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Abstract—We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition
using deep convolutional neural networks (CNN). The proposed method called, HyperFace, fuses the intermediate layers of a deep
CNN using a separate CNN followed by a multi-task learning algorithm that operates on the fused features. It exploits the synergy
among the tasks which boosts up their individual performances. Additionally, we propose two variants of HyperFace:
(1) HyperFace-ResNet that builds on the ResNet-101 model and achieves state-of-the-art performance, and (2) Fast-HyperFace that
uses a high recall fast face detector for generating region proposals to improve the speed of the algorithm. Extensive experiments show
that the proposed models are able to capture both global and local information in faces and performs significantly better than many
competitive algorithms for each of these four tasks.
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1 INTRODUCTION

D ETECTION and analysis of faces is a challenging prob-
lem in computer vision, and has been actively re-

searched for applications such as face verification, face
tracking, person identification, etc. Although recent meth-
ods based on deep Convolutional Neural Networks (CNN)
have achieved remarkable results for the face detection task
[12], [42], [60], it is still difficult to obtain facial landmark
locations, head pose estimates and gender information from
face images containing extreme poses, illumination and
resolution variations. The tasks of face detection, landmark
localization, pose estimation and gender classification have
generally been solved as separate problems. Recently, it has
been shown that learning correlated tasks simultaneously
can boost the performance of individual tasks [71] , [70], [6].

In this paper, we present a novel framework based on
CNNs for simultaneous face detection, facial landmarks
localization, head pose estimation and gender recognition
from a given image (see Figure 1). We design a CNN
architecture to learn common features for these tasks and
exploit the synergy among them. We exploit the fact that in-
formation contained in features is hierarchically distributed
throughout the network as demonstrated in [63]. Lower
layers respond to edges and corners, and hence contain
better localization properties. They are more suitable for
learning landmarks localization and pose estimation tasks.
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Fig. 1. Our method can simultaneously detect the face, localize land-
marks, estimate the pose and recognize the gender. The blue boxes
denote detected male faces, while pink boxes denote female faces. The
green dots provide the landmark locations. Pose estimates for each face
are shown on top of the boxes in the order of roll, pitch and yaw.

On the other hand, deeper layers are class-specific and
suitable for learning complex tasks such as face detection
and gender recognition. It is evident that we need to make
use of all the intermediate layers of a deep CNN in order
to train different tasks under consideration. We refer the set
of intermediate layer features as hyperfeatures. We borrow
this term from [1] which uses it to denote a stack of local
histograms for multilevel image coding.

Since a CNN architecture contains multiple layers with
hundreds of feature maps in each layer, the overall di-
mension of hyperfeatures is too large to be efficient for
learning multiple tasks. Moreover, the hyperfeatures must
be associated in a way that they efficiently encode the
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Fig. 2. The architecture of the proposed HyperFace. The network is able to classify a given image region as face or non-face, estimate the head
pose, locate face landmarks and recognize gender.

features common to the multiple tasks. This can be handled
using feature fusion techniques. Features fusion aims to
transform the features to a common subspace where they
can be combined linearly or non-linearly. Recent advances
in deep learning have shown that CNNs are capable of
estimating an arbitrary complex function. Hence, we con-
struct a separate fusion-CNN to fuse the hyperfeatures. In
order to learn the tasks, we train them simultaneously using
multiple loss functions. In this way, the features get better
at understanding faces, which leads to improvements in the
performances of individual tasks. The deep CNN combined
with the fusion-CNN can be learned together in an end-to-
end fashion.

We also study the performance of face detection, land-
marks localization, pose estimation and gender recognition
tasks using off-the-shelf Region-based CNN (R-CNN [15])
approach. Although R-CNN for face detection has been
explored in DP2MFD [42], we provide a comprehensive
study of all these tasks based on R-CNN. Furthermore,
we study the multitask approach without fusing the in-
termediate layers of CNN. Detailed experiments show that
multitask learning performs better than methods based on
individual learning. Fusing the intermediate layer features
provides additional performance boost. This paper makes
the following contributions.

1) We propose two novel CNN architectures that perform
face detection, landmarks localization, pose estimation
and gender recognition by fusing the intermediate lay-
ers of the network. The first one called HyperFace
is based on AlexNet [29] model, while the second

one called HyperFace-ResNet (HF-ResNet) is based on
ResNet-101 [18] model.

2) We propose two post-processing methods: Iterative
Region Proposals (IRP) and Landmarks-based Non-
Maximum Suppression (L-NMS), which leverage the
multitask information obtained from the CNN to im-
prove the overall performance.

3) We study the performance of R-CNN based approaches
for individual tasks and the multitask approach with-
out intermediate layer fusion.

4) We achieve new state-of-the-art performances on chal-
lenging unconstrained datasets for all of these four
tasks.

This paper is organized as follows. Section 2 reviews
related work. Section 3 describes the proposed HyperFace
framework in detail. Section 4 describes the implementation
of R-CNN based approach, Multitask Face and HF-ResNet.
Section 5 provides the results of HyperFace and HF-ResNet
along with R-CNN baselines on challenging datasets. Fi-
nally, Section 6 concludes the paper with a brief summary
and discussion.

2 RELATED WORK

Multi-Task Learning: Multi-task learning (MTL) was first
analyzed in detail by Caruana [5]. Since then, several ap-
proaches have adopted MTL for solving different problems
in computer vision. One of the earlier approaches for jointly
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addressing the tasks of face detection, pose estimation,
and landmark localization was proposed in [70] and later
extended in [71]. This method is based on a mixture of trees
with a shared pool of parts in the sense that every facial
landmark is modeled as a part and uses global mixtures to
capture the topological changes due to viewpoint variations.
A joint cascade-based method was recently proposed in [6]
for simultaneously detecting faces and landmark points
on a given image. This method yields improved detection
performance by incorporating a face alignment step in the
cascade structure.

