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ABSTRACT

We present a multi-class, multiple instance learning (MIL) algorithm

using the dictionary learning framework where the data is given in

the form of bags. Each bag contains multiple samples, called in-

stances, out of which at least one belongs to the class of the bag. We

propose a noisy-OR model-based optimization framework for learn-

ing the dictionaries. Our method can be viewed as a generalized

dictionary learning algorithm since it reduces to a novel discrimina-

tive dictionary learning framework when there is only one instance in

each bag. Various experiments using the popular MIL datasets show

that the proposed method performs better than existing methods.

Index Terms— Multiple instance learning, dictionary learning,

object recognition.

1. INTRODUCTION

Machine learning has played a significant role in developing robust

computer vision algorithms for object detection and classification.

Most of these algorithms are supervised learning methods, which

assume the availability of labeled training data. Label information

often includes the type and location of the object in the image, which

are typically provided by a human annotator. The human annotation

is expensive and time consuming for large datasets. Furthermore,

multiple human annotators often provide inconsistent labels which

could affect the performance of subsequent learning algorithm [1].

However, it is relatively easy to obtain weak labeling information

either from search queries on Internet or from amateur annotators

providing the category but not the location of the object in the im-

age. This necessitates the development of learning algorithms from

weakly labeled data.

A popular approach to incorporate partial label information dur-

ing training is through Multiple Instance Learning (MIL) [2]. Unlike

supervised learning algorithms, the MIL framework does not require

label information for each training instance, but just for a collection

of instances called bags. For two class problems, e.g. object detec-

tion, a positive bag contains at least one positive instance while a

negative bag contains all the negative instances. However, in multi-

class cases, at least one instance in each bag is guaranteed to belong

to the class of its bag. One of the first algorithms for MIL, namely

Axis-Parallel Rectangle (APR), was proposed in [2]. This method

attempts to find an APR by manipulating a hyper rectangle in the

instance feature space to maximize the number of instances from

different positive bags enclosed by the rectangle. At the same time,

it tries to minimize the number of instances from the negative bags

within the rectangle. Following this, a general framework, called
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Fig. 1: Motivation for the proposed DD-based MIL framework.

Diverse Density (DD), was proposed in [3] which measures the co-

occurrence of similar instances from different positive bags. An ap-

proach based on Expectation-Maximization and DD, called EM-DD,

for MIL was proposed in [4]. More recently, an MIL algorithm for

randomized trees, named MIForest, was proposed in [5]. An inter-

esting approach, called Multiple Instance Learning via Embedded

instance Selection (MILES), was proposed in [6]. This method con-

verts the MIL problem to a standard supervised learning problem

that does not impose the assumption relating instance labels to bag

labels.

In recent years, sparse representation and dictionary learning-

based methods have gained a lot of traction in computer vision and

image understanding fields [7], [8], [9]. While the MIL algorithms

exist for popular classification methods like Support Vector Ma-

chines (SVM) [10] and decision trees [5], such algorithms have not

been studied much in the literature using the dictionary learning

framework. In this paper, we develop a DD-based dictionary learn-

ing framework for MIL where labels are available only for the bags,

and not for the individual samples. Figure 1 provides the intuition

behind our method. Instances in a bag can be thought of as curves on

a data manifold. In this figure, we show instances from one negative

bag and 3 positive bags. These curves laid by each bag intersect

at different locations. From the problem definition, the negative

bag contains only negative class samples, hence the region around

the negative curve is very likely to be a negative concept, even if it

intersects with positive bags. However, the intersection of positive

bags, is likely to belong to the positive concept. Traditional diverse

density-based approaches [3] can find only one positive concept

that is close to the intersection of positive bags and away from the

negative bags. Since one point in feature space can not describe the



positive class distribution, these approaches tend to compute differ-

ent positive concepts with multiple initializations. In the proposed

method, the multiple concepts are naturally captured by dictionary

atoms leading to a better performance.

Recently, a dictionary-based MIL algorithm was proposed for

event detection in [11] that iteratively prunes negative samples from

positive bags based on the dictionary learned from the negative bags.

