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ABSTRACT

Wavelets with composite dilations extend the traditional wavelet ap-
proach by allowing for the construction of waveforms definednot
only at various scales and locations but also according to various
orthogonal transformations. The shearlets, which yield optimally
sparse representations for a large class of 2D and 3D data is the
most widely known example of wavelets with composite dilations.
However, many other useful constructions are obtained within this
framework. In this paper, we examine the hyperbolic shearlets, a
variant of the shearlet construction obtained as a system ofwell lo-
calized waveforms defined at various scales, locations and orienta-
tions, where the directionality is controlled by orthogonal transfor-
mations producing a sort of shearing along hyperbolic curves. The
effectiveness of this new representation is illustrated byapplications
to image denoising. Our results compare favorably against similar
denoising algorithms based on wavelets, curvelets and other sophis-
ticated multiscale representations.

Index Terms— Wavelets with composite dilations, directional
wavelets, multiresolution analysis, shearlets, contourlets.

1. INTRODUCTION

Among the different methods proposed during the last decadeto
overcome the limitations of traditional multiscale representations in
dealing with multidimensional data [1], [2], wavelets withcomposite
dilations offer a particularly general framework which allows one to
derive a variety of powerful data representation schemes.Wavelets
with composite dilations, originally introduced in [3, 4], are defined
as the collections of functions inL2(Rn) of the form

{ψj,ℓ,k = | detA|j/2
ψ(BℓA

j · −k) : j ∈ Z, ℓ ∈ Λ, k ∈ Z
n},

whereψ ∈ L2(Rn),A is an expanding invertiblen× n matrix,Bℓ

is a matrix for which|detBℓ| = 1 andΛ is a countable indexing
set. In this approach, the matricesAj are associated with scaling
transformations and the matricesBℓ are associated with various or-
thogonal transformations. As a result, it is possible to construct a
variety of systems which go far beyond traditional waveletswith re-
spect to their ability to deal with the geometry of the data.

A particularly important example of wavelets with composite
dilations are theshearletswhich, in dimensionsn = 2, are obtained
by using anisotropic dilation matrices and shearlet matrices of the
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Fig. 1. The tiling of the frequency plane induced by the shearlets.

form

Bℓ =

(
1 1
0 1

)ℓ

and B̃ℓ =

(
1 0
1 1

)ℓ

.

The shearlet tiling of the frequency plane is shown in Fig. 1.Thanks
to their ability to deal with anisotropic features efficiently, shearlets
provide nearly optimally sparse representations for a large class of
images [5] and have been successfully applied to a variety ofimag-
ing applications [6, 7, 8, 9, 10].

Many other useful constructions besides shearlets can be ob-
tained within the framework of wavelets with composite dilations.
In fact, even the contourlets [11] and some of their variantscan be
derived from this approach, as recently observed in [12]. Werefer
to [12, 13] for additional constructions, including the illustration of
their potential in image processing applications.

The goal of this paper is to examine the so-calledhyperbolic
shearlets, a special construction derived from the framework of
wavelets with composite dilations which was originally introduced
in [13] as a variant of the shearlets. Thanks to the special geomet-
ric properties of this construction which will be illustrated in this
paper, it is anticipated that the applications of this new multiscale
representation can have a high impact on deconvolution and other
image enhancement tasks, as indicated by the novel decompositions
suggested in [14] and by the techniques for dealing with motion blur
recently proposed in [15].

The organization of the paper is as follows. After defining the
hyperbolic shearlets in Section 2, their discrete implementation is
presented in Section 3. We demonstrate experimental results in Sec-
tion 4 and conclude with a brief discussion in Section 5.

