
SECTORED RANDOM PROJECTIONS FOR CANCELABLE IRIS BIOMETRICS

1Jaishanker K. Pillai, 1Vishal M. Patel, 1Rama Chellappa and 2Nalini K. Ratha

1Department Of Electrical & Computer Engineering 2IBM Watson Research Center
Center for Automation Research, 19, Skyline Drive,

UMIACS, University of Maryland, Hawthorne,
College Park, MD 20742. NY 10532.

{jsp,pvishalm,rama}@umiacs.umd.edu ratha@us.ibm.com

ABSTRACT

Privacy and security are essential requirements in practical biometric
systems. In order to prevent the theft of biometric patterns, it is de-
sired to modify them through revocable and non invertible transfor-
mations called Cancelable Biometrics. In this paper, we propose an
efficient algorithm for generating a Cancelable Iris Biometric based
on Sectored Random Projections. Our algorithm can generate a new
pattern if the existing one is stolen, retain the original recognition
performance and prevent extraction of useful information from the
transformed patterns. Our method also addresses some of the draw-
backs of existing techniques and is robust to degradations due to
eyelids and eyelashes.

Index Terms— Cancelable Biometrics, Secure Biometrics, Iris,
Random Projections.

1. INTRODUCTION

With the rapid advancement of biometric technologies for personal
authentication, issues such as privacy and protection of personal data
become extremely relevant. To deal with them, the notion of Cance-
lable Biometrics has been introduced. The objectives of a Cancelable
Biometric are as follows [1]:

• Different templates should be used in different applications to
prevent cross matching.

• Template computation has to be non-invertible to prevent il-
legal recovery of biometric data.

• Revocation and reissue should be possible in the event of
compromise and

• Recognition performance should not degrade when a cance-
lable biometric template is used.

Iris is one of the most promising biometric for personal verifica-
tion. The texture patterns on the iris remain relatively stable through
out one’s life time and are found to be unique to each person. De-
signing a cancelable formulation for iris biometrics is an important
step towards deploying it in practical applications. In this paper,
we propose Sectored Random Projections (SRP) for Cancelable Iris
Biometric (CIB). Our algorithm has the following novel features:

1. We study the effects of Random Projections (RP) for CIB and
introduce sectored random projections.
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2. Our algorithm can generate a different iris pattern for each
application, create a new pattern if the existing one is stolen,
maintain the original recognition performance and also pre-
vent the extraction of useful information from the trans-
formed patterns.

3. Since the only block to be added for cancelability is a matrix
multiplication (using a precomputed matrix), our method can
easily be incorporated into existing iris recognition systems.

4. Unlike existing techniques for cancelability, the proposed
method does not suffer from a reduction in useful iris area
and is also robust to common outliers in iris data due to the
presence of eyelids, eyelashes and specular reflections.

2. BACKGROUND

The concept of cancelable biometrics was first introduced by Ratha
et al. in [2, 3]. In [4], RPs of discriminative features were used for
cancelability in face biometrics. The pioneering work in the field of
cancelable iris biometric was proposed in [5]. Other schemes have
also been introduced to improve the security of iris biometric. See
[1, 6, 7, 8, 9] and the references therein for more details.

In [5], four non invertible and revocable transformations were
introduced for cancelability. The first method, namely GRAY-
COMBO, transforms the Gabor features by circularly shifting and
adding rows at random. BIN-COMBO, the second method, applies
similar transformations on the iris codes by random shifting and
XOR-ing. As pointed out by the authors, these methods gradually
reduce the amount of information available for recognition. Since
these methods employ linear transformations on the Gabor feature
vectors, they are also sensitive to outliers in the form of eyelids,
eye lashes and specular reflections. As perfect segmentation of iris
images is difficult in practice, the performance of the recognition
algorithm drops after transformation. Also different regions of the
iris have different noise levels as demonstrated in [10]. Applying a
global linear transform will combine the good and the bad regions,
degrading the performance. On the other hand, as will be illustrated
in the following sections, our method does not suffer from these
limitations.

