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ABSTRACT

In this paper, we present an image enhancement technique
based on a new multiscale generalized directional filter bank
design. The design presented is a shift-invariant overcom-
plete representation, which is well suited to extracting geo-
metric features such as edges. Special cases of this design
method can be made to reduce to different and improved im-
plementations of the shearlet and the contourlet transforms,
which are known to represent certain classes of images op-
timally. Use of this new filter bank design has proven it-
self competitive in image restoration for noisy images and
is well suited for distinguishing noise from weak edges.
Experimental results show that our unique image enhance-
ment technique out-performs wavelet and contourlet based
enhancement methods.

Index Terms— Wavelet transforms, Image enhancement,
Multidimensional digital filters, Image processing

1. INTRODUCTION

In image enhancement, the objective is to make the processed
image better in some sense than the unprocessed image.
One of the most well-known methods for contrast enhance-
ment is histogram equalization which is useful for images
with a poor intensity. Since edges contain important infor-
mation about the image, they can be used to enhance the
contrast. Many multiscale based image enhancement meth-
ods have been used in astronomical and medical imaging.
In most of these methods, an image is decomposed in a sep-
arable fashion, not taking the advantage of the geometric in-
formation available in the subbands such as edges. It is well
known that natural images have their energy strongly con-
centrated at low frequencies. Since directional information
is related to mid and high frequency information such as
edges and textures, lowpass information can hinder our abil-
ity to capture and analyze these features. Therefore, scale
information needs to be used in conjunction with directional
information in applications where it might be required to
distinguish features of different sizes.

It has been observed that shift-invariance and redun-
dancy are highly desirable in many image processing appli-
cations such as image denoising, edge detection, and image
enhancement [1, 2]. In this paper, we exploit the directional
and multiscale properties of this new shift-invariant gener-
alized directional filter bank (GDFB) that is well suited for
image enhancement. In Section 2, we discuss the key fea-
tures of our new GDFB design method. In Section 3, we
present the construction of the GDFB. We define a nonlin-
ear mapping function for feature enhancement in Section 4
and present results in Section 5. Concluding remarks are
made in Section 6.

2. GENERALIZED DIRECTIONAL FILTER BANK

The directional analysis employed in this paper decomposes
the spectral region of a given image into the regions shown
in Figure 1. This spatial-frequency tiling is equivalent to
that of the discrete shearlet and contourlet transform. This
means that this GDFB implementation could be considered
as an alternate method for computing these transforms. In
fact, the achieved filters can produce more precisely the de-
sired frequency tiling than those exhibited in the NSCT (see
Figure 3).

Figure 1: A representation of the spatial-frequency tiling
used in this paper.

These filters satisfy aparabolic scalingso that each el-
ement in the Fourier domain is supported in a region whose
width is approximately equal to the square of its length (see
Figure 1). They also exhibithighly directional sensitivityin



Figure 2: Analysis filter design flowgraph.

that each element is oriented along lines with slopeℓ 2−j

for j ≥ 0,−2j ≤ ℓ ≤ 2j − 1 and the number of orientations
doubles at each finer scale. These properties are needed to
essentially insure that a representation using these elements
achieves the desired nonlinear approximation error rate for a
certain class of images that can be represented as piecewise-
smooth functions that are smooth away from discontinuities
across smooth curves [3]. This means that retaining theN

largest coefficients in this representation, the approximation
error is bounded byC N−2 (log N)3, for some positive real
constantC. By comparison, the approximation error for a
wavelet representation is bounded byC N−1 for the same
class of images.

3. FILTER DESIGN

There are several filter design algorithms available in the
literature for the design of multidimensional exact recon-
struction filter banks. In general form channels, the key
is to design a set of analysis filters{Hi(z)}

m−1
i=0 and find

a set of synthesis filters{Gi(z)}
m−1
i=0 satisfying the Bezout

polynomial equation

m−1
∑

i=0

Gi(z)Hi(z) = 1. (1)

The most difficult challenge in designing a pair of analysis
filters in higher dimensions for a filter bank is that in gen-
eral the Bezout equation may not be solvable. When it is
solvable, the standard algebraic techniques for solving the
equation such as factorization are not applicable because no
global factorization theorem exists. This means typical so-
lutions rely on forming the higher-dimensional filters in a
separable construction dependent on one-dimensional filter
components.

To create the analysis filters, we first obtain a subband
decomposition similar to that of the nonsubsampled Lapla-
cian pyramid [4]. We then transform the LP data from Carte-
sian grid onto the pseudo-polar grid. As shown in Figure 2,

a window is then applied in the pseudo-polar domain and
the analysis filters are obtained in the frequency domain by
inverting the pseudo-polar grid back to the Cartesian grid.
Examples of directional filters created this way are shown
in Figure 3. Filter designs that achieve complex geometri-
cal spatial-frequency tiling are now possible using similar
procedures.

In order to obtain the synthesis filters, we propose to
use the solution techniques for theMultichannel Deconvo-
lution Problem(MDP). In 1983, Berensteinet al. consid-
ered the following MDP:Given a collection{hi}

m−1
i=0 of

finite impulse response filters onRd (d ≥ 2), find a col-
lection{h̃i}

m−1
i=0 of finite impulse response filters such that

∑m−1
i=0 hi ∗ h̃i = δ, whereδ is a Dirac delta function.This

equation in the Fourier-Laplace domain is known as the an-
alytic Bezout equation and its discretization correspondsto
(1). The recent methods for solving the MDP in a discrete
setting provide a more effective way of constructing appro-
priate synthesis filters than the standard methods (see [5] for
specific techniques and references). Thus, using these meth-
ods, we are no longer constrained in the traditional ways to
create higher dimensional directional analysis and synthesis
filters. For this paper we propose to use the solution meth-
ods provided in [5] to obtain the synthesis filters.