Multi-task learning using CNNs has also been studied
recently. Eigen and Fergus [9] proposed a multi-scale CNN
for simultaneously predicting depth, surface normals and
semantic labels from an image. They apply CNNs at three
different scales where the output of the smaller scale net-
work is fed as input to the larger one. UberNet [27] adopts
a similar concept of simultaneously training low-, mid- and
high-level vision tasks. It fuses all the intermediate layers
of a CNN at three different scales of the image pyramid for
multi-task training on diverse sets. Gkioxari et al. [16] train a
CNN for person pose estimation and action detection, using
features only from the last layer. The use of MTL for face
analysis is somewhat limited. Zhang et al. [65] used MTL-
based CNN for facial landmark detection along with the
tasks of discrete head yaw estimation, gender recognition,
smile and glass detection. In their method, the predictions
for all theses tasks were pooled from the same feature space.
Instead, we strategically design the network architecture
such that the tasks leverage from both low level as well
as high level features of the network. We also jointly predict
the task of face detection and landmark localization. These
two tasks always go hand-in-hand and are used in most
end-to-end face analysis systems.

Feature Fusion: Fusing intermediate layers from CNN
to bring both geometry and semantically rich features to-
gether has been used by quite a few methods. Hariharan et
al. [17] proposed Hypercolumns to fuse pool2, conv4 and
fc7 layers of AlexNet [29] for image segmentation. Yang
and Ramanan [61] proposed DAG-CNNs, which extracts
features from multiple layers to reason about high, mid
and low-level features for image classification. Sermanet et
al. [46] merge the 1st stage output of CNN to the classifier
input after sub-sampling, for the application of pedestrian
detection.

Face detection: Viola-Jones detector [54] is a classic
method which uses cascaded classifiers on Haar-like fea-
tures to detect faces. This method provides realtime face
detection, but works best for full, frontal, and well lit faces.
Deformable Parts Model (DPM) [13]-based face detection
methods have also been proposed in the literature where
a face is essentially defined as a collection of parts [70],
[39]. It has been shown that in unconstrained face detection,
features like HOG or Haar wavelets do not capture the dis-
criminative facial information at different illumination vari-
ations or poses. To overcome these limitations, various deep
CNN-based face detection methods have been proposed
in the literature [42], [33], [60], [12], [59]. These methods
have produced state-of-the-art results on many challenging
publicly available face detection datasets. Some of the other
recent face detection methods include NPDFaces [36], PEP-

Adapt [32], and [6].
Landmarks localization: Fiducial points extraction or

landmarks localization is one of the most important steps in
face recognition. Several approaches have been proposed in
the literature. These include both regression-based [4], [57],
[56], [55], [26], [52] and model-based [7] , [40], [35] methods.
While the former learns the shape increment given a mean
initial shape, the latter trains an appearance model to predict
the keypoint locations. CNN-based landmark localization
methods have also been proposed in recent years [50], [65],
[30] and have achieved remarkable performance.

Although much work has been done for localizing land-
marks for frontal faces, limited attention has been given
to profile faces which occur more often in real world sce-
narios. Jourabloo and Liu recently proposed PIFA [25] that
estimates 3D landmarks for large pose face alignment by
integrating a 3D point distribution model with a cascaded
coupled-regressor. Similarly, 3DDFA [69] fits a dense 3D
model by estimating its parameters using a CNN. Zhu et
al. [68] proposed a cascaded compositional learning ap-
proach that combines shape prediction from multiple do-
main specific regressors.

Pose estimation: The task of head pose estimation is to
infer the orientation of person’s head relative to the camera
view. It is useful in face verification for matching face sim-
ilarity across different orientations. Non-linear manifold-
based methods have been proposed in [2], [19], [48] to
classify face images based on pose. A survey of various head
pose estimation methods is provided in [41].

Gender recognition: Previous works on gender recogni-
tion have focused on finding good discriminative features
for classification. Most previous methods use one or more
combination of features such as LBP, SURF, HOG or SIFT.
In recent years, attribute-based methods for face recognition
have gained a lot of traction. Binary classifiers were used
in [31] for each attribute such as male, long hair, white etc.
Separate features were computed for different attributes and
they were used to train individual SVMs for each attribute.
CNN-based methods have also been proposed for learning
attribute-based representations in [38], [64].

3 HYPERFACE

We propose a single CNN model for simultaneous face
detection, landmark localization, pose estimation and gen-
der classification. The network architecture is deep in both
vertical and horizontal directions, i.e., it has both top-down
and lateral connections, as shown in Figure 2. In this section,
we provide a brief overview of the system and then discuss
the different components in detail.

The proposed algorithm called HyperFace consists of
three modules. The first one generates class independent
region-proposals from the given image and scales them
to 227 × 227 pixels. The second module is a CNN which
takes in the resized candidate regions and classifies them
as face or non-face. If a region gets classified as a face,
the network additionally provides facial landmarks loca-
tions, estimated head pose and gender information. The
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third module is a post-processing step which involves It-
erative Region Proposals (IRP) and Landmarks-based Non-
Maximum Suppression (L-NMS) to boost the face detection
score and improve the performance of individual tasks.

3.1 HyperFace Architecture
We start with Alexnet [29] for image classification. The net-
work consists of five convolutional layers along with three
fully connected layers. We initialize the network with the
weights of R-CNN Face network trained for face detection
task as described in Section 4. All the fully connected layers
are removed as they encode image-classification specific
information, which is not needed for pose estimation and
landmarks extraction. We exploit the following two observa-
tions to create our network. 1) The features in CNN are dis-
tributed hierarchically in the network. While the lower layer
features are informative for landmarks localization and pose
estimation, the higher layer features are suitable for more
complex tasks such as detection or classification [63]. 2)
Learning multiple correlated tasks simultaneously builds a
synergy and improves the performance of individual tasks
as shown in [6], [65]. Hence, in order to simultaneously learn
face detection, landmarks, pose and gender, we need to fuse
the features from the intermediate layers of the network
(hyperfeatures), and learn multiple tasks on top of it. Since
the adjacent layers are highly correlated, we do not consider
all the intermediate layers for fusion.

