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ABSTRACT

In video-based face recognition, different video sequences of the
same subject contain variations in pose, illumination, and expres-
sion which contribute to the challenges in designing an effective
video-based face-recognition system. In this paper, we propose
a dictionary-based approach using dense and high-dimensional
features extracted from multi-scale patches centered at detected
facial landmarks for video-to-video face identification and verifi-
cation. Experiments using unconstrained video sequences from
Multiple Biometric Grand Challenge (MBGC) and Face and Ocular
Challenge Series (FOCS) datasets show that our method performs
significantly better than many state-of- the-art video-based face
recognition algorithms.

Index Terms— Video-based face recognition, dense multi-scale
features, facial landmark detection, dictionary learning.

1. INTRODUCTION

Face recognition is one of the fundamental problems in computer
vision and has a wide range of applications [1], including surveil-
lance, social networks and augmented reality. Although many face
recognition algorithms have demonstrated promising results under
controlled environments with cooperative subjects, face recognition
in real-world scenarios is highly unconstrained and needs to handle
large changes in pose, lighting, image quality (i.e., low-resolution
and blur), expression and occlusion. These factors make the un-
constrained face recognition extremely difficult. The unconstrained
video face recognition is even more challenging than the still-face
case because there is more intra-video and intra-class variations as-
sociated with pose and illumination conditions. Furthermore, a large
amount of data in videos makes computing efficiency another im-
portant issue.

Motivated by the successes of high-dimensional facial features
in still-face recognition [2], sparse representation [3] and dictionary
learning for video-based face recognition [4][5][6], we propose a
dictionary-based approach using dense high-dimensional feature
for unconstrained video-to-video face identification and verifica-
tion problems. We first segment the face videos into K partitions
and extract multi-scale features from patches centered at detected
dense facial landmarks. Then, we learn a compact and represen-
tative dictionary from dense features for each partition and form a
video dictionary for each video by concatenating sub-dictionaries.
Finally, the learned video dictionaries are used for face identifica-
tion and verification. Moreover, because the dictionary for each
training video is learned independently during the training phase,
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Fig. 1: An overview for our video-based face identifica-
tion/verification system.

our approach can thus be easily parallelized not only for testing but
also for training. This makes our approach attractive for large-scale
video-based face recognition problems. Fig. 1 gives an overview of
our method.

The rest of the paper is organized as follows: We briefly review
related works in Section 2. In Section 3, we present our dictionary-
based video face recognition algorithm and show experimental re-
sults on two challenging video datasets in Section 4. We conclude
the paper in Section 5.

2. RELATED WORK

In this section, we briefly review several related works as follows.
Generally, there are two major components of a face recogni-

tion system: (1) feature representation and (2) classification algo-
rithm. For feature representation, Coates et al. [7] showed that over-
complete representation is critical for achieving high recognition
rates regardless of the encoding methods used. [8] also showed that
densely sampling of overlapped images helps to improve the recog-
nition performance. For still-face recognition, [2] demonstrates ex-
cellent results using the high-dimensional multi-scale features ex-
tracted from the patches centered at dense facial landmarks. These
works show that over-complete and high-dimensional features are
important for face recognition.

Most video-based face recognition algorithms can be classified
into two main categories: (1) frame-based and (2) image set-based.

1. Frame-based. In this category, besides features (e.g., SIFT,



LBP) derived from the image intensity data, the tempo-
ral (e.g., motion) and spatial-temporal information between
cropped faces in a video is usually utilized and encoded in
the model to perform the recognition tasks. For example,
Zhou et al. [9] proposed a tracking-and-recognition approach
which lowers the uncertainties of tracking and recognition
simultaneously in a unified probabilistic framework. Lee
et al. [10] learned the nonlinear appearance manifold from
face videos to handle both tracking and recognition in a uni-
fied framework. In addition, a Hidden Markov Model-based
approach [11] has been proposed to exploit the temporal in-
formation. However, the performance for these approaches is
greatly affected by the tracking accuracy. Poor tracking will
introduce lots of background noise into the model and lower
the recognition accuracy.

