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ABSTRACT

Subspace clustering refers to the problem of grouping data points
that lie in a union of low-dimensional subspaces. One successful ap-
proach for solving this problem is sparse subspace clustering, which
is based on a sparse representation of the data. In this paper, we ex-
tend SSC to non-linear manifolds by using the kernel trick. We show
that the alternating direction method of multipliers can be used to ef-
ficiently find kernel sparse representations. Various experiments on
synthetic as well real datasets show that non-linear mappings lead to
sparse representation that give better clustering results than state-of-
the-art methods.

Index Terms— Subspace clustering, sparse subspace clustering,
kernel methods, non-linear subspace clustering.

1. INTRODUCTION

Many practical computer vision and image processing applications
require processing and representation of high-dimensional data.
Often these high-dimensional data can be represented by a low-
dimensional subspace. For instance, it is well known that the set of
face images under all possible illumination conditions can be well
approximated by a 9-dimensional linear subspace [1]. Similarly, tra-
jectories of a rigidly moving object in a video [2] and hand written
digits with different variations [3] also lie in low-dimensional sub-
spaces. One can view the collection of data from different classes
as samples from a union of low-dimensional subspaces. In subspace
clustering, given the data from a union of subspaces, the objective is
to find the number of subspaces, their dimensions, the segmentation
of the data and a basis for each subspace [4].

Various algorithms have been proposed in the literature for sub-
space clustering. Some of these algorithms are iterative in nature
[5], [6] while the others are based on spectral clustering [7], [8], [9],
[10]. Statistical [11] and algebraic [12], [13] approaches have also
been proposed in the literature for subspace clustering. In particu-
lar, sparse representation and low-rank approximation-based meth-
ods for subspace clustering [14], [15], [10], [16], [17], [18], [19],
[20], [21] have gained a lot of traction in recent years. These meth-
ods find a sparse or low-rank representation of the data and build
a similarity graph on the sparse or low-rank coefficient matrix for
segmenting the data. One of the advantages of these methods is
that they are robust to noise and occlusion. Furthermore, some of
these approaches do not require the knowledge of the dimensions
and the number of subspaces. In particular, the Sparse Subspace
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Fig. 1: Overview of the proposed non-linear subspace clustering
methods. Using the kernel trick, data is transformed onto a high-
dimensional feature space so that better sparse representations can
be found for subspace clustering.

Clustering (SSC) algorithm [10], [16] and Low-Rank Representa-
tion (LRR) [14] based algorithms are well supported by theoretical
analysis [22] [17], [18] and provide state-of-the-art results on many
publicly available datasets such as the Hopkins155 benchmark mo-
tion segmentation dataset [23].

While the linear model is a good approximation, in practice
many datasets are better modeled by non-linear manifolds. In this
case, algorithms such as SSC are no longer applicable. One approach
to dealing with nonlinear manifolds is to solve for a weighted sparse
representation, as proposed in [24]. However, while this approach
leads to better embeddings, its doesn’t improve the clustering per-
formance. Another approach to dealing with non-linear manifolds
is to use kernel methods. For instance, kernel-based sparse repre-
sentations have been exploited before in the context of compressed
sensing [25] , sparse coding [26] and dictionary learning [27], [28].
It has been shown that the non-linear mapping using the kernel trick
can group the data with the same distribution and make them linearly
separable. As a result, sparse representation of the data can be found
easily and the representation error can be reduced significantly.

Motivated by the success of non-linear representations in various
computer vision and image understanding applications, we propose
a non-linear extension of SSC method for manifold clustering. It is
shown that by using the kernel trick, one can obtain a sparse repre-
sentation of the data in a high-dimensional feature space that leads to
better clustering results. Fig. 1 presents an overview of our method.
The proposed kernel SSC (KSSC) method is based on the classical
alternating direction method of multipliers.

This paper is organized as follows. A brief background of the
SSC method is provided in Section 2. Details of our nonlinear ex-
tension of SSC method is covered in Section 3. Experimental results
are presented in Section 4 and Section 5 concludes the paper with a
brief summary and discussion.