We fuse the max1, conv3 and pool5 layers of Alexnet,
using a separate network. A naive way for fusion is directly
concatenating the features. Since the feature maps for these
layers have different dimensions 27×27×96, 13×13×384,
6×6×256, respectively, they cannot be easily concatenated.
We therefore add conv1a and conv3a convolutional layers
to pool1, conv3 layers to obtain consistent feature maps of
dimensions 6 × 6 × 256 at the output. We then concatenate
the output of these layers along with pool5 to form a
6 × 6 × 768 dimensional feature maps. The dimension is
still quite high to train a multi-task framework. Hence, a
1 × 1 kernel convolution layer (convall) is added to reduce
the dimensions [51] to 6×6×192. We add a fully connected
layer (fcall) to convall, which outputs a 3072 dimensional
feature vector. At this point, we split the network into five
separate branches corresponding to the different tasks. We
add fcdetection, fclandmarks, fcvisibility , fcpose and fcgender
fully connected layers, each of dimension 512, to fcall. Fi-
nally, a fully connected layer is added to each of the branch
to predict the individual task labels. After every convolution
or a fully connected layer, we deploy the Rectified Linear
Unit (ReLU). We did not include any pooling operation in
the fusion network as it provides local invariance which is
not desired for the face landmark localization task. Task-
specific loss functions are then used to learn the weights of
the network.

3.2 Training
We use the AFLW [28] dataset for training the HyperFace
network. It contains 25, 993 faces in 21, 997 real-world im-
ages with full pose, expression, ethnicity, age and gender
variations. It provides annotations for 21 landmark points
per face, along with the face bounding-box, face pose (yaw,

pitch and roll) and gender information. We randomly se-
lected 1000 images for testing, and used the rest for training
the network. Different loss functions are used for training
the tasks of face detection, landmark localization, pose
estimation and gender classification.

Face Detection: We use the Selective Search [53] al-
gorithm in R-CNN [15] to generate region proposals for
faces in an image. A region having an Intersection over
Union (IOU) overlap of more than 0.5 with the ground
truth bounding box is considered a positive sample (l = 1).
The candidate regions with IOU overlap less than 0.35 are
treated as negative instances (l = 0). All the other regions
are ignored. We use the softmax loss function given by (1)
for training the face detection task.

lossD = −(1− l) · log(1− p)− l · log(p), (1)

where p is the probability that the candidate region is a face.
The probability values p and 1−p are obtained from the last
fully connected layer for the detection task.

Landmarks Localization: We use 21 point markups for
face landmarks locations as provided in the AFLW [28]
dataset. Since the faces have full pose variations, some of the
landmark points are invisible. The dataset provides the an-
notations for the visible landmarks. We consider bounding-
box regions with IOU overlap greater than 0.35 with the
ground truth for learning this task, while ignoring the rest.
A region can be characterized by {x, y, w, h} where (x, y)
are the co-ordinates of the center of the region and w,h are
the width and height of the region respectively. Each visible
landmark point is shifted with respect to the region center
(x, y), and normalized by (w, h) as given by (2)

(ai, bi) =

(
xi − x
w

,
yi − y
h

)
. (2)

where (xi, yi)’s are the given ground truth fiducial co-
ordinates. The (ai, bi)’s are treated as labels for training
the landmark localization task using the Euclidean loss
weighted by the visibility factor. The loss in predicting the
landmark location is computed from (3)

lossL =
1

2N

N∑
i=1

vi((x̂i − ai)2 + ((ŷi − bi)2), (3)

where (x̂i, ŷi) is the ith landmark location predicted by the
network, relative to a given region, N is the total number
of landmark points (21 for AFLW [28]). The visibility factor
vi is 1 if the ith landmark is visible in the candidate region,
else it is 0. This implies that there is no loss corresponding
to invisible points and hence they do not take part during
back-propagation.

Learning Visibility: We also learn the visibility factor in
order to test the presence of the predicted landmark. For a
given region with overlap higher than 0.35, we use a simple
Euclidean loss to train the visibility as shown in (4)

lossV =
1

N

N∑
i=1

(v̂i − vi)2 , (4)

where v̂i is the predicted visibility of ith landmark. The true
visibility vi is 1 if the ith landmark is visible in the candidate
region, else it is 0.
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Pose Estimation: We use the Euclidean loss to train the
head pose estimates of roll (p1), pitch (p2) and yaw (p3). We
compute the loss for a candidate region having an overlap
more than 0.5 with the ground truth, from (5)

lossP =
(p̂1 − p1)2 + (p̂2 − p2)2 + (p̂3 − p3)2

3
, (5)

where (p̂1, p̂2, p̂3) are the estimated pose labels.
Gender Recognition: Predicting gender is a two class

problem similar to face detection. For a candidate region
with overlap of 0.5 with the ground truth, we compute the
softmax loss given in (6)

lossG = −(1− g) · log(1− pg)− g · log(pg), (6)

where g = 0 if the gender is male, or else g = 1. Here,
(p0, p1) is the two dimensional probability vector computed
from the network.

The total loss is computed as the weighted sum of the
five individual losses as shown in (7)

lossfull =
i=5∑
i=1

λti lossti , (7)

where ti is the ith element from the set of tasks T =
{D,L, V, P,G}. The weight parameter λti is decided based
on the importance of the task in the overall loss. We choose
(λD = 1, λL = 5, λV = 0.5, λP = 5, λG = 2) for our
experiments. Higher weights are assigned to landmark lo-
calization and pose estimation tasks as they need spatial
accuracy.

Fig. 3. Candidate face region (red box on left) obtained using Selective
Search gives a low score for face detection, while landmarks are cor-
rectly localized. We generate a new face region (red box on right) using
the landmarks information and feed it through the network to increase
the detection score.

