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Abstract

Multimodal classification arises in many computer vi-
sion tasks such as object classification and image retrieval.
The idea is to utilize multiple sources (modalities) measur-
ing the same instance to improve the overall performance
compared to using a single source (modality). The varying
characteristics exhibited by multiple modalities make it nec-
essary to simultaneously learn the corresponding distance
metrics. In this paper, we propose a multiple metrics learn-
ing algorithm for multimodal data. Metric of each modal-
ity is product of two matrices: one matrix is modality spe-
cific, the other is enforced to be shared by all the modalities.
The learned metrics can improve multimodal classification
accuracy and experimental results on four datasets show
that the proposed algorithm outperforms existing learning
algorithms based on multiple metrics as well as other ap-
proaches tested on these datasets. Specifically, we report
95.0% object instance recognition accuracy, 89.2% object
category recognition accuracy on the multi-view RGB-D
dataset and 52.3% scene category recognition accuracy on
SUN RGB-D dataset.

1. Introduction
Owing to recent developments in sensor technology, re-

searchers and developers are able to collect multimodal data
consisting of depth information and RGB images to achieve
better performance for tasks such as object detection, clas-
sification and scene understanding [20, 7, 18, 30, 38, 32].
Massive image and video data on Internet are associated
with tags and metadata which are useful for image clas-
sification [16] and retrieval [45, 37]. Solutions to these
problems can be formulated using multimodal classification
frameworks. Multimodal classification has also been stud-
ied for other applications such as audio-visual speech clas-
sification [27, 33], and multimodal biometrics recognition
[29, 44].

How to efficiently and effectively combine different
modalities is the key issue in multimodal classification.

Feature vectors corresponding to different modalities might
be very different even if they essentially represent the same
object. Some feature vectors are very discriminative while
others are not; some feature vectors are clean while others
are noisy; some feature vectors are dense while others are
sparse. Many factors like data acquisition, preprocessing
and feature extraction can make feature vectors’ behavior
quite different. Therefore, direct linear combination of fea-
ture vectors or simple linear combination of the result of
each modality can not guarantee good performance com-
pared with using certain modality alone.

Metric learning algorithms can learn the Mahalanobis
distance from data pairs and side information indicating the
relationship of data pairs [40]. The learned distance metric
can be better than Euclidean distance for the original feature
space. Extensive research on metric learning in uni-modal
setting is available in the literature. Classical algorithms in-
cludes the algorithm proposed in [40], Large Margin Near-
est Neighbor (LMNN) algorithm [36] and Information The-
oretical Metric Learning (ITML) algorithm [12].

Extending the uni-modal metric learning algorithm to
multi-modal metric learning can be a good solution for
multimodal classification problems if the learned metrics
are appropriate distance measures for corresponding fea-
ture spaces. Also, it is important to explore the relationship
among the multiple metrics and the learning process can
take into account the underlying differences among multi-
ple modalities by balancing the contribution of each modal-
ity. As will be analyzed in Section 2 and Section 3, existing
approaches for multimodal metric learning do not fully cap-
ture the relationships among the multiple learned metrics.

Motivated by previous works that consider shared rep-
resentations in their formulations for multi-modal applica-
tions such as [27, 34, 41, 44], we propose a Hierarchi-
cal Multimodal Metric Learning (HM3L) algorithm which
fully explores the relationships among the different met-
rics of different modalities. In our formulation, metric
of each modality is constructed through the multiplication
of modality specific part representing appropriate subspace
and a common part (p.s.d matrix) shared by all the met-
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Figure 1. Overview of Hierarchical MultiModal Metric Learning.

rics. Figure 1 gives an overview of the proposed multi-
modal metric learning algorithm. Given multimodal repre-
sentations, first we apply modality-specific projections Pk

to each modalities since their representations are very dif-
ferent in nature, then we apply the common metric M to
features after the modality-specific projection assuming the
features lie in the same common space.