This approach may not generalize well for multiclass classification

where computing a negative dictionary might be difficult. In con-

trast, our method seeks to learn a dictionary that captures the in-

tersection of positive bags. Another max-margin dictionary learn-

ing algorithm was recently proposed for computing spatial pyramid

features from gray images for object and scene recognition in [12]

. This dictionary consists of rows containing SVM weight vectors

computed using an approach similar to the MI-SVM. This dictionary

is pre-multiplied to the dense features and the resulting coefficients

are max-pooled. This algorithm takes dense features as its input and

is difficult to extend to more general image features.

The rest of the paper is organized as follows. Section 2 presents

an overview and formulation of proposed problem. Section 3 de-

scribes an optimization approach to solve the proposed formulation.

Next, in Section 4 we present approach to classify the bags. Experi-

ments are presented in Section 5 and, finally, the paper is concluded

in Section 6.

2. MIL DICTIONARY LEARNING

In this section, we first give an overview of the proposed MIL dic-

tionary learning framework. We then formulate the multi-class MIL

dictionary learning objective.

Overview: Assume that we are given N labeled bags Yi and their

corresponding labels li for all i = 1, . . . N . Each label can be

from one of the C classes, i.e. li ∈ {1, . . . , C}. A bag Yi can

have one or more samples, called instances, denoted by yij , j =
1, . . .Mi, where Mi is the number of instances in the ith bag, i.e.,

Yi , [yi1, . . . ,yiMi
]. In multi-class MIL setting, if the label of

a bag is li, then at least one of its instances should belong to class

li while the others can be from any class. In many computer vision

applications a bag corresponds to an image and its instances can be

created by varying the scale, position or region of interest. For ex-

ample, in tracking by detection application [13] multiple overlapping

patches can be used as instances and in object recognition applica-

tion [14, 15, 5] multiple regions of an image can be treated as its

instances.

The main focus of this work is to obtain a good representation

by learning a dictionary for each class with the given labeled train-

ing bags. We represent each instance as a sparse linear combination

of the dictionary elements (called atoms) that are representative of

the true class. However, for learning the underlying structure in each

class, it is important to consider only those instances which belong

to the bag’s class and disregard other class instances. Existing algo-

rithms for dictionary learning need samples as input and do not work

with bags. Hence, in this work we propose a novel noisy-OR model-

based dictionary learning algorithm that can learn the representation

of each class from bags under the MIL setting.

Our approach relies on learning a dictionary Dc for each class

c. We define the probability of an instance yij belonging to the cth

class as,

pij = exp
(

−‖yij −Dcxij‖
2

2

)

,

where xij is the sparse coefficient corresponding to yij and ‖yij −
Dcxij‖2 is the reconstruction error. Our goal is to learn Dc for

which at least one instance in each bag of class c is well represented

(i.e., the probability is high) and the bags of all the other classes (i.e.,

not c) are poorly represented. This objective can be captured using

the noisy-OR model (or the diverse density function [3]) as follows,

J̃ =
∏

i:li=c

(

1−

Mi
∏

j=1

(1− pij)
)

∏

i:li 6=c

(

Mi
∏

j=1

(1− pij)
)

. (1)

Note that, for J̃ to be high, at least one instance from each bag

of class c should have high pij , while all the instances in the bags

of other classes should have low probability. If we maximize the

cost function in (1) with respect to the matrix Dc, we can learn the

structure common to all the cth class bags and absent from the bags

of the other classes. We refer to this method as dictionary-based

multiple instance learning (DMIL).

Formualtion: We denote the data matrix by Y = [Y1, . . . ,YN ] ∈
R

d×M . Here, M = M1 + · · · + MN is the total number of in-

stances in all the bags, Mi is the number of instances in the ith

bag and d is the dimension of the features for each instance. Let

Yc be the concatenation of all the cth class bags, i.e, Yc = [Yi :

li = c] ∈ R
d×Mc

. Note that the subscript i in Yi denotes the

bag index and superscript c in Yc denotes the matrix of all the

bags that belong to class c. Similarly, Mc is the total number of

instances in all the cth class bags, i.e. Mc =
∑

i:li=c
Mi. For nota-

tional clarity, we re-index instances of all the cth class bags and write

Yc = [yc
1, . . . ,y

c
Mc ], where yc

i is the ith instance of the cth class

after re-indexing.