3.3 Testing

From a given test image, we first extract the candidate
region proposals using [53]. For each region, we predict the
task labels by a forward-pass through the HyperFace net-
work. Only those regions, whose detection scores are above
a certain threshold, are classified as face and processed for

subsequent tasks. The predicted landmark points are scaled
and shifted to the image co-ordinates using (8)

(xi, yi) = (x̂iw + x, ŷih+ y), (8)

where (x̂i, ŷi) are the predicted locations of ith landmark
from the network, and {x, y, w, h} are the region parameters
defined in (2). Points obtained with predicted visibility less
than a certain threshold are marked invisible. The pose
labels obtained from the network are the estimated roll,
pitch and yaw for the face region. The gender is assigned
according to the label with maximum predicted probability.

There are two major issues while using proposal-based
face detection. First, the proposals might not be able to
capture small and difficult faces, hence reducing the overall
recall of the system. Second, the proposal boxes might not
be well localized with the actual face region. It is a common
practice to use bounding-box regression [15] as a post pro-
cessing step to improve the localization of the detected face
box. This adds an additional burden of training regressors
to learn the transformation from the candidate detected
box to the annotated face box. Moreover, the localization
is still weak since the regressors are usually linear. Recently,
Gidaris and Komodakis proposed LocNet [14] which tries
to solve these limitations by refining the detection bound-
ing box. Given a set of initial bounding box proposals,
it generates new sets of bounding boxes that maximize
the likelihood of each row and column within the box.
It allows an accurate inference of bounding box under a
simple probabilistic framework.

Instead of using the probabilistic framework [14], we
solve the above mentioned issues in an iterative way using
the predicted landmarks. The fact that we obtain landmark
locations along with the detections, enables us to improve
the post-processing step so that all the tasks benefit from it.
We propose two novel methods: Iterative Region Proposals
(IRP) and Landmarks-based Non-Maximum Suppression
(L-NMS) to improve the performance. IRP improves the
recall by generating more candidate proposals by using
the predicted landmarks information from the initial set
of region proposals. On the other hand, L-NMS improves
the localization by re-adjusting the detected bounding boxes
according to the predicted landmarks and performing NMS
on top of them. No additional training is required for these
methods.

Iterative Region Proposals (IRP): We use a fast version
of Selective Search [53] which extracts around 2000 regions
from an image. We call this version Fast SS. It is quite pos-
sible that some faces with poor illumination or small size fail
to get captured by any candidate region with a high overlap.
The network would fail to detect that face due to low score.
In these situations, it is desirable to have a candidate box
which precisely captures the face. Hence, we generate a
new candidate bounding box from the predicted landmark
points using the FaceRectCalculator provided by [28], and
pass it again through the network. The new region, being
more localized yields a higher detection score and improves
the corresponding tasks output, thus increasing the recall.
This procedure can be repeated (say T time), so that boxes
at a given step will be more localized to faces as compared
to the previous step. From our experiments, we found that
the localization component saturates in just one step (T =
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1), which shows the strength of the predicted landmarks.
The pseudo-code of IRP is presented in Algorithm 1. The
usefulness of IRP can be seen in Figure 3, which shows a
low-resolution face region cropped from the top-right image
in Figure 15.

Algorithm 1 Iterative Region Proposals
1: boxes← selective search(image)
2: scores← get hyperface scores(boxes)
3: detected boxes← boxes(scores ≥ threshold)
4: new boxes← detected boxes
5: for stage = 1 to T do
6: fids← get hyperface fiducials(new boxes)
7: new boxes← FaceRectCalculator(fids)
8: deteced boxes← [deteced boxes|new boxes]
9: end

10: final scores← get hyperface scores(detected boxes)

Landmarks-based Non-Maximum Suppression (L-
NMS): The traditional approach of non-maximum suppres-
sion involves selecting the top scoring region and discarding
all the other regions with overlap more than a certain thresh-
old. This method can fail in the following two scenarios: 1)
If a region corresponding to the same detected face has less
overlap with the highest scoring region, it can be detected
as a separate face. 2) The highest scoring region might not
always be localized well for the face, which can create some
discrepancy if two faces are close together. To overcome
these issues, we perform NMS on a new region whose
bounding box is defined by the boundary co-ordinates as
[mini xi,mini yi,maxi xi,maxi yi] of the landmarks for the
given region. In this way, the candidate regions would get
close to each other, thus decreasing the ambiguity of the
overlap and improving the localization.

Algorithm 2 Landmarks-based NMS
1: Get detected boxes from Algorithm 1
2: fids← get hyperface fiducials(detected boxes)
3: precise boxes← [minx,miny,maxx,maxy](fids)
4: faces← nms(precise boxes, overlap)
5: for each face in faces do
6: top-k boxes← Get top-k scoring boxes
7: final fids← median(fids(top-k boxes))
8: final pose← median(pose(top-k boxes))
9: final gender← median(gender(top-k boxes))

10: final visibility← median(visibility(top-k boxes))
11: final bounding box ←

FaceRectCalculator(final fids)
12: end

We apply landmarks-based NMS to keep the top-k
boxes, based on the detection scores. The detected face cor-
responds to the region with maximum score. The landmark
points, pose estimates and gender classification scores are
decided by the median of the top k boxes obtained. Hence,
the predictions do not rely only on one face region, but
considers the votes from top-k regions for generating the
final output. From our experiments, we found that the best
results are obtained with the value of k being 5. The pseudo-
code for L-NMS is given in Algorithm 2.

4 NETWORK ARCHITECTURES

To emphasize the importance of multitask approach and
fusion of the intermediate layers of CNN, we study the
performance of simpler CNNs devoid of such features.
We evaluate four R-CNN-based models, one for each task
of face detection, landmark localization, pose estimation
and gender recognition. We also build a separate Multi-
task Face model which performs multitask learning just
like HyperFace, but does not fuse the information from the
intermediate layers. These models are described as follows:

R-CNN Face: This model is used for face detection
task. The network architecture is shown in Figure 4(a). For
training R-CNN Face, we use the region proposals from
AFLW [28] training set, each associated with a face label
based on the overlap with the ground truth. The loss is
computed as per (1). The model parameters are initialized
using the Alexnet [29] weights trained on the Imagenet
dataset [8]. Once trained, the learned parameters from
this network are used to initialize other models including
Multitask Face and HyperFace as the standard Imagenet
initialization doesn’t converge well. We also perform a linear
bounding box regression to localize the face co-ordinates.