2. SPARSE SUBSPACE CLUSTERING

In this section, we provide a brief background on sparse subspace
clustering. Let Y = [y1, · · · ,yN ] ∈ RD×N be a collection of
N signals {yi ∈ RD}Ni=1 drawn from a union of n linear subspaces
S1∪S2∪· · ·∪Sn of dimensions {d`}n`=1 in RD . Let Y` ∈ RD×N`
be a sub-matrix of Y of rank d` with N` > d` points that lie in S`
with N1 + N2 + · · · + Nn = N. Given Y, the task of subspace
clustering is to cluster the signals according to their subspaces.

It is easy to see that each data point in Y can be efficiently rep-
resented by a linear combination of at most d` other points in Y.
That is, one can represent yi as follows

yi = Yci, cii = 0, ‖ci‖0 ≤ d`

where ci = [ci1, ci2, · · · , ciN ]T ∈ RN are the coefficients and
‖x‖0 is the sparsity measure that counts the number of non-zero
elements in x. Often N` � d`. As a result the following `1-
minimization problem is solved to obtain the coefficients

min ‖c‖1 such that yi = Yci, cii = 0, (1)

where ‖x‖1 =
∑N
i=1 |xi| is the `1-norm of x ∈ RN . Considering

all the data points i = 1, · · · , N , in matrix form, the above opti-
mization problem can be rewritten as

min ‖C‖1 subject to Y = YC, diag(C) = 0, (2)

where C = [c1, · · · , cN ] ∈ RN×N is the coefficient matrix whose
column ci is the sparse representation vector corresponding to yi,
diag(C) ∈ RN is the vector containing the diagonal elements of
C and 0 ∈ RN is an N -dimensional vector containing zeros as its
elements.

In the case where the data is contaminated by some arbitrary
noise Z, i.e., Y = YC + Z, the following problem is solved to
obtain C

min ‖C‖1 + λ1‖Y −YC‖2F s. t. diag(C) = 0, (3)

where ‖ · ‖F denotes the Frobenius norm. In practice, the data may
lie in a union of affine subspaces. In this case, the following problem
can be solved to obtain the sparse coefficients

min ‖C‖1 + λ1‖Y −YC‖2F ,

s. t. diag(C) = 0, CT1 = 1, (4)

where 1 is a vector of dimension N containing ones as its elements.
The above problems can be efficiently solved by using the clas-

sical alternating direction method of multipliers (ADMM) [16]. In
SSC, once C is found, spectral clustering methods [29] are applied
on the affinity matrix W = |C| + |C|T to obtain the segmentation
of the data Y into Y1,Y2, · · · ,Yn.

3. NON-LINEAR EXTENSION OF SSC

Let Φ : RD → H be a mapping from the input space to the repro-
ducing kernel Hilbert space H. Let KYY ∈ RN×N be a positive
semidefinite kernel Gram matrix whose elements are computed as

[KYY]i,j = [〈Φ(Y),Φ(Y)〉H]i,j = Φ(yi)
TΦ(yj) = κ(yi,yj),

where κ : RD × RD → R is the kernel function and

Φ(Y) = [Φ(y1),Φ(y2), · · · ,Φ(yN )].

Some commonly used kernels include polynomial kernels κ(x,y) =

〈(x,y〉+ a)b and Gaussian kernels κ(x,y) = exp
(
−σ‖x− y‖2

)
,

where a, b and σ are the parameters of the kernel functions.
Equipped with the above notations, in what follows, we provide
non-linear extension of SSC method.

3.1. Kernel SSC

Non-linear version of the optimization problem (4) can be written as
follows

min ‖C‖1 + λ1‖Φ(Y)− Φ(Y)C‖2F ,

s. t. diag(C) = 0, CT1 = 1. (5)

In terms of the kernel matrix KYY , this can be equivalently written
as

min ‖C‖1 + λ1Tr(KYY − 2KYYC + CTKYYC),

s. t. diag(C) = 0, CT1 = 1. (6)

Note that the above formulation explicitly depends on the kernel ma-
trix KYY but not on the mapping Φ. This problem can be efficiently
solved using the ADMM method.