2. HYPERBOLIC SHEARLETS

The system of hyperbolic shearlets is obtained from the wavelets
with composite dilations (1), in dimensionn = 2, by using thehy-
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Fig. 2. Tiling of the frequency domain associated with an hyperbolic system of wavelets with composite dilations. (a) The starting shapeS is
a rectangle. (b) The starting shapeS is a trapezoid. (c) The starting shapeS is a rectangle and cone restricted set of filters are rotated around
the origin.

perbolicmatrices

Bℓ = {bℓ =

(
λ−ℓ 0
0 λℓ

)
: ℓ ∈ Z},

whereλ > 1 is a fixed parameter; for the dilations matrices, it is

possible to choose the isotropic dilation matrixA =

(√
2 0

0
√

2

)
or

the parabolic dilations matrixA =

(
2 0

0
√

2

)
which is used in the

shearlet construction. The construction resulting from these choices
of matrices can be interpreted as a transformation of the shearlet
tiling (see Fig. 1) under a nonlinear change of coordinates.In the
following, we will setλ =

√
2, but the discussion below can be

easily extended to other choices forλ.
For eachk > 0, the setHk = {(ξ1, ξ2) ∈ R̂

2 : ξ1ξ2 = k}
consists of two branches of hyperbolas. Notice that, for anyξ =
(ξ1, ξ2) ∈ Hk, every other pointξ′ on the same branch of hyperbola
has the unique representationξ′ = (ξ1γ

−t, ξ2γ
t), whereγ > 1 is

fixed, for somet ∈ R. This means anyξ = (ξ1, ξ2) in the first
quadrant can be parametrized by

ξ(r, t) = (
√
r (

√
2)−t

,
√
r (

√
2)t),

wherer ≥ 0, t ∈ R. This implies that

r = ξ1 ξ2, 2t =
ξ2

ξ1
.

For anyk1 < k2, a set{ξ(r, t) : k1 ≤ r < k2} is anhyperbolic
strip and, form1 < m2, a set{ξ(r, t) : k1 ≤ r < k2,m1 ≤ 2t ≤
m2} is anhyperbolic trapezoid.

For anyk 6= 0, the action ofBℓ on the right preserves the hy-
perbolasHk since

ξ Bℓ = (ξ1, ξ2)

(
(
√

2)−ℓ 0

0 (
√

2)ℓ

)

= (ξ1(
√

2)−ℓ
, ξ2(

√
2)ℓ)

= (η1, η2),

andη1η2 = ξ1ξ2. Hence, the right action of the matricesBℓ maps
an hyperbolic strip into itself.

Consider the action of the dilation matricesAi, for i ∈ Z, where
A is one of the examples provided above. It is easy to verify that A
maps the hyperbolaξ1ξ2 = k to a new hyperbola. For example, if

A = {ai =

(√
2 0

0
√

2

)i

: i ∈ Z},

A maps the hyperbolaξ1ξ2 = k to the the hyperbolaξ1ξ2 = 2k,
so thatAi maps the hyperbolic strip{ξ(r, t) : 1 ≤ r < 2} to
the hyperbolic strip{ξ(r, t) : 2i ≤ r < 2i+1}. By defining a set
of generatorsΨ consisting of appropriate characteristic sets in the
frequency domain, it can be established that the hyperbolicsystem
of wavelets with composite dilations

{Di
ADBℓ

Tk Ψ : k ∈ Z
2
, ℓ ∈ Z}

is a Parseval frame ofL2(R2) which implies its transform is in-
vertible and well-conditioned. We refer to [13] for additional detail
about this construction.

Notice that, as the valueℓ increases in magnitude, the hyperbolic
trapezoids become increasingly narrow and asymptoticallyapproach
either the horizontal or the vertical axis. Hence, to realize the system
in the finite discrete setting, the indicesi andℓ can be limited to a
finite range and the asymptotic regions not covered because of this
discretization can then be dealt with by partitioning up thecomple-
ment with a Laplacian Pyramid filtering. An example of the tiling
of the frequency plane associated with this construction isillustrated
in Fig. 2(a). Simple modifications of this construction leadto the
frequency tilings shown in Fig. 2(b)-(c).