The other two methods introduced in [5] namely GRAY-SALT
and BIN-SALT add random patterns or synthetic iris patterns to the
Gabor features and iris codes, respectively. Though they do not suf-
fer from the problem of outlier amplification and reduction of use-
ful area, it is difficult to decide the relative strength of the noise
patterns to be added. Adding very strong patterns will reduce the
discriminative capacity of the original iris patterns and hence lead



to lower recognition results. Adding weaker patterns can lower the
non-invertibility property, making it easier to extract useful informa-
tion about the original iris biometric from the transformed patterns.
Also, if the added patterns are compromised, the original iris pat-
terns could be extracted from the transformed patterns by a simple
subtraction operation. On the other hand, our method retains the non
invertibility property even when the random matrix is compromised,
as explained in Section 5.

In this paper, we introduce a new cancelable iris scheme based
on random projections. Our method is comprised of two steps: fea-
ture extraction and random projections. In the feature extraction
stage, the iris image, x ∈ RN , is transformed to an N dimensional
Gabor vector g, where N is the number of pixels containing the iris.
The iris feature vector g, is then projected onto a random subspace
by a random n × N matrix Φ, where n ≤ N . This process is de-
scribed as follows:

y = Φg,

where y is the n dimensional RP vector. We will show theoretically
and empirically that our scheme based on RP meets all of the criteria
required for a good cancelable iris scheme.

3. RANDOM PROJECTIONS

Since we are embedding N dimensional feature vectors in a space of
a lower dimension n, for iris recognition to be effective, it is impor-
tant that the relative distances between any two points in the feature
space be preserved in the output random space. This is characterized
by the Johnson-Lindenstrauss (JL) lemma [11, 12, 13].

Lemma 1. (Johnson-Lindenstrauss) Let ε ∈ (0, 1) be given. For
every set S of ](S) points in RN , if n is a positive integer such

that n > n0 = O
“

ln(](S))

ε2

”
, there exists a Lipschitz mapping f :

RN → Rn such that

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2 (1)

for all u,v ∈ S.

This lemma essentially states that, a set S of points in RN can
be embedded into a lower-dimensional Euclidean spaceRn such that
the pairwise distance of any two points is approximately maintained.
In fact, it can be shown that f can be taken as a linear mapping
represented by an n×N matrix Φ whose entries are randomly drawn
from certain probability distributions. This in turn implies that it is
possible to change the original form of the data and still preserve its
statistical characteristics useful for recognition.

In recent years, various improvements in the proof and the state-
ment of the JL lemma have been made (see [12] and [13] for more
details). Let Φ be an n × N random matrix with n ≤ N such that
each entry φi,j of Φ is an independent realization of q, where q is a
random variable on a probability measure space (Ω, ρ). It has been
shown that given any set of points S, the following are some of the
matrices that will satisfy (1) with high probability, provided n satis-
fies the condition of the Lemma 1 [12]:

• n×N random matrices Φ whose entries φi,j are independent
realizations of Gaussian random variables φi,j ∼ N

`
0, 1

n

´
.

• Independent realizations of ±1 Bernoulli random variables

φi,j
.
=


+1/

√
n, with probability 1
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√

n, with probability 1
2
.

• Independent realizations of related distributions such as
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<
:
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4. SECTOR BASED RANDOM PROJECTIONS

In practice, we have found that applying the random projections di-
rectly on the iris images leads to a degradation in performance due
to the following reasons. First of all in real iris images, despite
good segmentation algorithms, there will still be some outliers due
to specular reflections, eye lashes and eyelids. Also, different parts
of the iris have different quality [10]. By taking a linear transforma-
tion of the entire vector, we combine the good iris regions as well
as the outliers and thereby corrupt the data. To avoid this, we divide
the iris into different sectors, apply random projections on each sec-
tor separately and concatenate them to form the cancelable template
(see Fig. 1). So outliers can corrupt only the corresponding sector
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Fig. 1. Block Diagram Of Sectored Random Projections

and not the entire iris vector. Since outliers due to eyelids and eye
lashes are present only at the top and bottom of the iris images, only
a small number of sectors get corrupted in practice. This mitigates
the problem of reduction in useful information, mentioned in [5].

