 1.18% 85.97 ± 1.03%
LBP+Sub-SML 70.02 ± 2.14% 29.60 ± 2.11% 77.98 ± 1.86%
FV+Sub-SML 80.63 ± 2.12% 19.28 ± 1.60% 88.53 ± 1.58%

FV+DML 58.47 ± 3.51% 38.54 ± 1.59% 65.74 ± 2.02%
Deep features 84.91 ± 1.82% 14.97 ± 1.98% 93.00 ± 1.55%

Human 94.57 ± 1.10% 5.02 ± 1.07% 98.92 ± 0.46%
pool5 90.41 ± 1.16% 9.63 ± 1.21% 96.53 ± 0.99%

FV-DCNN+pool5 89.83 ± 1.88% 10.40 ± 1.85% 96.37 ± 0.97%
FV-DCNN 91.97 ± 1.70% 8.00 ± 1.68% 97.70 ± 0.82%

Frontal-Frontal
Algorithm Accuracy EER AUC

HoG+Sub-SML 88.34 ± 1.33% 11.45 ± 1.35% 94.83 ± 0.80%
LBP+Sub-SML 83.54 ± 2.40% 16.00 ± 1.74% 91.70 ± 1.55%
FV+Sub-SML 91.30 ± 0.85% 8.85 ± 0.74% 96.87 ± 0.39%

FV+DML 91.18 ± 1.34% 8.62 ± 1.19% 97.25 ± 0.60%
Deep features 96.40 ± 0.69% 3.48 ± 0.67% 99.43 ± 0.31%

Human 96.24 ± 0.67% 5.34 ± 1.79% 98.19 ± 1.13%
pool5 97.79 ± 0.38% 2.20 ± 0.36% 99.73 ± 0.18%

FV-DCNN+pool5 98.67 ± 0.36% 1.40 ± 0.37% 99.90 ± 0.09%
FV-DCNN 98.41 ± 0.45% 1.54 ± 0.43% 99.89 ± 0.06%

Table 2. Performance comparison of different methods on the CFP
dataset where pool5 means ”pool5 + cosine distance”.

features into the high-dimensional feature vector, it is robust to large
pose variations than other approaches. Also notice that by fusing
FV-DCNN and pool5, we improve the performance for frontal-to-
frontal setting. But frontal-to-profile setting is not as good as single
FV-DCNN. This is because under extreme poses, global features are
not robust and will degrade the overall performance.

Labeled Face in the Wild Dataset (LFW)[30]: We also evaluate
our approach on the LFW dataset using the standard protocol for the
face verification task which defines 3,000 positive pairs and 3,000
negative pairs in total. The pairs are further split into 10 disjoint
subsets for cross validation, and each subset consists of 300 same
and 300 different pairs. It contains 7,701 images of 4,281 subjects.
We show the mean accuracy of the proposed FV-DCNN represen-
tation with the other state-of-the-art deep learning-based methods
on the “funneled” LFW images: DeepFace [18], DeepID2 [11],
DeepID3 [31], FaceNet [8], Yi et al. [9], Wang et al. [27], and
human performance. The results are summarized in Table 1. As
can be seen from this table, the proposed FV-CNN method performs
comparable to many other deep learning-based methods. In addi-
tion, it also shows that the error reduces when we fuse the similarity
scores of both FV-DCNN representation (local descriptor) and nor-
mal pool5 representation (global descriptor). Note that some of the
deep learning-based methods compared in Table 1 use millions of
data samples for training the model that typically has tens of millions
of parameters or fuse multiple DCNN models together. In contrast,
we use only the CASIA dataset which has less than 500K images to
train a single DCNN model with about five million parameters.

Visualization of the Learnt GMMs: Figure 5 shows an image in
the LFW dataset along with the last two dimensions (which are the
spatial coordinates) of the Gaussians learnt by our method. Gaus-
sians are learnt from the original 320-dimensional conv52 features
plus two dimensional spatial features without dimension reduction,
from the images in the LFW split 1. We only choose Gaussians
whose corresponding energy in the learnt projection matrices are
among the top eight or bottom eight, which corresponds to the dis-
criminative power of these Gaussians. Figures 5(a) and 5(b) are
Gaussians learnt after we apply square root and L2 normalization
on the conv52 features. Figures 5(c) and 5(d) are Gaussians learnt
without any normalization. From Figures 5(a) and 5(b), the top eight

(a) (b) (c) (d)
Fig. 5. (a) Top eight Gaussians using square root and L2 normaliza-
tion. (b) Bottom eight Gaussians using square root and L2 normal-
ization. (c) Top eight Gaussians without normalization. (d) Bottom
eight Gaussians without normalization.

Gaussians are located near eyes, nose and mouth after normalization.
The bottom eight Gaussians are out of the face region in general.
But in Figures 5(c) and (d), without pre-normalization, the top eight
Gaussians are everywhere in the image with large variations in spa-
tial location. Also, the bottom eight Gaussians are all located in the
center of the face, which should not be the case. Comparison of
these four figures shows that the spatial information is not encoded
into Gaussians if we do not apply normalization before learning the
Gaussians.

5. CONCLUSIONS

In this paper, we proposed a FV-DCNN model for unconstrained face
verification which combines FV with DCNN features. We demon-
strated the effectiveness of the proposed method on the standard
LFW and the challenging CFP datasets with large pose variations,
respectively. It was shown that the FV-DCNN method can capture
the local variations and the original DCNN pool5 features charac-
terize the global variations. Performance gains were obtained by
simply fusing their similarity scores without training another new
DCNN model.

In future, we plan to incorporate hard positive and hard negative
mining to perform metric learning, including joint Bayesian metric
or triplet loss.
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