R-CNN Fiducial: This model is used for locating the
facial landmarks. The network architecture is shown in
Figure 4(b). It simultaneously learns the visibility of the
points to account for the invisible points at test time, and
thus can be used as a standalone fiducial extractor. The
loss functions for landmarks localization and visibility of
points are computed using (3) and (4), respectively. Only
region proposals which have an overlap> 0.5 with the
ground truth bounding box are used for training. The model
parameters are initialized from R-CNN Face.

R-CNN Pose: This model is used for head pose estima-
tion task. The outputs of the network are roll, pitch and
yaw of the face. Figure 4(c) presents the network architec-
ture. Similar to R-CNN Fiducial, only region proposals with
overlap> 0.5 with the ground truth bounding box are used
for training. The training loss is computed using (5).

R-CNN Gender: This model is used for face gender
recognition task. The network architecture is shown in Fig-
ure 4(d). It has the same training set as R-CNN Fiducial and
R-CNN Pose. The training loss is computed using (6).

Multitask Face: Similar to HyperFace, this model is
used to simultaneously detect face, localize landmarks,
estimate pose and predict its gender. The only difference
between Multitask Face and HyperFace is that HyperFace
fuses the intermediate layers of the network whereas Mul-
titask Face combines the tasks using the common fully
connected layer at the end of the network as shown in
Figure 5. Since it provides the landmarks and face score,
it leverages iterative region proposals and landmark-based
NMS post-processing algorithms during evaluation.

The performance of all the above models for their respec-
tive tasks are evaluated and discussed in details in Section 5.

4.1 HyperFace-ResNet
The CNN architectures have improved a lot over the
years, mainly due to an increase in number of layers [18],
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(a) (b) (c) (d)

Fig. 4. R-CNN-based network architectures for (a) Face Detection (R-CNN Face), (b) Landmark Localization (R-CNN Fiducial), (c) Pose Estimation
(R-CNN Pose), and (d) Gender Recognition (R-CNN Gender). The numbers on the left denote the kernel size and the numbers on the right denote
the cardinality of feature maps for a given layer.

Fig. 5. Network Architecture of Multitask Face. The numbers on the
left denote the kernel size and the numbers on the right denote the
cardinality of feature maps for a given layer.

effective convolution kernel size [47], batch normaliza-
tion [22] and skip connections. Recently, He et al. [18]
proposed a deep residual network architecture with more
than 100 layers, that achieves state-of-the-art results on
the ImageNet challenge [8]. Hence, we propose a vari-
ant of HyperFace that is built using the ResNet-101 [18]
model instead of AlexNet [29]. The proposed network
called HyperFace-ResNet (HF-ResNet) significantly im-
proves upon its AlexNet baseline for all the tasks of face
detection, landmarks localization, pose estimation and gen-
der recognition. Figure 6 shows the network architecture for
HF-ResNet.

Similar to HyperFace, we fuse the geometrically rich
features from the lower layers and semantically strong fea-
tures from the deeper layers of ResNet, such that multi-task
learning can leverage from their synergy. Taking inspiration
from [20], we fuse the features using hierarchical element-
wise addition. Starting with ‘res2c’ features, we first reduce
its resolution using a 3 × 3 convolution kernel with stride
of 2. It is then passed through the a 1 × 1 convolution
layer that increases the number of channels to match the
next level features (‘res3b3’ in this case). Element-wise
addition is applied between the two to generate a new set of
fused features. The same operation is applied in a cascaded
manner to fuse ‘res4b22’ and ‘res5c’ features of the ResNet-
101 model. Finally, average pooling is carried out to gen-
erate 2048-dimensional feature vector that is shared among
all the tasks. Task-specific sub-networks are branched out
separately in a similar way as HyperFace. Each convolution
layer is followed by a Batch-Norm+Scale [22] layer and
ReLU activation unit. We do not use dropout in HF-ResNet.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , VOL. XX, NO. XX, 2016 8

Fig. 6. The architecture of the proposed HyperFace-Resnet (HF-ResNet). ResNet-101 model is used as the backbone network, represented in color
orange. The new layers added are represented in color blue. The network is able to classify a given image region as face or non-face, estimate the
head pose, locate face landmarks and recognize gender.

The training loss functions are the same as described in
Section 3.2.

HF-ResNet is slower than HyperFace since it performs
more convolutions. This makes it difficult to be used with
Selective Search [53] algorithm which generates more than
2000 region proposals to be processed. Hence, we use a
faster version of region proposals using high recall SSD [37]
face detector. It produces 200 proposals, needing just 0.05s.
This considerably reduces the total runtime for HF-ResNet
to less than 1s. The fast version of HyperFace is discussed
in Section 5.6.

5 EXPERIMENTAL RESULTS

We evaluated the proposed HyperFace method, along with
HF-ResNet, Multask Face, R-CNN Face, R-CNN Fiducial,
R-CNN Pose and R-CNN Gender on six challenging
datasets:

• Annotated Face in-the-Wild (AFW) [70] for evaluating
face detection, landmarks localization, and pose estima-
tion tasks

• 300-W Faces in-the-wild (IBUG) [44] for evaluating 68-
point landmarks localization.

• Annotated Facial Landmarks in the Wild (AFLW) [28]
for evaluating landmarks localization and pose estima-
tion tasks

• Face Detection Dataset and Benchmark (FDDB) [23] and
PASCAL faces [58] for evaluating the face detection
results

• Large-scale CelebFaces Attributes (CelebA) [38] and
LFWA [21] for evaluating gender recognition results.

Our method was trained on randomly selected 20, 997 im-
ages from the AFLW dataset using Caffe [24]. The remaining
1000 images were used for testing.