Given a dictionary Dc, we can represent an instance y as a

sparse linear combination of the atoms in D. Finding such a sparse

representation entails solving the following optimization problem

x = argmin
z

‖y −Dcz‖
2

2 subject to ‖z‖0 ≤ T0, (2)

where, ‖.‖2 and ‖.‖0 denote the ℓ2 and ℓ0-norm, respectively. The

problem in (2) can be solved using the orthogonal matching pursuit

(OMP) algorithm. Next, we represent the jth instance of the ith bag

using the dictionary Dc and write its probability pij in terms of the

representation error as follows,

pij(Dc,xij) = exp
(

− ‖yij −Dcxij‖
2

2

)

(3)

where xij is the sparse coefficient of yij and (.)
T denotes the matrix

transposition operation.

In order to learn the dictionary Dc = [d1, · · · ,dKc
] for class

c, we need to optimize the cost in (1) with respect to Dc and all

the sparse coefficients xij . We denote all the sparse coefficients

for the cth class dictionary by the matrix Xc = [X1, . . . ,XN ] ∈
R

Kc×N where Xi = [xi1, . . . ,xiMi
] ∈ R

Kc×Mi . In other words,

Xi contains the sparse coefficients for all the instances of the ith

bag. Note that, for notational simplicity, we have not used any sub-

script/superscript c withXi and xij to indicate that these sparse co-

efficients are computed using the cth class dictionary. Next, we take

the negative log of the cost J̃ in (1), and introduce a parameter α

that controls the influence of the non-cth class bags,

J (Dc,X
c) = −

∑

i:li=c

log
(

1−

Mi
∏

j=1

(1− pij)
)

− α
∑

i:li 6=c

Mi
∑

j=1

log(1− pij). (4)



With the above notations, the overall problem of learning the dictio-

naries can be captured in following optimization problem,

D̂c, X̂
c = arg min

Dc,Xc
J (Dc,X

c),

subject to ‖xij‖0 ≤ T0, ‖dm‖2 =, 1 m = 1, · · · ,Kc. (5)

3. OPTIMIZATION APPROACH

In this section, we develop an approach to solve (5) by updating one

atom, dk, at a time while keeping the others fixed. We first write

instance probabilities pij as a function of dk, and then utilize it to

update dk .

Instance Probabilities pij in terms of dk: Using (3), we can re-

write pij as a function of the kth atom dk, i.e.,

pij(dk, xijk) = exp
(

− ‖yij −Dcxij‖
2

2

)

= exp
(

−‖rij − dkxijk‖
2

2

)

, (6)

where xijk is the kth element of the sparse vector xij and

rij = yij −

Kc
∑

m=1

m 6=k

dmxijm.

Atom Update: We propose an iterative procedure to optimize the

kth atom dk, k = 1, . . . ,Kc. Let the cost for optimizing dk be

denoted by Jdk
. Note that Jdk

, from (4), is a function of pij and,

together with the definition of pij in (3), can be written as,

Jdk
(dk) = −

∑

i:li=c

log

(

1−

Mi
∏

j=1

(1− pij (dk, xijk))

)

− α
∑

i:li 6=c

Mi
∑

j=1

log (1− pij(dk, xijk)) . (7)

Hence, the optimization problem in (5) can be reformulated for the

kth atom as,

d̂k = argmin
dk

Jdk
(dk), subject to ‖dk‖2 = 1. (8)

Optimization for dk in (8) can be viewed as minimizing the neg-

ative log likelihood and, similar to [16], is solved using the gradient

descent algorithm. In order to satisfy the unit norm constraint, we

re-normalize the solution at each step of the gradient descent and line

search. Different steps of the optimization for Dc are summarized

in Algorithm 1.

