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ABSTRACT

Data-driven sparse models have been shown to give superior per-

formance for image classification tasks. Most of these works de-

pend on learning a synthesis dictionary and the corresponding sparse

code for recognition. However in recent years, an alternate analysis

coding based framework (also known as co-sparse model) has been

proposed for learning sparse models. In this paper, we study this

framework for image classification. We demonstrate that the pro-

posed approach is robust and efficient, while giving a comparable or

better recognition performance than the traditional synthesis-based

models.

Index Terms— analysis sparse coding models, efficient sparse

coding, image classification

1. INTRODUCTION

Sparse representation-based data-driven models have become pop-

ular in vision and image processing communities. Olshausen and

Field [1] in their seminal work introduced the idea of learning rep-

resentation based on data itself rather than off-the-shelf bases. Since

then sparse representation-based dictionaries have been widely used

for image restoration and classification [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11]. Given a data matrixY ∈ R
d×N , whose columns rep-

resent d-dimensional signals, the basic formulation underlying these

methods involves learning a K-atom synthesis dictionary D∗ ∈
R

d×K and sparse code X∗ ∈ R
K×N , obtained as:

{D∗
,X

∗} = argmin
D,X

‖Y −DX‖2F s.t. ‖X‖0 ≤ T0

where, T0 is the sparsity level. This is a non-convex problem and

different schemes have been proposed for optimization, notably, K-

SVD [2], matrix factorization [12] and gradient descent [7] tech-

niques.

In recent years, an alternate analysis sparse coding (or co-sparse)

model has also been examined [13]. Figure 1 presents a brief com-

parison of the two models. Previous works have shown that analysis

model can yield richer feature representations and better results for

image restoration [13]. However, to the best of our knowledge, the

analysis framework has not been exploited yet for image classifica-

tion tasks. In this paper, we examine the application of the analysis

model for recognition, and demonstrate that it can achieve compara-

ble or better performance than synthesis models. Further, we show

that the proposed approach can lead to a faster optimization at test-

ing time, and the resulting sparse codes are stable under noise and

occlusion.
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Fig. 1. An overview of synthesis versus analysis models for sparse

coding.

2. ORGANIZATION

This paper is organized in six sections. We review the related works

in Section 3. The proposed formulation is described in Section 4 and

the optimization scheme in Section 5. The classification procedure

is described in Section 6 and experimental validations and results are

presented in Section 7. Finally, we conclude the paper and suggest

future directions in Section 8.

3. RELATEDWORKS

Analysis sparse coding models have only recently started receiving

attention. A detailed analysis of analysis models was presented in

[13]. An analysis K-SVD framework for learning the model was ex-

amined in [14]. Peleg et al [15] provided theoretical insights into

the analysis model. Similarly, methods based on transform cod-

ing were proposed in [16, 17]. The idea behind transform coding is

to learn transformation, instead of using off-the-shelf methods like

DCT, FFT, etc, so that the resulting signal is sparse. These meth-

ods show similar performance as the previous analysis models, but

have the added advantage of simpler gradient-based optimization

and higher speed while testing. This paper studies analysis model



along the lines of transform coding method. However, we generalize

it to different recognition scenarios.

4. FORMULATION

Given the data matrix, Y ∈ R
d×N , whose columns represent d-

dimensional training signals, in analysis dictionary framework [14],

the objective is to learn W ∈ R
M×d which minimizes ‖WY‖0.

The optimization problem can be written as:

W
∗ = argmin

W

‖WY‖0 s.t. W ∈ A (1)

where, A is a set of constraints so that the problem is well regu-

larized. However, the input samples can be noisy. In this case, the

analysis model can be extended by expressing

Y = X+E

where,E is noise andWX is sparse. This can be solved by the joint

optimization problem:

{W∗
,X

∗} = argmin
W,X

‖Y −X‖2F

s.t. ‖WX‖0 ≤ T0 ,W ∈ A (2)

where, T0 is the sparsity level. But, the transform coding framework

[16] shows that handling the error in transformed domain as

WY = X+E

is more general than (2). Hence, we solve the following optimization

problem for analysis coding:

{W∗
,X

∗} = argmin
W,X

‖WY −X‖2F

s.t. ‖X‖0 ≤ T0 , W ∈ A (3)

To obtain a well-regularized solution, we constrain the set A to

be matrices with row-wise norm to be unity. The unit norm condi-

tion is required to make the solution non-trivial. However, solving

(3) with just these constraints may not lead to a well-conditioned so-

lution. This is because the constraints presented above do not avoid

the possibility of repeated rows or linearly dependent rows. To over-

come these conditions, we add the following regularization terms to

the criterion function:

R(W) =

{

− log(det (WTW)) ifm ≥ d

− log(det (WWT)) ifm < d
(4)

This regularization ensures that the learntW has full column or row

rank depending upon the matrix size. Further, the function is differ-

entiable for cases where det (WTW) > 0 or det (WWT) > 0.
Note that we consider both overcomplete and under-complete cases

as both are common in recognition scenarios. Thus, the final opti-

mization is given as:

{W∗
,X

∗} = argmin
W,X

‖WY −X‖2F + λR(W)

s.t. ‖wi‖2 = 1 ∀ i = 1, · · · ,M, ‖X‖0 ≤ T0 (5)

where,wi is the i
th row of dictionary matrix and λ > 0 is a hyperpa-

rameter. We now describe a strategy to solve the above optimization

problem.

5. OPTIMIZATION

The overall cost function is non-convex, however, we follow the

strategy of alternate minimization to optimize the cost. This can

be done in two steps:

• Update sparse code, X: Fixing W, the solution for X can

be obtained by a simple thresholding. The optimal solution

for X will be given by retaining the top T0 coefficients in

each column ofWY. We can also relaxed ℓ0 constraint to ℓ1
to make the problem convex. In this case, we can solve the

following equivalent problem:

argmin
X

‖WY −X‖2F + β‖X‖1

This can be solved by applying a soft thresholding scheme as

follows:

Xi,j =











(WY)i,j −
β

2
if (WY)i,j ≥ β

2

(WY)i,j +
β

2
if (WY)i,j < −β

2

0 otherwise

(6)

• Update dictionaryW: FixingX, we now describe the update

steps for W. Even for a fixed X, it is a non-convex prob-

lem. We solve the problem using conjugate gradient descent

method [18] and then renormalizing the rows of W to unit

norm. During the gradient descent, a small penalty of ‖W‖2F
can also be added to the cost term for stable solution [17]. The

gradient of the function can be computed analytically and is

given as:

∇W(‖WY −X‖2F ) = 2WYY
T − 2YX

T
(7)

∇W(R(W)) = −2W†
(8)

Thus, the optimization scheme is simple, and we found it to converge

quickly during different experiments. A summary of the optimiza-

tion scheme is given in Algorithm 1.

Input: Data Y, sparsity level T0, dictionary size M , λ,

initialW

Procedure:

Iterate till convergence,

1. Update X: Update X using thresholding method.

2. Update W: Perform conjugate gradient descent followed

by renormalizing W row-wise.

Output: Analysis dictionary W, sparse codes X

Algorithm 1: Analysis Dictionary Learning (ADL)

5.1. Test Sparse Coding

At testing stage, given the test data yte and trained dictionary Wtr,

the sparse code can be obtained by solving the optimization problem:

x
∗
te = argmin

x

‖Wtryte − x‖2F s.t. ‖x‖0 ≤ T0

This can be solved using the thresholding method described above.

Hence, the encoding is efficient.



6. CLASSIFICATION

Given training samples from C classes {Yi}
C
i=1, we concatenate all

the training samples to obtain a training matrix as follows

Ytr = [Y1, · · · ,YC ] ∈ R
d×N

.

We then apply Algorithm 1 to learn the analysis dictionaryWtr.

Note that we do not employ any discriminative cost while learn-

ing. Once Wtr is found, we apply (6) on the training data Ytr and

test data Yte to obtain feature vectors Xtr and Xte, respectively.

Once the sparse codes are found, we train a Support Vector Machine

(SVM) classifier onXtr and test it onXte. The entire procedure for

classification is summarized in Algorithm 2.

Input: Train DataYtr, train label, ℓtr, test data Yte, T0, λ,

M .

Procedure:

1. Learn dictionary W from training data Ytr and input

parameters using Algorithm 1.

2. Obtain sparse codes Xtr andXte using Eq. (6) andWtr.

3. Train SVM usingXtr and ℓtr and test on Xte.

Output: Test labels, ℓte

Algorithm 2: Classification using ADL.

7. EXPERIMENTS

We conducted experiments on digit and face datasets to demonstrate

the efficacy of the proposed method. We compare the proposed

method with different synthesis based algorithms like SRC [19],

K-SVD [2], discriminative K-SVD (DKSVD) [6], Fisher discrimi-

nat dictionary learning (FDDL) [3], supervised dictionary learning

(SDL-G) [4] and incoherent dictionary learning [5]. Note that many

of these algorithms use class-wise reconstruction error for classifica-

tion. For a fair comparison, we report SVM-based classification for

K-SVD [2] and FDDL [3] algorithms. The results for other methods

are, however, reproduced as reported in literature.

7.1. USPS Digit Dataset

The USPS digit dataset [20] contains images of handwritten digits.