2. Image set-based. In this approach, each face video is trans-
formed into an unordered set of images which implies no
temporal information is used. The set of images for a sub-
ject is usually represented using a subspace model. Then,
recognition task is done by measuring the distance between
subspaces. Turaga et al. [12] presented a statistical method
for video-based face recognition. The approach extracted the
face subspaces by performing the standard Principle Com-
ponent Analysis (PCA) for face videos and using tools from
Riemannian geometry of the Grassmann manifold to mea-
sure distance. Cevikalp et al. [13] modeled face image sets
using affine or convex hull, and Wang et al. [14] modeled
them using covariance matrix to encode the underlying man-
ifold structure. Hu et al. [15] improved the affine subspace
model by enforcing sparsity constraint and used it to mea-
sure between-set dissimilarity which is the distance between
sparse approximated nearest points of two image sets. Re-
cently, Chen et al. [5] proposed a dictionary-based approach
for face identification and verification tasks. They learned
a compact and representative dictionary for each video and
made use of the reconstruction errors of test videos using
the learned video dictionaries. The approach is simple and
efficient, especially suitable for large-scale video-based face
recognition.

Our approach is mainly motivated by Chen et al. [5]. Neverthe-
less, the method in [5] did not take the face alignment into account,
and it directly used the whole cropped face image as a feature which
might contain irrelevant background and facial features due to inac-
curate face tracking (i.e., the size of detected bounding box is much
larger than the face.). In contrast, our algorithm (1) exploits the
dense features extracted from multi-scale patches centered at facial
landmarks [2] which not only mitigate the pose and noise problems
due to alignment but also generate informative features, and (2) uses
video dictionaries [5] which are efficient and effective representa-
tions for video-based face recognition.

3. PROPOSED APPROACH

In this section, we describe the construction of video dictionary us-
ing high-dimensional dense facial landmark features and their appli-
cation to face identification and verification problems.

3.1. Constructing Video Dictionary Using Dense Multi-scale Fa-
cial Landmark Features

The training phase of our method consists of three main stages:
video partitioning, multi-scale landmark feature extraction and

Fig. 2: For illustration purpose, we visualize the single-scale patch
image for the MBGC dataset through assembling all 5 × 5-pixel
patches centered at 26 facial landmarks points together.

video dictionary learning. In what follows, we describe them in
detail.

Video partitioning: Due to high variability of faces within a video
and face tracking accuracy, we find that segmenting video into dif-
ferent partitions usually helps in improving recognition accuracy. A
K-means clustering type of algorithm is used to segment the videos
[5][16] which incrementally adds each cropped face into a partition
with the minimum ratio of within-partition similarity over between-
partition similarity.

Dense landmarks and multiple-scale features: It was shown
in [2] that multi-scale features centered around facial landmarks
contain strong discriminative information and the recognition per-
formance improves as the dimensionality of the feature vector is
increased. We extract multi-scale patches centered at facial land-
marks of inner faces (i.e., landmarks at eye brows, eyes, nose, and
mouth corners. 26 landmarks in total are used in our work) and
concatenate them together to form a high-dimensional feature vec-
tor. With recent progress in face alignment, there are numerous
approaches providing accurate and dense facial landmark detection
[17][18]. We adopt [19] because of its excellent performance on
low-resolution and lower-quality face images1. Detected landmarks
and extracted features are shown in Fig.2. However, unlike still-face
recognition, directly applying the approach in [2] to video-to-video
face recognition is infeasible because the concatenation of feature
vectors extracted from each frames in a video yields extremely high-
dimensional feature vector (i.e., imagine a video with 100 frames
can result in a 100 times long feature vector). A compact and rep-
resentative model has to be learned to remove noisy and irrelevant
features.

Video dictionary: Various algorithms have been proposed in the
literature for learning compact and representative dictionaries. One
of the well-known algorithm is the K-SVD algorithm [20]. For each
partition, we apply the K-SVD algorithm to construct a dictionary
which not only captures variations caused by changes in pose and
illumination but also reduces temporal redundancy. Let Di

j,k be the
dictionary and Gi

j,k = [gi
j,k,1 gi

j,k,2 . . .] be the feature matrix for
the kth partition of the jth face video for the ith subject where each
column gi

j,k,l is the extracted dense multi-scale feature for lth face
in the kth partition of the jth video. In the K-SVD formulation,
the dictionary and sparse coefficient are learned through iteratively
minimizing the following reconstruction errors by fixing Di

j,k and

1https://sites.google.com/site/akshayasthana/clm-wild-code.



Xi
j,k in turn.