3. IMPLEMENTATION

The hyperbolic shearlets are implemented by designing a collection
of filters {Gj,ℓ} that correspond to the appropriate elements of the
hyperbolic shearlet system{ψj,ℓ,k = |detA|j/2 ψ(BℓA

j · −k)}.
These filters are derived by directly applying the matricesAj and
Bℓ to a sequence of filter values to generate the specific spatialfre-
quency tiling associated with the hyperbolic systemAAB(Ψ). Ap-
propriate window adjustments are done by keeping track of the mul-
tiple assigned location points due to the pixelation. Examples of this
construction are shown in Fig. 3 and an example of a hyperbolic filter
in both time and frequency domain is shown in Fig. 4.

The synthesis filters are found by using the techniques givenin
[16, 17, 18, 19, 20, 21], which solve the multi-channel deconvolution
problem (MDP). In 1983, Berensteinet al. considered the following
MDP: Given a collection{hi}m−1

i=0 of finite impulse response filters
onR

d (d ≥ 2), find a collection{h̃i}m−1

i=0 of finite impulse response
filters such that

∑m−1

i=0
hi ∗ h̃i = δ, whereδ is a Dirac delta func-

tion. This equation in the Fourier-Laplace domain is known as the
analytic Bezout equation. The recent methods for solving the MDP
in a discrete setting provide a more effective way of constructing
appropriate synthesis filters [19],[20]. Thus, using thesemethods,
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Fig. 3. Illustrations of filter constructions where the number of sam-
ples used are small for the purpose of presentation. The images
on the left are the sequences of points{(ξn

1 , ξ
n
2 )}N

n=1 contained in
the regionS. The images on the right are the sequences of points
{(ηn

1 , η
n
2 )}N

n=1 where(ηn
1 , η

n
2 ) = ⌈(ξn

1 , ξ
n
2 )aibℓ⌉.

(a) (b)

Fig. 4. An example of a hyperbolic filter. (a) Time Domain. (b)
Frequency Domain.

we are no longer constrained in the traditional ways to create higher
dimensional directional analysis and synthesis filters. Additional de-
tail about this implementation are found in [13] and [21].

4. EXPERIMENTAL RESULTS

In this section, we present numerical experiments on image restora-
tion to demonstrate the effectiveness of the hyperbolic shearlet repre-
sentation and its corresponding discrete implementations. We illus-
trate the denoising capability of these discrete transforms by means
of hard thresholding. Recall that thehard thresholding algorithm
consists in setting to zero the transform coefficients whoseabso-
lute values fall below a certain thresholdT which depends on the
standard deviation of the noiseσ. Although hard thresholding is a
rather crude form of thresholding and more sophisticated methods
such as [7] are available, this method is a good indication ofthe po-
tential of a transform in image restoration applications. Note that the
point of this paper is not to extensively study the denoisingcapabil-
ities of hyperbolic shearlets but rather to illustrate the flexibility of
the framework of composite wavelets to generate useful and effec-
tive directional representations and its competitivenessagainst other
transform-based methods. A more extensive comparison withother
denoising algorithms including methods which are not transform-
based will be addressed elsewhere.

Given noisy observationsy = x + n, wheren is zero-mean
white Gaussian noise with varianceσ2, the objective is to estimate
x. By adapting the standard wavelet shrinkage approach [22],we
apply hard thresholding on the subband coefficients of the various
decompositions. In particular, we choose the thresholdTj = Kσj ,
whereσ2

j is the noise variance in each subband andK is a constant.
We setK = 2 for all subbands.

To assess the denoising performance of our method, we com-

Fig. 5. Images used for the experiments. From left to right:Zebra
(256 × 256), Baboon(512 × 512), andLeopards(512 × 512).

pare it against three different competing discrete multiscale trans-
forms: the nonsubsampled wavelet transform, denoted by NSWT,
the curvelet transform [23], denoted by curv, and the nonsubsampled
contourlet transform [11], denoted by NSCT. We implemened each
transform to4 decomposition levels and we choose the thresholds to
beTj = Kσj , whereσ2

j is the noise variance in each subband and
K is a constant. For these competing transforms, we chooseK = 4
for the highest subband andK = 3 for the other subbands as done
in [11].