5.1 Face Detection

We present face detection results for AFW, PASCAL and
FDDB datasets. The AFW dataset [70] was collected from
Flickr and the images in this dataset contain large variations
in appearance and viewpoint. In total there are 205 images
with 468 faces in this dataset. The FDDB dataset [23] consists
of 2,845 images containing 5,171 faces collected from news
articles on the Yahoo website. This dataset is the most
widely used benchmark for unconstrained face detection.
The PASCAL faces dataset [58] was collected from the test
set of PASCAL person layout dataset, which is a subset from
PASCAL VOC [10]. This dataset contains 1335 faces from 851
images with large appearance variations. For improved face
detection performance, we learn a SVM classifier on top of
fcdetection features using the training splits from the FDDB
dataset.

Some of the recent published methods compared in our
evaluations include DP2MFD [42], Faceness [60], Head-
Hunter [39], JointCascade [6], CCF [59], SquaresChnFtrs-
5 [39], CascadeCNN [33], Structured Models [58],
DDFD [12], NPDFace [36], PEP-Adapt [32], TSM [70], as well
as three commercial systems Face++, Picasa and Face.com.

The precision-recall curves of different detectors corre-
sponding to AFW and PASCAL faces datasets are shown
in Figures 7 (a) and (b), respectively. Figure 8 compares
the performance of different detectors using the Receiver
Operating Characteristic (ROC) curves on the FDDB dataset.
As can be seen from these figures, both HyperFace and HF-
ResNet outperform all the reported academic and commer-
cial detectors on the AFW and PASCAL datasets. HyperFace
achieves a high mean average precision (mAP ) of 97.9%
and 92.46%, for AFW and PASCAL datasets respectively.
HF-ResNet further improves the mAP to 99.4% and 96.2%
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(a) (b)

Fig. 7. Face Detection performance evaluation on (a) the AFW dataset, (b) the PASCAL faces dataset. The numbers in the legend are the mean
average precision (mAP) for the corresponding datasets.
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Fig. 8. Face Detection performance evaluation on the FDDB dataset.
The numbers in the legend are the mean average precision.

respectively.
The FDDB dataset is very challenging for HyperFace

and any other R-CNN-based face detection methods, as
the dataset contains many small and blurred faces. First,
some of these faces do not get included in the region
proposals from selective search. Second, re-sizing small
faces to the input size of 227 × 227 adds distortion to
the face resulting in low detection score. In spite of these
issues, HyperFace performance is comparable to recently
published deep learning-based face detection methods such
as DP2MFD [42] and Faceness [60] on the FDDB dataset 1

with mAP of 90.1%.
It is interesting to note the performance differences be-

tween R-CNN Face, Multitask Face and HyperFace for the
face detection tasks. Figures 7, and 8 clearly show that multi-
task CNNs (Multitask Face and HyperFace) outperform R-
CNN Face by a wide margin. The boost in the performance
gain is mainly due to the following two reasons. First, multi-
task learning approach helps the network to learn improved
features for face detection which is evident from their mAP
values on the AFW dataset. Using just the linear bounding

1. http://vis-www.cs.umass.edu/fddb/results.html

box regression and traditional NMS, the HyperFace obtains
a mAP of 94% (Figure 13) while R-CNN Face achieves
a mAP of 90.3%. Second, having landmark information
associated with detection boxes makes it easier to localize
the bounding box to a face, by using IRP and L-NMS algo-
rithms. On the other hand, HyperFace and Multi-task Face
perform comparable to each other for all the face detection
datasets which suggests that the network does not gain
much by fusing intermediate layers for the face detection
task.

Fig. 9. Landmarks Localization cumulative error distribution curves on
the AFW dataset. The numbers in the legend are the fraction of testing
faces that have average error below (5%) of the face size.

5.2 Landmarks Localization
We evaluate the performance of different landmarks local-
ization algorithms on AFW [70] and AFLW [28] datasets.
Both of these datasets contain faces with full pose variations.
Some of the methods compared include Multiview Active
Appearance Model-based method (Multi. AAM) [70], Con-
strained Local Model (CLM) [45], Oxford facial landmark
detector [11], Zhu [70], FaceDPL [71], JointCascade [6],
CDM [62], RCPR [3], ESR [4], SDM [56] and 3DDFA [69]. Al-
though both of these datasets provide ground truth bound-
ing boxes, we do not use them for evaluating on HyperFace,
HF-ResNet, Multitask Face and R-CNN Fiducial. Instead
we use the respective algorithms to detect both the face and
its fiducial points. Since, the R-CNN Fiducial cannot detect
faces, we provide it with the detections from the HyperFace.
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Figure 9 compares the performance of different land-
mark localization methods on the AFW dataset using the
protocol defined in [71]. In this figure, (*) indicates that
models that are evaluated on near frontal faces or use
hand-initialization [70]. The dataset provides six keypoints
for each face which are: left eye center, right eye center,
nose tip, mouth left, mouth center and mouth right. We
compute the error as the mean distance between the pre-
dicted and ground truth keypoints, normalized by the face
size. The plots for comparison were obtained from [71].

Fig. 10. Landmarks Localization cumulative error distribution curves
on the AFLW dataset. The numbers in the legend are the average NME
for the test images. The test samples are chosen such that samples with
absolute yaw angles between [0◦,30◦], [30◦,60◦] and [60◦,90◦] are 1/3
each.

For the AFLW dataset, we calculate the error using all the
visible keypoints. For AFW, we adopt the same protocol as
defined in [69]. The only difference is that our AFLW testset
consists of only 1000 images with 1132 face samples, since
we use the rest of the images for training. To be consistent
with the protocol, we randomly create a subset of 450
samples from our testset whose absolute yaw angles within
[0◦, 30◦], [30◦, 60◦] and [60◦, 90◦] are 1/3 each. Figure 10
compares the performance of different landmark localiza-
tion methods. We obtain the comparison plots from [69]
where the evaluations for RCPR, ESR and SDM are carried
out after adapting the algorithms to face profiling. Table 1
provides the Normalized Mean Error (NME) for AFLW
dataset, for each of the pose group.

TABLE 1
The NME(%) of face alignment results on AFLW test set with the best

results highlighted.