(D̂i
j,k, X̂

i
j,k) = argmin

Di
j,k

,Xi
j,k

||Gi
j,k−Di

j,kX
i
j,k||2F s.t. ∀l, ||xl||0 ≤ T0,

(1)
where T0 ∈ N is the sparsity constraint and xl is the lth column of
sparse coefficient matrix Xi

j,k. || · ||0 is the zero-norm which counts
the number of nonzero entries, and || · ||F is the Frobenius norm.
Finally, the video dictionary Di

j for the jth video of ith subject can
be obtained via concatenating all sub-dictionaries learned from the
corresponding K partitions

Di
j = [Di

j,1 Di
j,2 . . . Di

j,K ]. (2)

After video dictionaries are learned, for testing phase we first do
the same image preprocessing as in training and extract the multi-
scale features for each cropped face image. Then, we perform face
identification and verification which are shown in the following sub-
sections.

3.2. Face Identification

Let P represent the set of the entire gallery videos (i.e., training
videos) and Q represent the set of the entire query videos (i.e., test
videos) where Qm is the mth query video with m = 1, 2, . . . , |Q|.
In addition, the feature vector for lth frame in mth query video is
denoted as qml where l = 1, 2, . . . , |Qm|. The learned dictionary
for the pth gallery videos is denoted as Dp where p = 1, 2, . . . , |P|.
The original identification problem can be converted as finding the
gallery video dictionary which produces the minimum reconstruc-
tion error for qm

l :

p̂ = argmin
p
||qm

l −DpD
†
pq

m
l ||2, (3)

where D†p = (DT
p Dp)

−1DT
p is the pseudo inverse of Dp and

DpD
†
pq

m
l is the projection of qm

l onto the subspace spanned by the
atoms of Dp.

Then, the final decision is made for Qm through aggregating the
voting results from its frames as

p∗ = argmax
p

Cp, (4)

where Cp is the total number of the frames in Qm voting to the
pth gallery video. The subject identity can be decided through the
video-to-subject mapping as i = m(p∗).

3.3. Face Verification

Different from the identification problem, the goal of face verifica-
tion is to determine whether a pair of faces is from the same subject,
and its performance is usually measured using the receiver operating
characteristic (ROC) curve which shows the relations between false
acceptance rates (FAR) and true acceptance rates (TAR). In addition,
ROC curves are ploted based on a similarity matrix which is com-
puted according to the distance between gallery and query videos.
In our framework, we can directly use the minimum reconstruction
error between Qm and Dp as the distance. Thus, the (m,p)th entry
of the similarity matrix S can be computed as

Sm,p = min
l∈{1,2,...,|Qm|}

||qm
l −DpD

†
pq

m
l ||2. (5)

Fig. 3: The upper row shows the example frames from the MBGC
walking sequences in four different scenarios. Similarly, the bottom
row presents the example frames from the FOCS UT-Dallas walking
videos.

4. EXPERIMENTAL RESULTS

To evaluate our approach, we present the face identification and
verification results on two well-known public datasets for uncon-
strained video-based face recognition: (1) Multiple Biometric Grand
Challenge (MBGC) [21], and (2) Face and Ocular Challenge Series
(FOCS) [22]. We perform our experiments following the experimen-
tal design described in [5][23].

4.1. Implementation Details

We used the face detector in OpenCV [24] and IVT [25] for face
detection and face tracking respectively to crop the faces from each
video. All cropped faces are downsampled and normalized to 20×20
pixels, and two patch sizes are used for multi-scale feature extrac-
tion: (1) 5× 5 and (2) 7× 7 pixels. In addition, we segment K = 3
partitions for each video in the MBGC dataset and the FOCS dataset
in all of our experiments. Prior to dictionary learning, we aug-
ment the feature matrix for each partition by adding more multi-scale
patch features which are extracted via shifting the original bounding
boxes of patches by one or two pixels to all directions or rotating
them with a small angle. This helps the partition step in assigning
video frames to learn an improved dictionary and helps in reduc-
ing the noise caused by tracking and landmark detection. The same
augmentation is also applied to query videos before recognition.

4.2. Multiple Biometric Grand Challenge

In the MBGC video version 1 dataset (Notre Dame dataset), there
are 146 subjects in total, and videos for each subject are available
in two formats: standard definition (SD, 720 × 480 pixels) and high
definition (HD, 1440 × 1080 pixels). It consists of 399 walking se-
quences where 201 of them are in SD format and 198 in HD, and 371
activity sequences where 185 in SD and 186 in HD. For the walking
sequences as illustrated in Fig. 3, subjects usually walk toward the
camera and keep their faces frontal with respective to it for most of
the time and turn their face to the left or right at the end. On the
contrary, the activity sequences contains most non-frontal views for
each subject. The challenge for the dataset includes blurred faces
caused by motion, frontal and non-frontal faces in shadow which
also induce face tracking difficulty to crop faces from the video.