3.1.1. ADMM method for solving (5)

Consider the following optimization problem

min
A,C
‖C‖1 + λ1‖Φ(Y)− Φ(Y)A‖2F ,

s. t. A = C− diag(C), AT1 = 1, (7)

where we have introduced an auxiliary matrix A ∈ RN×N . The so-
lution to this optimization problem coincides with the solution of (5).
By adding the two penalty terms corresponding to the two constrains
in (7), we get the following optimization problem

min
A,C
‖C‖1 + λ1‖Φ(Y)− Φ(Y)A‖2F

+
ρ

2
‖A−C + diag(C)‖2F +

ρ

2
‖AT1− 1‖22

s. t. A = C− diag(C), AT1 = 1. (8)

Both (7) and (8) have the same solutions. We can write the La-
grangian formulation of (8) by introducing a vector δ ∈ RN and a
matrix 4 ∈ RN×N as follows

L(C,A, δ,4) = min
A,C
‖C‖1 + λ1‖Φ(Y)− Φ(Y)A‖2F

+
ρ

2
‖A−C + diag(C)‖2F +

ρ

2
‖AT1− 1‖22

+ Tr(4T (A−C + diag(C))) + δT (AT1− 1). (9)

In the ADMM method, variables are optimized one at a time while
keeping the other variables fixed. In what follows, we describe each
of the suboptimization problems in detail.

Update step for A: With fixed Ck, δk,4k, Ak+1 is obtained by
minimizing L with respect to A. As a result, Ak+1 is obtained by
solving the following linear system of equations

(λ1KYY + ρI + ρ11T )Ak+1

= λ1KYY + ρ(11T + Ck − diag(Ck))− 1δTk −4k.



Note that the update on A depends on the kernel matrix KYY.

Update step for C : To find Ck+1, we fix Ak, δk,4k and minimize
L with respect to C. This gives us the following solution

Ck+1 = J− diag(J), J = T 1
ρ

(
Ak+1 +

4k

ρ

)
.

Here, Tα(.) denotes the shrinkage thresholding operator acting
on each element of the given matrix defined as Tα(x) = (|x| −
α)+sgn(x), where the operator (.)+ returns its argument if it is
non-negative and returns zero otherwise.

Update steps for δ,4 : Having fixed Ck,Ak, gradient ascent with
step size of ρ is performed to update δ,4 as

δk+1 = δk + ρ(AT
k+11− 1)

4k+1 = 4k + ρ (Ak+1 −Ck+1 + diag(Ck+1)) .

These steps are repeated until, ‖AT
k 1−1‖∞ ≤ ε, ‖Ak−Ck‖∞ ≤

ε, ‖Ak−Ak−1‖∞ ≤ ε.Different steps for the ADMM optimization
of (5) are summarized in Algorithm 1.

Algorithm 1: ADMM algorithm for solving (5)

Input: KYY, λ1, ρ.
Initialization:
- Set MaxIter=104 and Terminate← False.
- Set C0 = 0,A0 = 0, δ0 = 0 and 40 = 0.
while (Terminate == False) do
- Update Ak+1 by solving the following system of equations:

(λ1KYY + ρI + ρ11T )Ak+1

= λ1KYY + ρ(11T + Ck − diag(Ck))− 1δTk −4k

- Update Ck+1 as Ck+1 = J− diag(J), where

J = T 1
ρ

(
Ak+1 +

4k

ρ

)
- Update δk+1 as δk+1 = δk + ρ(AT

k+11− 1)
- Update 4k+1 as
4k+1 = 4k + ρ (Ak+1 −Ck+1 + diag(Ck+1))
- k ← k + 1

if ‖AT
k 1− 1‖∞ ≤ ε and‖Ak −Ck‖∞ ≤ ε and

‖Ak −Ak−1‖∞ ≤ ε or k ≥ maxIter
then
Terminate← True

end if
end while
Output: Ĉ = Ck.