An advantage of a filter bank created this way is that
it can project the image directly onto the desired coeffi-
cient basis. Furthermore, this type of filter bank implements
a multiresolution and multidirectional decomposition of an
image, and is a perfect reconstruction filter bank which can
be implemented inO(N2 log N) operations for anN × N

image. The GDFB has a redundancy of
∑J

k=0 2lk , wherelk
denotes the number of directions at thekth scale of the LP.

4. IMAGE ENHANCEMENT

Several multiscale analysis based enhancement techniques
have been developed [4, 6, 7, 8]. The goal of the nonlin-
ear mapping function is to amplify weak edges and to sup-



Figure 3: Images of Directional Filters. The images on the
left correspond to examples of the frequency responses of
the GDFB. The images on the right correspond to examples
of the frequency responses of the NSCT.

press noise. Here, we use a new adaptive nonlinear mapping
function that incorporates the nonnegative garrote shrinkage
functions, which provide a good compromise between hard
and soft shrinkage rules, in order to avoid amplifying noise
and remove small noise perturbations (similar to [6]). We
define this nonlinear operator as follows, using the notation
sigm(y) = (1 + e−y)−1:

f(y) = 0 if |y| < T1

f(y) = sign(y)T2 + ā(sigm(c(gy − b)) − sigm(−c(gy + b)))

if T2 ≤ |y| ≤ T3

f(y) = y otherwise (2)

wherey ∈ [−1, 1], ā = a(T3 − T2), b ∈ (0, 1), c is a gain

factor,0 ≤ T1 ≤ T2 < T3 ≤ 1, gy =
garrote

T2
(y)

T3−T2

, where

garroteT2
(y) =

{

0, |y| ≤ T2

y −
T 2

2

y
, |y| > T2

anda can be computed bya = (sigm(c(1−b))−sigm(−c(1+
b)))−1. Hereb andc determine the threshold and rate of en-
hancement, respectively. As can be seen from Figure 4, the
coefficients in[T2, T3] are modified for enhancement while
the coefficients in[0, T1] are suppressed. These parame-
ters can be adaptively estimated by using the robust me-
dian operator [9] and the noise variance in each subband
[10]. For example,T1, T2, andT3 for the subbandj can
be chosen aspσjσ, qσj , rσj , respectively, whereσ is the
noise variance of the input image andσj is the noise vari-
ance of thejth subband andp, q andr are user defined val-
ues. Through this nonlinear function, the subband coeffi-
cients can be pointwise modified for image enhancement by

ỹk = ykmax
f

(

yk

ykmax

)

, where1 ≤ k ≤ m, yk is the out-

put of thekth channel of the filter bank, andykmax
is the

maximum absolute amplitude ofyk.

Our method for image enhancement using the GDFB
consists of the following steps:

1. Estimate the noise standard deviation in theN × N

input image using the robust median operator [9].

2. Pass the input image through the analysis part of the
GDFB. At this point, we get a set ofm subbands,
each corresponding to a given resolution level. Each
subband containsN2 coefficients.

3. For each subband:

i) Calculate the noise standard deviation [8].

ii) Use the nonlinear mapping function defined
by (2) to modify the subband coefficients.

4. Pass the modified coefficients through the synthesis
part of the GDFB and reconstruct the enhanced im-
age.
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Figure 4: Enhancement map:b = 0.20, c = 25, T1 =
0.1, T2 = 0.15, T3 = 0.9.

5. EXPERIMENTS

In this section, we compare the enhancement results ob-
tained by the GDFB with those by the nonsubsampled wavelet
transform (NSWT) using db4 wavelet and the NSCT. In
this experiment, we used 1, 8, 8, 16, 16 directions in the
scales from coarser to finer, respectively. We choseb =
0.10, 0.11, 0.14, 0.15 and c = 5, 10, 30, 40 for the direc-
tions in the scales from coarser to finer, respectively. The
subband coefficients of the coarsest scale were not modified.
From the experiments, we see that our new enhancement
technique works better than that of the NSWT using our en-
hancement map and the NSCT as done in [4]. One of the
major advantages of our algorithm compared to the NSCT
is that it is very fast. Using an Intel 1.7 GHz Processor, it
takes on average approximately 375 seconds for the NSCT
algorithm to produce an enhanced image of size256× 256,
whereas it takes only 25 seconds for the GDFB to enhance
the same image running in MATLAB on a Windows XP
system.



(a) (b)
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Figure 5: Image Enhancement experiment. (a) Original
image. (b) Enhanced by the NSWT. (c) Enhanced by the
NSCT. (d) Enhanced by the GDFB.

6. CONCLUSION

We presented new methods for creating an m-channel di-
rectional filter bank. The key component is the realization
that the synthesis filters can be found by viewing the prob-
lem as a multichannel deconvolution problem. We used a
shift invariant directional multiresolution image representa-
tion for image enhancement by nonlinear modification of
coefficients in the subbands. We proposed a new enhance-
ment algorithm that was capable of adaptively removing
noise and enhancing salient features such as edges. Experi-
mental results show that our enhancement technique achieves
better results than the NSWT and the NSCT and is consid-
erably faster than the NSCT.
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