We conduct leave-one-out identification experiments on three
subsets of the cropped face images acquired from the walking videos
and present the identification accuracy in Table 1. Our proposed
method outperforms the other approaches. The three subsets are S2,
S3, and S4, respectively where S2 is the set of subjects who have
at least two face videos available, S3 at least three available, and S4



(a) (b)
Fig. 4: (a) shows the leave-one-out verification results for MBGC walking videos, and (b) is the verification results for SD v.s. HD and HD
v.s. SD where DFRV is the dictionary-based method proposed in [5]. From the figures, we see that our method with dense multi-scale feature
achieves better verification results.

at least four available (S2: 144 subjects, 397 videos in total, S3: 55
subjects, 219 videos in total, and S4: 54 subjects, 216 videos).

MBGC WGCP SANP DFRV KSRV Ours
walking videos [12] [15] [5] [23]

S2 63.79 83.88 85.64 86.65 89.17
S3 74.88 84.02 88.13 88.58 89.04
S4 75 84.26 88.43 88.89 89.35

Average 71.22 84.05 87.40 88.04 89.19

Table 1: Identification rate for leave-one-out face identification ex-
periments for the MBGC walking videos. Our method achieves the
best results.

Furthermore, we divide videos from S2 into two groups accord-
ing to their recording resolution: SD and HD. Then, we use both of
them as gallery and probe in turn and perform the face identifica-
tion to study the performance change under different image quality
setting. The results are presented in Table 2. As can be seen from
this table, our algorithm outperforms other approaches even when
the quality of videos are different in the gallery and probe videos.

MBGC WGCP SANP DFRV KSRV Ours
walking videos [12] [15] [5] [23]

SD v.s. HD 30.15 41.71 86.93 91.46 92.46
HD v.s. SD 30.30 45.96 91.41 91.41 93.94

Average 30.23 43.84 89.17 91.44 93.2

Table 2: Identification rate for SD v.s. HD (SD as probe; HD as
gallery) and HD v.s. SD (HD as probe; SD as gallery) face iden-
tification experiments for the MBGC walking videos. Our method
achieves the best results.

We also present the verification results in Fig. 4 which com-
pares our approach with DFRV [5] which is also a dictionary-based
algorithm. The proposed approach achieves better ROC than DFRV
which essentially demonstrates the effectiveness of dense multi-
scale facial landmark features.

4.3. Face and Ocular Challenge Series

The FOCS UT-Dallas dataset contains 510 walking (frontal-face)
and 506 activity (non-frontal face) video sequences for 295 subjects
in the resolution, 720× 480 pixels. The sequences were acquired on
different days. For the walking sequences, subjects stand far away
from the camera originally, and then walk toward the camera keeping
their face in frontal pose and turn away at the end. For the dataset, we
conducted the same leave-one-out tests on 3 subsets: S2 (189 sub-
jects, 404 videos), S3 (19 subjects, 64 videos), and S4 (6 subjects,
25 videos) for UT-Dallas walking videos.

UT-Dalas PM WGCP SANP DFRV Ours
walking videos [26][12] [12] [15] [5]

S2 38.12 53.22 48.27 59.90 61.39
S3 60.94 70.31 60.94 78.13 79.69
S4 64 76 68.00 80.00 84.00

Average 54.35 66.51 59.07 72.68 75.02

Table 3: Identification rate for leave-one-out face identification ex-
periments for the FOCS UT-Dallas walking videos. Our method
achieves the best results.

The results are shown in Table 3. Our approach performs the
best when compared to other competitive methods.

5. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that the proposed dictionary approach
with dense facial landmark features is effective for unconstrained
video-based face identification and verification. Experiments using
the MBGC and FOCS datasets have shown that high-dimensional
features extracted from multi-scale patches centered around the de-
tected dense facial landmarks provide strong discriminative infor-
mation upon different pose and illumination conditions among sub-
jects, and video dictionaries provide an efficient and feasible way to
utilize the high-dimensional features for large-scale unconstrained
video-based face recognition. For future work, we will study differ-
ent approaches for learning dictionaries [27][28] to robustly handle
situations when faces have severe occlusion and extreme illumina-
tion changes.
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