The rest of this paper is organized as follows. In Sec-
tion 2, we review different metric learning algorithms. In
Section 3, the Hierarchical Multimodal Metric Learning
(HM3L) algorithm is proposed and compared with related
multiple metrics learning algorithms. In Section 4, an effi-
cient algorithm based on subgradient method is applied to
solve the resulting optimization problem. Extensive exper-
imental results on four datasets are presented in Section 5.
Finally, Section 6 concludes the paper with a brief summary.

2. Related Work

Metric learning has been studied in various fields from
machine learning [40, 36], information retrieval [25] to
computer vision [15] and biometrics [31, 8]. The goal of
a metric learning algorithm is to learn a distance metric so
that after data are projected using the learned metric, sim-
ilar data samples (e.g. from the same class) are clustered
together and dissimilar data samples (e.g. samples from dif-
ferent classes) are separated.

In a recent work, [40] formulated the metric learning
problem as a convex optimization problem by utilizing the
side information of two data samples being similar or dis-
similar. LMNN [36] applies the idea of large margin in Sup-
port Vector Machine (SVM) to improve the KNN classifica-
tion and uses triplet constraints to describe the relative rela-
tionship of three samples. In [12], the information theoret-
ical metric learning (ITML) algorithm was proposed which
essentially minimizes the differential relative entropy be-
tween two multivariate Gaussians under constraints on the

distance function.
More recent metric learning algorithms also explore the

structure of the metric by enforcing the low-rank constraints
[11, 24] or sparse constraints [42, 28, 23] or both sparse and
low-rank constraints [22]. For high dimensional problems,
[11] showed that enforcing low-rank constraints on the met-
ric during the learning process is computationally efficient
and tractable even with small number of samples. More
comprehensive survey of various metric learning methods
and their applications are summarized in [1, 19].

Several multimodal metric learning algorithms have also
been proposed in the literature [39, 13, 43, 17]. For in-
stance, a multimodal metric learning method in [39] applies
multi-wing harmonium (MWH) learning framework to get
latent representations from different modalities and learns
distance metric under a probabilistic formulation. A Het-
erogeneous Multi-Metric Learning algorithm proposed in
[43] for multi-sensor fusion essentially extends the LMNN
algorithm [36] for multi-metric learning. Similarly, in [17]
a large margin multi-metric learning (LM3L) was proposed
for face and kinship verification which learns multiple dis-
tance metrics under which the correlations of different fea-
ture representations of each sample are maximized. Some
of the other multimodal metric learning algorithms include
Pairwise-constrained Multiple Metric Learning (PMML)
[10]. Note that these methods can be viewed as multimodal
extensions of the classical unimodal metric learning algo-
rithms like ITML and LMNN. One of the limitations of
these methods is that they do not explore the relationships
among different metrics corresponding to different modali-
ties.

3. Formulation

3.1. Problem Description

Let
S = {(Xi, Xj)|yij = 1}

and
D = {(Xi, Xj)|yij = −1}

be two sets consisting of similar instance pairs and dissim-
ilar instance pairs, respectively. An instance in the multi-
modal scenario is denoted as

Xi = {x(1)i , x
(2)
i , · · · , x(K)

i },

which consists of K features from K different modalities,
where x(1)i ∈ Rl1 , x

(2)
i ∈ Rl2 , · · · , x(K)

i ∈ RlK . Note that
the dimension of each feature vector can be different. In
multimodal metric learning, the objective is to learn dis-
tance metrics for such instances consisting of K feature
vectors.



A simple way to learn distance metric for multimodal
data is by concatenating the features of the K modali-
ties into one feature vector of length

∑K
i=1 li and apply-

ing the classical metric learning algorithms like LMNN or
ITML. The drawback of this approach is the high computa-
tional cost incurred by learning an

∑K
i=1 li by

∑K
i=1 li dis-

tance metric. This problem is even more serious for high-
dimensional multimodal data.