AFLW Dataset (21 pts)
Method [0, 30] [30, 60] [60, 90] mean std

CDM [62] 8.15 13.02 16.17 12.44 4.04
RCPR [3] 5.43 6.58 11.53 7.85 3.24
ESR [4] 5.66 7.12 11.94 8.24 3.29

SDM [56] 4.75 5.55 9.34 6.55 2.45
3DDFA [69] 5.00 5.06 6.74 5.60 0.99

3DDFA [69]+SDM 4.75 4.83 6.38 5.32 0.92
R-CNN Fiducial 4.49 4.70 5.09 4.76 0.30
Multitask Face 4.20 4.93 5.23 4.79 0.53

HyperFace 3.93 4.14 4.71 4.26 0.41
HF-ResNet 2.71 2.88 3.19 2.93 0.25

As can be seen from the figures, R-CNN Fiducial, Mul-
titask Face, HyperFace and HF-ResNet outperform many
recent state-of-the-art landmark localization methods in-
cluding FaceDPL [71], 3DDFA [69] and SDM [56]. Table 1
shows that HyperFace performs consistently accurate over
all pose angles. This clearly suggests that while most of
the methods work well on frontal faces, HyperFace is able
to predict landmarks for faces with full pose variations.
Moreover, we find that R-CNN Fiducial and Multitask Face
attain similar performance. The HyperFace has an advan-
tage over them as it uses the intermediate layers for fusion.
The local information is contained well in the lower layers
of CNN and becomes invariant as depth increases. Fusing
the layers brings out that hidden information which boosts
the performance for the landmark localization task. Addi-
tionally, we observe that HF-ResNet significantly improves
the performance over HyperFace for both AFW and AFLW
datasets. The large margin in performance can be attributed
to the larger depth for the HF-ResNet model.

We also evaluate our models on the challenging subset
of the 300-W [44] landmarks localization dataset (IBUG).
The dataset contains 135 test images with wide variations
in expression and illumination. The head-pose angle varies
from −60◦ to 60◦ in yaw. Since the dataset contains 68
landmarks points instead of 21 used in AFLW [28] training,
the model cannot be directly applied for evaluating IBUG.
We retrain the network for predicting 68 facial key-points
as a separate task in conjunction with the proposed tasks
in hand. We implement it by adding two fully-connected
layers in a cascade manner to the shared feature space (fc-
full), having dimensions 512 and 136, respectively.

Following the protocol described in [43], we use 3, 148
faces with 68-point annotations for training. The network
is trained end-to-end for the localization of 68-points land-
marks along with the other tasks mentioned in Section 3.2.
We use standard Euclidean loss function for training. For
evaluation, we compute the average error of all 68 land-
marks normalized by the inter-pupil distance. Table 2
compares the Normalized Mean Error (NME) obtained by
HyperFace and HF-ResNet with other recently published
methods. We observe that HyperFace achieves a comparable
NME of 10.88, while HF-ResNet achieves the state-of-the-
art result on IBUG [44] with NME of 8.18. This shows the
effectiveness of the proposed models for 68-point landmarks
localization.

TABLE 2
Normalized Mean Error (in %) of 68-point landmarks localization on

IBUG [44] dataset.

Method Normalized Mean Error
CDM [62] 19.54
RCPR [3] 17.26
ESR [4] 17.00
SDM [56] 15.40
LBF [43] 11.98
LDDR [30] 11.49
CFSS [67] 9.98
3DDFA [69] 10.59
TCDCN [66] 8.60
HyperFace 10.88
HF-ResNet 8.18
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(a) (b) (c)

Fig. 11. Pose Estimation performance evaluation on AFLW dataset for (a) roll (b) pitch and (c) yaw angles. The numbers in the legend are the
mean error in degrees for the respective pose angles.

5.3 Pose Estimation

We evaluate R-CNN Pose, Multitask Face and HyperFace
on the AFW [70] and AFLW [28] datasets for the pose
estimation task. The detection boxes used for evaluating
the landmark localization task are used here as well for ini-
tialization. For the AFW dataset, we compare our approach
with Multi. AAM [70], Multiview HoG [70], FaceDPL2 [71]
and face.com. Note that multiview AAMs are initialized
using the ground truth bounding boxes (denoted by *).
Figure 12 shows the cumulative error distribution curves
on AFW dataset. The curve provides the fraction of faces for
which the estimated pose is within some error tolerance. As
can be seen from the figure, both HyperFace and HF-ResNet
outperform existing methods by a large margin. For the
AFLW dataset, we do not have pose estimation evaluation
for any previous method. Hence, we show the performance
of our method for different pose angles: roll, pitch and yaw
in Figure 11 (a), (b) and (c) respectively. It can be seen that
the network is able to learn roll, and pitch information better
than yaw.

Fig. 12. Pose Estimation cumulative error distribution curves on AFW
dataset. The numbers in the legend are the percentage of faces that are
labeled within ±15◦ error tolerance.

The performance traits of R-CNN Pose, Multitask Face,
HyperFace and HF-ResNet for pose estimation task are sim-
ilar to that of the landmarks localization task. R-CNN Pose
and Multitask Face perform comparable to each other
whereas HyperFace achieves a boosted performance due to

2. Available at: http://www.ics.uci.edu/∼dramanan/software/
face/face journal.pdf

the intermediate layers fusion. It shows that tasks which rely
on the structure and orientation of the face work well with
features from lower layers of the CNN. HF-ResNet further
improves the performance for roll, pitch as well as yaw.

5.4 Gender Recognition
We present the gender recognition performance on
CelebA [38] and LFWA [21] datasets since these datasets
come with gender information. The CelebA and LFWA
datasets contain labeled images selected from the Celeb-
Faces [49] and LFW [21] datasets, respectively [38]. The
CelebA dataset contains 10,000 identities and there are
200,000 images in total. The LFWA dataset has 13,233 images
of 5,749 identities. We compare our approach with Face-
Tracer [31], PANDA-w [64], PANDA-1 [64], [34] with ANet
and [38]. The gender recognition performance of different
methods is reported in Table 3. On the LFWA dataset, our
method outperforms PANDA [64] and FaceTracer [31], and
is equal to [38]. On the CelebA dataset, our method performs
comparably to [38]. Unlike [38] which uses 180, 000 images
for training and validation, we only use 20, 000 images from
validation set of CelebA to fine-tune the network.