Similar to the linear SSC method, once the sparse coefficient
matrix C is found in the high dimensional feature space, spectral
clustering is applied on the affinity matrix W = |C| + |C|T to
obtain the segmentation of the data.

4. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed method on both syn-
thetic and real datasets. We compare our method with several
state-of-the-art subspace clustering algorithms such as SSC [16],

Low-Rank Representation (LRR) [14], Low-Rank Subspace Clus-
tering (LRSC) [15], Local Subspace Affinity (LSA) [9] and Spectral
Curvature Clustering (SCC) [7]. The selection of parameters is done
through a 5-fold cross-validation. All the experiments are done on
an OS X system with 2.6 GHz Intel Core i7 processor using Matlab.
Subspace clustering error is used to measure the performance of
different algorithms. It is defined as

subspace clustering error =
#of misclassified points

total#of points
× 100.

4.1. Simulated Data

In this section, we present results of our KSSC method on synthetic
data. We will show that by mapping the data onto a feature space
one can obtain better sparse codes for SSC. The smallest principle
angle, θij , between two subspaces Si and Sj is defined as

cos(θi,j) = max
ai∈Si,aj∈Sj

aTi aj
‖ai‖2‖aj‖2

.

It was shown in [16] that when the smallest principle angle between
subspaces and the number of data points in each subspace is small,
the SSC clustering error increases. We study the performance of our
method when the data in each subspace and the smallest principle
angle between subspaces are small.

We follow the same experimental setting as in [16]. We consider
n = 3 subspaces of dimension d = 4 embedded in D = 55 dimen-
sional space. We generate the subspace bases {Ti ∈ RD×d}3i=1

such that rank ([T1,T2,T3]) = 2d. Also, the subspaces are gener-
ated such that θ12 = θ23 = θ. Furthermore, we generate the same
number of points, Ng, in each subspace at random and change the
value of Ng.

For a fixed value of d, we change the minimum angle between
subspaces, θ, as well as the number of points in each subspace Ng .
For each pair of (θ,Ng), we compute the subspace clustering error.
Since the performance of SSC and KSSC methods are based on how
well the sparse coefficients are found, we also calculate the subspace
sparse recovery error. For the data points {yi}3Ngi=1 , the sparse recov-
ery error ESR is given by

ESR =
1

3Ng

3Ng∑
i=1

(
1− ‖ciqi‖1‖ci‖1

)
,

where cTi = [ci1
T , ci2

T , ci3
T ] represents the sparse coefficients of

yi ∈ Sqi and cij corresponds to the points in Sj .
We vary the smallest principle angle between subspaces and the

number of points in each subspace as θ ∈ [6, 60] degrees and Ng ∈
[d + 1, 30d], respectively. For each pair (θ,Ng), we calculate the
average subspace clustering error as well as the averageESR over 20
trials. In each trial we randomly generate data points and subspaces.
Polynomial kernel with parameters a = 0 and b = 2 is used in this
experiment. Results of this experiment are shown in Fig. 2.

When θ and Ng decrease, both the sparse recovery and cluster-
ing errors of SSC and KSSC methods increase. Also, the clustering
error is highly dependent on the sparse recovery error and both er-
rors follow the same pattern. In other words, clustering results are
highly dependent on how well the sparse coefficients are recovered.
By comparing the decay of errors, one can see that in the case where
both θ and Ng are small, the KSSC method performs better than the
SSC method. The error decays faster in the case of KSSC than SSC.
This can be explained by the fact that in KSSC polynomial kernel is
able to map the data in the high-dimensional feature space in a way
that the principle angle between the subspaces increases.
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Fig. 2: The average subspace clustering and subspace-sparse recov-
ery errors of the SSC method are shown in (a) and (c), respectively.
The average subspace clustering and subspace-sparse recovery er-
rors of the KSSC method are shown in (b) and (d), respectively.