Connection to the Traditional Dictionary Learning: It is inter-

esting to note that first part of our cost J in (4) is identical to the

traditional dictionary learning cost [17] when there is only one in-

stance in each bag. Let this first part of the cost be denoted by J1.

By settingMi = 1, ∀i it becomes,

J1 = −
∑

i:li=c

log
(

1−

Mi
∏

j=1

(1− pij)
)

= −
∑

i:li=c

log pi1

=
∑

i:li=c

‖yi1 −Dcxi1‖
2

2. (9)

Hence, in the case of one instance per bag, our problem formulation

can also be viewed as a discriminative dictionary learning approach

Algorithm 1:Algorithm for Learning cth Class DictionaryDc

Input: Bags Yi, Labels li,∀i = 1, . . . N , Parameters

α, T0,maxItr.

Output: Dc.

for itr = 1, . . . ,maxItr do

for k = 1, . . . ,Kc do
Update dk by solving (8) with the gradient descent

method.
end

Update the coefficient matrixXc by solving (2) for each

instance one at a time.
end

returnDc.

where the first part J1 ensures that the instances are well represented

by the dictionary of the corresponding class, and the second part of

the cost J in (4) ensures that the samples of the non-cth classes are

not represented well by the dictionaryDc .

4. CLASSIFICATION

LetD denote the combined dictionary defined as diag(D1, · · · ,DC).
We compute the sparse coefficients of all the training instances on

the combined dictionary by solving the following sparse coding

problem

xij = argmin
z

‖yij −Dz‖22 subject to, ‖z‖0 ≤ T.

We then compute the probability pij of this instance by (6) after

replacing Dc by D. The sparse representation of the training bags

Yi is obtained as the weighted combination of the sparse coefficients

of its instances. For example, the sparse representation of the ith

training bag, denote by xi is computed as, xi =
∑Mi

j=1
pijxij . Once

we obtain the sparse codes for the training bags, any classification

algorithm can be used to classify the samples. In our experiments,

we utilize an SVM for classification.

5. EXPERIMENTAL RESULTS

In this section we first analyze our algorithm using a synthetic

dataset to gain additional insights. We then evaluate our method on

popular datasets for MIL like the Tiger, Fox, Elephant [10], Musk

[2] and the Corel dataset [6].

Synthetic Experiment: We analyze our algorithm using a three

class synthetic dataset. We create 50 bags for each class by first

drawing one sample per bag from three different normal distri-

butions (one for each class) with means [1, 0, 0]T , [0, 1, 0]T and

[0, 0, 1]T and covariance matrix





0.051 0.01 0.01
0.01 0.051 0.01
0.01 0.01 0.051



. Then,

in each bag, we add 3 more samples from uniformly distributed

noise as shown in Figure 2(a). After learning the dictionary for

each class with the noisy bags, we project all the instances on the

dictionaries of their respective classes and compute the probabil-

ity for each instance using (3). The color coded probabilities are

displayed in Figure 2(b)-(c). As can be observed from this figure,

the instances from the normal distributions have higher probabilities

(depicted by red color) and instances from the noise distributions

have lower probabilities (blue color). This clearly demonstrates that
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Fig. 2: Demonstrating the probabilities of instances after projecting them onto their respective dictionaries: (a) Original noisy bags. Each bag

contains one instance from a normal distribution of its class and 3 instances from the uniformly distributed noise. (b) Color coded probabilities

of instances from three normal distributions, (c) Color coded probabilities of the uniformly distributed noise. Note that the probabilities of

true instances are much higher than that of the noise. (d) Confusion matrix for one of the splits of Corel-1000 image dataset.

the proposed method learns the true representations of each class

and reconstructs them well, despite the presence of multiple noise

samples in each bag,. Furthermore, the method does not learn the

structure in the noise samples and hence gives high reconstruction

errors for them.