5. CANCELABLE IRIS BIOMETRIC SYSTEM

In this section, we explain the proposed CIB system. The enrollment
system extracts the iris pattern of the user, computes the Gabor fea-
tures, applies a different RP for each application and transfers the
new pattern to the application database. Note that even if the trans-
formed pattern and the key (i.e. the projection matrix) are stolen, the
user’s iris pattern cannot be generated from them due to the dimen-
sion reduction caused by the projection. Also even if a hacker steals
the user’s iris pattern either from the client system or using a hid-
den scanner, without knowing the random projection he/she cannot
generate the transformed patterns required by the application. Dur-
ing the verification stage, the application obtains the iris image and
the RP matrix from the user, computes the transformed pattern and
compares it with the ones in its database. In case, the RP matrix
or the transformed patterns are compromised, one can create a new
RP matrix and obtain a new transformed pattern which can be up-
dated into the application database. Instead of the user providing the
random matrix during verification, the application can generate and
store it along with the cancelable template in its database. Though
this will be an easier scheme for the user to operate, it is less se-
cure as a hacker can get both the random projection matrices and the
transformed patterns by breaking into the application database.
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6. EXPERIMENTS AND DISCUSSION

We present the results of our algorithm on the MMU dataset [14].
Out of the 5 images available per class, 4 were used as part of the
gallery and the fifth one was used as the probe. To illustrate the
robustness of our method to outliers in the iris data in the form of
eyelids, eye lashes and specular reflections, we used a simple seg-
mentation scheme extracting just the circles corresponding to the
pupil and iris using the publicly available code of Masek et al. [15].
We assume that the iris images are registered correctly. The iris re-
gion thus obtained were unwrapped into a rectangular image of size
10× 80. Its Gabor features were obtained and concatenated to form
an iris vector of length 800.

We used the random Gaussian matrix in our experiments, though
other random matrices mentioned in Section 3 also give similar re-
sults. Since the Gabor features are complex vectors, the random pro-
jection involves multiplying the Gabor vector with a complex matrix,
whose real and imaginary entries are Gaussian random variables. We
multiply the iris vector either with the same random Gaussian ma-
trix for all the users or different random matrices for different users
to obtain the RP “Same Matrix” and “Different Matrix” vectors, re-
spectively. Similarly, we multiply each sector of the iris vector with
the same random Gaussian matrix to obtain the SRP “Same Ma-
trix” vector. To get the SRP “Different Matrix” vector, still all the
sectors of one user are multiplied with the same random Gaussian
matrix. However this matrix is different for different users. In our
experiments, we fixed the number of sectors to eight. Increasing the
number of sectors did not improve the performance significantly.

Once the random vectors are obtained from the Gabor features
of the iris image, we compute the iris codes using [15] and use the
Hamming distance to decide the class of the probe iris image. We
present the Receiver Operating Characteristic (ROC) curves and the
Hamming distance distributions for RP and SRP in the subsections
below.

Performance Of RP And SRP: Fig. 3(a) plots the ROC char-
acteristics for the iris images in the MMU dataset for the original
and transformed iris patterns. As can be observed, the SRP per-
forms better than RP for both the same matrix and different matrix
cases. Also using different matrices for each class gives better per-
formance than using the same matrix for all classes. In Fig. 4(c),
we compare the distribution of the genuine and impostor normalized
Hamming distance for the original and transformed iris patterns. We
can observe that the distribution of the genuine Hamming distance
remains almost the same after applying the SRP. The original and
Same Matrix SRP cases have similar impostor Hamming distance
distributions. But the Different Matrix SRP case has an impostor
distribution which is more peaked and farther from the genuine dis-
tribution, indicating superior performance.

We believe that these observations can be explained as follows.
Since RP obtains the random vector by applying a linear transform
on the entire iris vector, it combines the different regions of the iris
which have different quality measures. In particular, the image re-
gions corresponding to the eyelids and eye lashes, which occlude the
iris vector is combined with the good iris regions, thereby corrupting
the whole iris vector. On the other hand, SRP takes linear transform
on each sector separately and hence does not corrupt the good iris
regions by combining them with the bad ones. The bad regions can
corrupt only their corresponding sectors, which will occupy only a
small region in the output iris vector and hence do not significantly
degrade the recognition performance. Also, using different matrices
per class increases the between class distance without changing the
within class distance and hence gives superior performance.
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Fig. 3. (a) ROC Characteristics For The MMU Dataset. SRP per-
formes better than the RP. Also using different matrices for each
class gives better performance. (b) Plot of the recognition rate with
dimension reductions for the MMU dataset. Note that the perfor-
mance remains the same up to 30% of the original dimension.