Existing multimodal metric learning algorithms such as
Pairwise-constrained Multiple Metric Learning [10], Large
Margin Multi-metric Learning [17], and Heterogeneous
Multi-Metric Learning [43], are extensions of the classical
unimodal metric learning algorithms in which the distance
between any two instances is obtained as

d2m(Xi, Xj) =
1

K

K∑
i=1

d2Mk
(x

(k)
i , x

(k)
j ) (1)

=
1

K

K∑
i=1

(x
(k)
i − x(k)j )TMk(x

(k)
i − x(k)j ).

These approaches simultaneously solve K positive semi-
definite (p.s.d) matrices Mk, k = 1, · · · ,K as distance
metrics in a joint formulation.

3.2. Hierarchical Multimodal Metric Learning
(HM3L) Formulation

In order to efficiently learn multiple metrics for multi-
ple modalities as well as to capture the relationship among
them, we enforce the different metrics Mk, k = 1, · · · ,K
to satisfy the following condition

Mk = PT
kMPk, k = 1, · · · ,K, (2)

where Pk ∈ Rd×lk and d ≤ min{l1, l2, · · · , lK}. Also, M
is required to be a p.s.d matrix. Using this formulation, one
can easily show that if M ∈ Rd×d is p.s.d and rank(M) ≤
r (r ≤ d), then for any non-trivial Pk ∈ Rd×lk , Mk =
PT

kMPk is p.s.d and rank(Mk) ≤ r.

For the given training data, the learned metrics Mk are
obtained by learning modality specific part Pk and the
shared part M in a hierarchical framework. With the above
proposition, as long as M is p.s.d, Mk is p.s.d meaning that
Mk are valid distance metrics.

By enforcing (2), we establish the relationship among
different modalities. As a result, we can formulate the Hier-
archical multimodal metric learning (HM3L) algorithm as

the optimization problem specified in (3).

min
M∈S+

d

tr(M) + γ

K∑
k=1

‖Pi‖2F (3)

s.t.
1

K

K∑
k=1

d2M (Pkx
(k)
i ,Pkx

(k)
j ) ≤ µ if yij = 1

1

K

K∑
k=1

d2M (Pkx
(k)
i ,Pkx

(k)
j ) ≥ β if yij = −1.

Here γ controls the relative contribution to the cost func-
tion between Pk and M and µ and β are non-negative real
numbers which specify the upper bound for distance of two
similar instances and lower bound for distance of two dis-
similar instances, respectively. We introduce the slack vari-
ables εij > 0 for constraints. Then (3) can be rewritten as

min
M∈S+

d

tr(M) + γ

K∑
k=1

‖Pi‖2F (4)

s.t.
1

K

K∑
k=1

d2M (Pkx
(k)
i ,Pkx

(k)
j ) ≤ µ+ εij if yij = 1

1

K

K∑
k=1

d2M (Pkx
(k)
i ,Pkx

(k)
j ) ≥ β − εij if yij = −1.

3.3. HM3L-based multimodal classification

Once Pk and M are learned, we can easily get L such
that LTL = M through matrix decomposition. Then the
multi-modal data

Xi = {x(1)i , x
(2)
i , · · · , x(K)

i }

can be projected by Pk and L and transformed to

X̂i = {LP1x
(1)
i ,LP2x

(2)
i , · · · ,LPKx

(K)
i }.

Concatenation of all the projected features can be used with
various classification algorithms like KNN and SVM.

4. Optimization
To solve the proposed optimization problem (4), we ap-

ply hinge-loss function to get rid of the constraints which
results in an unconstrained optimization problem as follows

min
M∈S+

d

tr(M) + γ

K∑
k=1

‖Pi‖2F (5)

+ αC
∑

(Xi,Xj)∈S

[
1

K

K∑
k=1

d2M (Pkx
(k)
i ,Pkx

(k)
j )− µ

]
+

+ (1− α)C
∑

Xi,Xj∈D

[
β − 1

K

K∑
k=1

d2M (Pkx
(k)
i ,Pkx

(k)
j )

]
+



where C is a positive number that controls the relative
contribution between the constraints on the metric and the
constraints on the data samples, α is a constant that balances
the relative contribution between the pairs from similar set
and pairs from dissimilar set. Let L(M;P1,P2, ...,PK)
denote the above cost function we are trying to mini-
mize. It is a bi-convex optimization problem when we
consider Pk (k = 1, 2, ...,K) together as P. We iter-
atively solve M and P by updating one with the other fixed.