The discrete hyperbolic shearlet transforms we tested are the
cone-based hyperbolic transform (c-hyper) shown in Fig. 2 (c) and
the hyperbolic transform (hyper) shown in Fig. 2 (a). We usedthe
peak signal-to-noise ratio (PSNR) to measure the performance of
different transforms. Recall that, given anN × N imagex and its
estimatẽx, the PSNR in decibels (dB) is defined as

PSNR = 20 log10

255N

‖x− x̃‖F
,

where‖.‖F is the Frobenius norm.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Denoising results. (a) Noisy image withσ = 30, PSNR=
18.56 dB. (b) c-hyper estimate, PSNR= 24.67 dB. (c) hyper estimate,
PSNR= 24.38 dB. (d) NSWT estimate, PSNR= 21.41 dB. (e) curv
estimate, PSNR= 22.26 dB. (f) NSCT estimate, PSNR= 23.69 dB.

In Tables I, II and III, we show the results obtained by various
decompositions on aZebra, Baboonand aLeopardsimage, respec-
tively. These images are shown in Fig. 5. The highest PSNR for
each experiment is shown in bold. As it can be seen from the tables,
all of the new transforms provide superior or comparable results to
that obtained using NSWT, NSCT and curvelets. Indeed, in some
cases, the hyperbolic shearlets provide improvement of nearly 1 dB
or more compared to the competing transforms.



Fig. 6 shows the denoisedZebraimage obtained with the various
transforms. Note that the hyperbolic shearlets exhibits much better
reconstructions of edge and curve features thus attesting the effec-
tiveness of the proposed transform. Further results and comparisons
on image denoising and image enhancement can be found in [13].

Table I: Denoising results usingZebraimage.
σ Noisy c-hyper hyper NSWT curv NSCT

10 28.11 30.77 30.45 26.32 26.39 29.58

15 24.58 28.28 27.83 24.09 24.63 27.17

20 22.09 26.57 26.16 22.86 23.42 25.65

25 20.15 25.49 25.15 22.04 22.89 24.56

30 18.56 24.67 24.38 21.41 22.26 23.69

Table II: Denoising results usingBaboonimage.
σ Noisy c-hyper hyper NSWT curv NSCT

10 28.14 29.44 29.61 26.32 26.14 29.02

15 24.61 27.27 27.31 24.25 24.31 26.62

20 22.12 25.74 25.78 23.24 23.72 25.12

25 20.18 24.30 24.35 22.58 23.61 24.08

30 18.59 23.49 23.47 22.06 23.43 23.32

Table III: Denoising results usingLeopardsimage.
σ Noisy c-hyper hyper NSWT curv NSCT

10 28.14 32.32 32.26 28.88 29.80 31.05

15 24.61 30.15 30.21 27.33 28.43 28.89

20 22.12 28.62 28.84 26.25 27.50 27.48

25 20.18 27.51 27.76 25.28 26.66 26.41

30 18.59 26.55 27.01 24.40 25.99 25.52

5. DISCUSSION AND CONCLUSION

Hyperbolic shearlets illustrate the flexibility of the framework of
wavelets with composite dilations to build redundant multiscale and
multidirectional decomposition transforms endowed with special ge-
ometric features. They have particular utility when it comes to appli-
cations such as deconvolution [14], [15]. Yet the ability todeal with
directional informations efficiently also proves to be highly effective
at representing complex images as illustrated by their performance
in denoising. In addition, the new filter design methodologythat
comes from the direct application of theA andBℓ structure ma-
trices employed in this work is of interest by itself as it allows for
very complicated spatial-frequency tiling to be constructed. Unlike
competing methodologies, the degrees of flexibility of our approach
allow for very redundant decompositions and excellent directional
selectivity, which are the main reasons for the very good estimation
performance we obtained. In addition, these multi-channelbased
implementations are highly efficient and parallelizable. In particular,
givenm filters, the algorithms takes onlyO(mN2 logN) operations
in a serial formulation for anN × N image and this is highly effi-
cient compared to the nonsubsampled contourlet transform as timed
in [8].
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