4.2. Handwritten Digits Clustering

In this section, we present results of different subspace clustering
methods on the Binary Alphadigits dataset .1 The Binary Alphadigits
dataset contains binary digits of 0 through 9 and capital A through
Z. Each digit is of size 20×16. There are 39 examples of each class.
Samples digits from this dataset are shown in Fig. 3(a). This dataset
is challenging because of the intraclass variations among different
digits. For instance, the digits 0, 2 and 5 look very similar to the
letters O, Z and S, respectively.

Similar to the experimental set up in [16], to study the effect
of the number of digits in the clustering performance of different
methods, we divide the 36 digits into 4 groups, where the first three
groups correspond to digits 1-10, A-J, K-T, and the fourth group
corresponds to digits U-Z. For each of the first three groups, we
consider all choices of n ∈ {2, 3, 5, 8, 10} digits and for the last
group we consider all choices of n ∈ {2, 3, 5}. We apply various
subspace clustering algorithms on each trial and record their results.
For KSSC, we used Gaussian and polynomial kernels with different
parameters.

The results of different subspace clustering methods are shown
in Table 1. In Table 1, P (a, b) denotes a polynomial kernel with
parameters a, b and G(σ) denotes a Gaussian kernel with parameter
σ. As can be seen from this table that KSSC provides comparable
results to the other linear subspace clustering methods. In particular,
KSSC provides the best results on n = 2, 3 and 5, when a polyno-
mial kernel with parameters a = 3, b = 2 is used for clustering.
In Fig. 3(b) and (c), we show subspace angles corresponding to the
numerical digits 0-9 in the original and in the feature space. As can
be seen from this figure, non-linear mapping does increase the angle
between two subspaces which in turn helps in improving the overall
clustering error.

1Available at http://www.cs.toronto.edu/∼roweis/data.html
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Fig. 3: (a) Samples digits from the Binary Alphadigits dataset. (b)
Original subspace angles. (c) Subspace angles after the data has been
transformed into a feature space. Note that the non-linear mapping
generally increases the distance between two subspaces .

Algorithms
(2 digits)

LRSC LSA SSC LRR KSSC
P(3,2)

KSSC
P(2,0.2)

KSSC
G(10)

KSSC
G(7)

Mean 15.81 10.70 5.70 7.76 5.42 5.40 6.13 5.93
Median 8.97 3.85 2.56 3.84 2.56 2.56 2.56 2.56

Algorithms
(3 digits)

LRSC LSA SSC LRR KSSC
P(3,2)

KSSC
P(2,0.2)

KSSC
G(10)

KSSC
G(7)

Mean 25.65 22.69 13.58 14.21 12.85 13.30 14.54 13.64
Median 25.64 22.22 8.54 11.11 7.69 8.54 9.40 8.55

Algorithms
(5 digits)

LRSC LSA SSC LRR KSSC
P(3,2)

KSSC
P(2,0.2)

KSSC
G(10)

KSSC
G(7)

Mean 37.77 33.81 23.26 23.34 22.64 23.00 24.50 23.84
Median 37.95 33.85 25.12 23.59 23.08 23.85 27.18 26.15

Algorithms
(8 digits)

LRSC LSA SSC LRR KSSC
P(3,2)

KSSC
P(2,0.2)

KSSC
G(10)

KSSC
G(7)

Mean 47.98 40.76 30.00 30.50 31.06 31.24 31.38 31.19
Median 48.08 40.06 30.01 30.44 32.05 32.05 31.73 31.09

Algorithms
(10 digits)

LRSC LSA SSC LRR KSSC
P(3,2)

KSSC
P(2,0.2)

KSSC
G(10)

KSSC
G(7)

Mean 50.77 42.65 32.14 33.67 33.85 35.30 33.16 32.48
Median 51.03 41.28 32.82 32.56 34.36 36.15 34.10 33.33

Table 1: Clustering errors on the Alphadigits dataset.

5. CONCLUSION

We have presented a non-linear subspace clustering algorithm that
exploits sparsity of data in high dimensional feature space by ex-
tending the SSC subspace clustering algorithm through an appropri-
ate choice of kernel. Experimental results indicate that exploiting
non-linear parse representation in a high-dimensional feature space
can provide better clustering than the traditional subspace clustering
approaches.
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