The dataset is split into 7291 training and 2007 testing samples. We

present results on recognition experiment as well as synthetic exper-

iments to test robustness of the method to noise and missing pixels.

7.1.1. Convergence and Learnt Dictionary

Figure 2 shows the convergence of the optimization and learnt atoms

of the dictionary. It can be seen that the cost converges smoothly.

The output sparse codes also demonstrate that the learnt dictionary

is meaningful, as there are few significant non-zero elements for each

digit sample.

7.1.2. Overall Recognition

We then compared the recognition rate of proposed method with dif-

ferent synthesis dictionary-based algorithms. We trained an RBF-

kernel based SVM classifier, tuning the parameters through cross-

validation. The final result is reported for 900 atoms dictionary with

T0 = 600, λ = 0.1. It can be seen in Table 1 that the accuracy of

the proposed method is comparable to other methods. In particular,

the proposed method performs better than [4] and is comparable to

[3] even though no discriminative cost has been used in training the

method. Note that [5] uses reconstruction error for classification,

hence, it is not directly comparable to the proposed method.

Method Recognition rate (%)

ADL-SVM 94.5

KSVD-SVM [2] 92.1

FDDL-SVM [3] 94.7

SDL-G [4] 93.3

Ramirez et al [5] 96.0

Table 1. Recognition rates for USPS dataset.

7.1.3. Stability under noise and occlusion

We compare the stability of sparse codes generated by the proposed

method to those generated by different synthesis coding methods,

viz., K-SVD [2] and FDDL [3] under different distortions. In the first

experiment, we added random Gaussian noise of increasing vari-

ance, and in the second experiment, we randomly set increasing per-

centage of pixels to zero. We compared the rank-one recognition

rates of these methods using the NN-classifier. It can be seen from

Figure 3 that the proposed method is more stable, esp. under addi-

tion of noise. Thus, analysis method are useful as often sparse codes

are used as building blocks for recognition systems [21].
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Fig. 3. Stabiliy of different sparse coding algorithms under (a) noise,

(b) missing pixels.
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Fig. 2. (a) Convergence of the proposed analysis dictionary algorithm, (b) examples of the atoms learnt and (c) absolute value of output sparse

codes produced by the algorithm.

7.1.4. Encoding Speed

A significant advantage of the proposed framework over synthesis

methods is the simple encoding scheme at test time. We compare

the encoding time for the test images of the dataset with algorithms

used in sparse coding in synthesis dictionaries, like OMP [22] and

SPAMS [12]. Table 2 shows that the proposed ADL alogrithm is

much faster than previous methods. All the tests were done on a

2.13 GHz Intel Xeon processor machine using Matlab programming

interface.

Method Time (s)

ADL 0.09

SPAMS [12] 0.15

OMP [22] 2.28

Table 2. Encoding speed for different methods for dictionary size

300, T0 = 10, number of samples = 2007.

7.2. AR Face Dataset

The AR face data set [23] consists of faces with varying illumination,

expression, and occlusion conditions, captured in two sessions. We

evaluated our algorithms on a set of 100 users. Images from the

first session, seven for each subject, were used as training and the

images from the second session, again seven per subject, were used

for testing.

7.2.1. Recognition Comparison

Table 3 shows a comparison with different methods. The proposed

method compares favorably with previously proposed synthesis

sparse coding methods. Again it should be noted that SRC [19]

uses reconstruction error for classification, and hence is not directly

comparable. The proposed method however outperforms [6], which

is a discriminative dictionary method.

7.2.2. Output Sparse Code

Figure 4 shows the output sparse codes for first 50 test samples.

It can be seen that by exploiting the low-dimensional structure of

face images, the proposed method is able to learn meaningful sparse

codes.

Method Recognition rate (%)

ADL-SVM 87.7

KSVD-SVM [2] 88.0

FDDL-SVM [3] 88.2

DKSVD [6] 85.4

SRC [19] 88.8

Table 3. Recognition rates for AR Face dataset.
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Fig. 4. Output sparse codes produced by the proposed method on

AR Face data.

8. CONCLUSION AND FUTURE DIRECTIONS

We have demonstrated some applications of analysis sparse coding

to image classification. The proposed approach compares favorably

with previous synthesis sparse coding methods and is robust to noise

and missing pixels. The method, further, has the advantage of simple

encoding scheme at testing, thus, making it efficient.

In this paper, we explored a basic formulation for analysis sparse

coding. Future directions include exploring discriminative methods

as well as methods to handle to non-linearity in data through ker-

nel approaches. The method can also be extended for other vision

tasks, like object detection, tracking, etc for which traditional sparse

coding methods have been explored. The proposed method being ef-

ficient, looks promising for these applications that require both speed

and accuracy.
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