Intuitive Reasoning: Atoms are learned by the proposed method

to capture the common structure across all the bags of a class, at

the same time suppressing the structure of other classes. Thus, the

linear combination of these atoms will reconstruct the true samples

of the class while suppressing the background or noise. Since the

classifier is learned over the reconstructed signal, it can discriminate

the classes well despite the presence of noisy samples in the training

bags.

MIL Benchmark Datasets: Next, we evaluate the proposed ap-

proach on the benchmark MIL datasets namely Tiger, Elephant

and Fox introduced in [10], and the Musk1 and Musk2 proposed

by [2]. Each of the Tiger, Elephant, and Fox datasets have 100
positive and 100 negative bags. A positive bag corresponds to the

true image of an animal and negative bags are randomly drawn from

the pool of other animals. The instances in each bag are created

by segmenting the images, and color, texture, and shape features

are used as described in [10]. The Musk1 and Musk2 datasets are

publicly available datasets that were introduced in drug activity

problem proposed by Dietterich et al. [2]. We use the same features

and experimental set up as used [10] and compare our results in

Table 1. In these experiments, we use 50 atoms per class. The

sparsity T0 = 10 and α = 0.1 were used for dictionary learning

for all the datasets. These two parameters were found using 5-fold
cross-validation. We believe that the main reason why our method

performs better is that we learn dictionary in such a way that the

learned atoms can represent well the commonalities among the bags

of the same class while they result in high reconstruction error for

the non-common structure. By translating these reconstruction error

into probabilities, we are able to reduce the effect of the background

of each image while computing the bag features (sparse coefficients).

Corel Dataset: The Corel dataset consists of 20 object categories

with 100 images per category. These images are taken from CD-

ROMs published by the COREL Corporation. Each image is seg-

mented into regions and each region is then called an instance [6].

The regions of an image can greatly vary depending on its complex-

ity. We use the same instance features as [6] and report our result in

Table 2. Here, we perform two categorization tasks: first on 10 ob-

Algorithms Elephant Fox Tiger Musk1 Musk2

mi-SVM [10] 82 58 79 87 84
MI-SVM [10] 81 59 84 78 84
MILES [6] 81 62 80 88 83
SIL-SVM 85 53 77 88 87

AW-SVM [18] 82 64 83 86 84
AL-SVM [18] 79 63 78 86 83
EM-DD [4] 78 56 72 85 85

MILBoost-NOR [19] 73 58 56 71 61
MIForests [5] 84 64 82 85 82

DMIL 87 68 89 92 91

Table 1: Average accuracy of five random splits on the benchmark

datasets.

ject categories (corel-1000) and then on all the 20 object categories

(corel-2000). For corel-1000 task, we analyze the class accuracy for

each category using the confusion matrix in Figure 2(d). Each col-

umn in the confusion matrix corresponds to the predicted accuracy

of the test samples. As we can see from the figure, class 2 (‘Beach’)

is confused mostly with class 9 (‘Mountains and glaciers’) which is

possibly due to their similar appearances. In both tasks, we used 50
atoms for dictionary learning, sparsity T0 = 5 , and α = 0.1. As

before, T0 and α were selected by 5-fold cross-validation.

Algorithms 1000-Image Dataset 2000-Image Dataset 2

MILES [6] 82.6 : [81.4, 83.7] 68.7 : [67.3, 70.1]
MI-SVM [10] 74.7 : [74.1, 75.3] 54.6 : [53.1, 56.1]
DD-SVM [14] 81.5 : [78.5, 84.5] 67.5 : [66.1, 68.9]

k-means-SVM [20] 69.8 : [67.9, 71.7] 52.3 : [51.6, 52.9]
DMIL 84.1 : [82.8, 85.4] 70.2 : [68.3, 72.1]

Table 2: Average accuracy along with the 95 percent confidence

interval over five random test sets of the Corel Dataset.

6. CONCLUSION

We proposed a general dictionary learning method using multiple in-

stance learning framework. It was shown that a special case of our

method reduces to a novel discriminative dictionary learning formu-

lation. An efficient algorithm was proposed for updating atoms of

the dictionary.
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