TABLE 3
Performance comparison (in %) of gender recognition on CelebA and

LFWA datasets.

Method CelebA LFWA
FaceTracer [31] 91 84
PANDA-w [64] 93 86
PANDA-1 [64] 97 92
[34]+ANet 95 91
LNets+ANet [38] 98 94
R-CNN Gender 95 91
Multitask Face 97 93
HyperFace 97 94
HF-ResNet 98 94

Similar to the face detection task, we find that gen-
der recognition performs better for HyperFace and Mul-
titask Face as compared to R-CNN Gender proving that
learning related tasks together improves the discriminating
capability of the individual tasks. Again, we do not see
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much difference in the performance of Multitask Face and
HyperFace suggesting intermediate layers do not contribute
much for the gender recognition task. HF-ResNet achieves
state-of-the-art results on both CelebA [38] and LFWA [21]
datasets.

5.5 Effect of Post-Processing
Figure 13 provides an experimental analysis of the post-
processing methods: IRP and L-NMS, for face detection task
on the AFW dataset. Fast SS denotes the quick version of
selective search which produces around 2000 region pro-
posals and takes 2s per image to compute. On the other
hand, Quality SS refers to its slow version which outputs
more than 10, 000 region proposals consuming more than
10s for one image. The HyperFace with a linear bounding
box regression and traditional NMS achieves a mAP of
94%. Just by replacing them with L-NMS provides a boost
of 1.2%. In this case, bounding-box is constructed using the
landmarks information rather linear regression. Addition-
aly, we can see from the figure that although Quality SS
generates more region proposals, it performs worse than
Fast SS with ierative region proposals. IRP adds 300 new
regions for a typical image consuming less than 0.5s which
makes it highly efficient as compared to Quality SS.

0.7 0.75 0.8 0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

 

 

Fast SS + LR (ap = 94%)
Fast SS + L−NMS (ap = 95.2%)
Quality SS + L−NMS (ap = 97.3%)
Fast SS + L−NMS + IRP (ap = 97.9%)

Fig. 13. Variations in performance of HyperFace with respect to the
Iterative Region Proposals and Landmarks-based NMS. The numbers
in the legend are the mean average precision.

5.6 Fast-HyperFace
The Hyperface method is tested on a machine with 8 cores
and GTX TITAN-X GPU. The overall time taken to perform
all the four tasks is 3s per image. The limitation is not
because of CNN, but due to Selective Search [53] algorithm
which takes approximately 2s to generate candidate region
proposals. One forward pass through the HyperFace net-
work for 200 proposals takes merely 0.1s.

We also propose a fast version of HyperFace which
uses a high recall fast face detector instead of Selective
Search [53] to generate candidate region proposals. We im-
plement a face detector using Single Shot Detector (SSD) [37]
framework. The SSD-based face detector takes a 512 × 512
dimensional input image and generates face boxes in less
than 0.05s, with confidence probability scores ranging from
0 to 1. We use a probability threshold of 0.01 to select high

recall detection boxes. Unlike traditional SSD, we do not use
non-maximum suppression on the detector output, so that
we have more number of region proposals. Typically, the
SSD face detector generates 200 proposals per image. These
proposals are directly passed through HyperFace to gener-
ate face detection scores, localize face landmarks, estimate
pose and recognize gender for every face in the image. Fast-
HyperFace consumes a total time of 0.15s (0.05s for SSD face
detector, and 0.1s for HyperFace) on a GTX TITAN X GPU.
The Fast-HyperFace achieves a mAP of 97.6% on AFW face
detection task, which is comparable to the HyperFace mAP
of 97.9%. Thus, Fast-HyperFace improves the speed by a
factor of 12 with negligible degradation in performance.

6 DISCUSSION

We discuss few crucial observations from our experiments.
First, all the face related tasks benefit from using the multi-
task learning framework. The gain is mainly due to the
network’s ability to learn more discriminative features, and
post-processing methods which can be leveraged by having
landmarks as well as detection scores for a region. Secondly,
fusing intermediate layers improves the performance for
structure dependent tasks of pose estimation and landmarks
localization, as the features become invariant to geometry
in deeper layers of CNN. The HyperFace exploits these
observations to improve the performance for all the four
tasks.

We also visualize the features learned by the HyperFace
network. Figure 14 shows the network activation for a few
selected feature maps out of 192 from the convall layer. It
can be seen that some feature maps are dedicated solely for
a single task while others can be used to predict different
tasks. For example, feature map 27 and 186 can be used
for face detection and gender recognition, respectively. The
former distinguishes the face and non-face regions whereas
the latter outputs high activation for the female faces. Sim-
ilarly, feature map 19 shows high activation near eyes and
mouth regions, while feature map 96 gives a rough contour
of the face orientation. Both of these features can be used for
landmark localization and pose estimation tasks.

Several qualitative results of our method on the AFW,
PASCAL and FDDB datasets are shown in Figure 15. As
can be seen from this figure, our method is able to simul-
taneously perform all the four tasks on images containing
extreme pose, illumination, and resolution variations with
cluttered background.

7 CONCLUSION

In this paper, we presented a multi-task deep learning
method called HyperFace for simultaneously detecting
faces, localizing landmarks, estimating head pose and iden-
tifying gender. Extensive experiments using various pub-
licly available unconstrained datasets demonstrate the ef-
fectiveness of our method on all four tasks. In future, we
will evaluate the performance of our method on other appli-
cations such as simultaneous human detection and human
pose estimation, object recognition and pedestrian detection.
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Fig. 14. Activations of selected feature maps from conv all layer of the HyperFace architecture. Green and yellow colors denote high activation
whereas blue denotes low activation units. These features depict the distinguishable face traits for the tasks of face detection, landmarks localization,
pose estimation and gender recognition.
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