Normalized Hamming distance comparison between the origi-
nal and the transformed patterns: In Fig. 4(a) and (b), we illustrate
the normalized Hamming distance between the iris codes from the
original and the transformed iris vectors for the “Same Matrix” and
“Different Matrix” cases, respectively. Ideally we want the two iris
codes to be independent and hence the Normalized Hamming dis-
tance should be 0.5. The figure shows that the histogram of the
hamming distance peaks at 0.5, empirically verifying that the ran-
dom projected iris vectors are significantly different from the origi-
nals ones. Hence it is not possible to extract the original iris codes
from the transformed version, thereby proving the non-invertibility
property of our transformation.
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Fig. 4. Plot of the histograms of the Normalized Hamming Distance
between the original and transformed vectors for (a) Same Matrix,
(b) Different Matrix. (c) Comparison of the distribution of the Gen-
uine and Impostor normalized Hamming distances for the original
and transformed patterns.

Table 1 provides the statistics of the normalized Hamming dis-
tance for RP and SRP. As can be seen, both the cases have mean nor-



malized Hamming distance very close to 0.5 with a very low stan-
dard deviation. The mean for the RP case is closer to 0.5 when com-
pared to SRP. This is expected as RP applies a global linear transform
and hence the transformed vectors will be farther from the original
vectors when compared to a local linear transformation, as done in
SRP.

Table 1. Statistics Of The Normalized Hamming Distance.
Methods Mean Standard Deviation
Without RP 0 0
RP, Same Matrix 0.4999 0.0124
SRP, Same Matrix 0.4993 0.0124
RP, Different Matrix 0.5001 0.0126
SRP, Different Matrix 0.4997 0.0136

Comparison with Salting: In Table. 2, we present the recog-
nition rates and the corresponding mean Hamming distance for the
salting method [5] for various noise levels. The best recognition rate
and the best Hamming distance for the Salting method are 96.6%
and 0.494 respectively. For SRP, we obtained a recognition rate of
97.7% at a hamming distance of .499. Thus both the recognition per-
formance and security (non-invertibility) are higher for SRP when
compared to the Salting method.

Table 2. Comparison with Salting method. The Recognition
Rate(RR) and mean Hamming Distance(HD) are provided for the
Salting and SRP methods. The recognition rate obtained using SRP
is higher than that of the Salting method. Also SRP gives mean Ham-
ming distance closer to .5 when compared to the Salting method.

Quantity Salting SRP
RR(%) 94.2 94.7 95.3 96.6 94.0 97.7
HD 0 .467 .480 .491 .494 .499

Effect of dimension reduction: In Fig. 3(b), we demonstrate the
robustness of random projections to reduction in the original dimen-
sion of the feature vector. The SRP vectors retain their original per-
formance for up to 30% reduction in the original dimension for both
the same and different matrix cases. Dimension reduction further
strengthens the non-invertibility of our transformation as there will
be infinite possible iris vectors corresponding the reduced dimension
random vectors obtained by RP or SRP.

Note that our SRP method meets the various constraints men-
tioned in Section 1. By using different RP matrices, we can issue
different templates for different applications. The dimension reduc-
tion as well as the empirical results demonstrate that original iris
patterns cannot be obtained from the randomly projected patterns. If
a transformed pattern is compromised, we can reissue a new pattern
by applying a new random projection to the iris vector. From the JL
lemma and the experiments, we see that SRPs preserve the original
recognition performance. Furthermore, since our method is based on
pseudo-random number generation, we only consider the state space
corresponding to the value taken by the seed of the random number
generator. Hence, instead of storing the entire matrix, one only needs
to store the seed used to generate the RP matrix.

7. CONCLUSIONS

We have proposed an efficient algorithm for CIB based on Sectored
Random Projections. Experiments show that the proposed method
meets the criteria of cancelability. Moreover, the JL Lemma provides

a theoretical justification for using RPs for cancelability. Since the
only block to be added for cancelability is a matrix multiplication,
our method can easily be incorporated into existing iris recognition
systems, thereby improving the security.
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