The hinge-loss function indicates that only pairs of sam-
ples that violate the distance constraints will make contri-
butions to the overall cost function. For notational conve-
nience, letAt

S,P , At
D,P , At

S,M andAt
D,M denote active sets

at time t. At
S,P (At

D,P ) means set for similar (dissimilar)
pairs that violate the distance constraint when we fix Pk to
update M. Similarly, At

S,M (At
D,M ) means set for similar

(dissimilar) pairs that violate the distance constraint when
we fix M to update Pk.

At
S,P = {(Xi, Xj) ∈ S|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≥ µ}

At
D,P = {(Xi, Xj) ∈ D|

1

K

K∑
k=1

d2Mt−1
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≤ β}

At
S,M = {(Xi, Xj) ∈ S|

1

K

K∑
k=1

d2Mt
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≥ µ}

At
D,M = {(Xi, Xj) ∈ D|

1

K

K∑
k=1

d2Mt
(Pk,t−1x

(k)
i ,Pk,t−1x

(k)
j ) ≤ β}.

4.1. Updating M

Fixing Pk, projected sub-gradient method [6] can be ap-
plied to solve M. It involves two key steps.
Step 1:

Mtmp = Mt − ηgt(M), (6)

where gt(M) is the gradient of L(M) at time t and it is
derived as,

gt(M) = Id×d + Cα
∑

(Xi,Xj)∈At
S,P

[
1

K

K∑
k=1

Pk,t−1B
(k)
i,j PT

k,t−1

]
+

C(1− α)
∑

(Xi,Xj)∈At
D,P

[
− 1

K

K∑
k=1

Pk,t−1B
(k)
i,j PT

k,t−1

]
(7)

Where B(k)
i,j = (x

(k)
i − x

(k)
j )(x

(k)
i − x

(k)
j )T is a rank 1 matrix.

Step 2:
Mt+1 = VT [Σ]+V, (8)

where VTΣV is the eigenvalue decomposition of Mtmp. Pro-
jecting Mtmp onto the p.s.d cone can be done by thresholding the
eigenvalues by keeping the positive eigenvalues and setting the
negative ones to be 0.

4.2. Updating P

Fixing M, each Pk can be updated separately through gradient
descent as

Pk,t = Pk,t−1 − ηgt(Pk), k = 1, 2, ...,K, (9)

where gt(Pk) is the gradient of L(Pk) at time t and it is derived
as

gt(Pk) = 2γPk,t−1 + Cα
∑

(Xi,Xj)∈At
S,M

[
2

K
MtPk,t−1B

(k)
i,j

]
+

C(1− α)
∑

(Xi,Xj)∈At
D,M

[
− 2

K
MtPk,t−1B

(k)
i,j

]
(10)

The overall Hierarchical Multimodal Metric Learning (HM3L)
algorithm is summarized in Algorithm 1.

Algorithm 1: Hierarchical Multimodal Metric Learn-
ing (HM3L)

Inputs:
S = {(Xi, Xj)|yij = 1},
D = {(Xi, Xj)|yij = −1}, positive integer γ, α, η,
µ, β, C and maximum iteration T .

Initialization:
To initialize Pk (k = 1,2,...,K):

construct Xk ∈ Rlk×N of x(k)i from S and D;
perform PCA on Xk to obtain Pk,0 ∈ Rd×lk .

To initialize M:
set M0 = Id×d.

Main loop:
for t = 1 : T do

calculate At
S,P and At

D,P to update M through
(7), (6) and (8);

calculate At
S,M and At

D,M to update Pk through
(10) and (9).

end
Outputs:

Pk (k = 1, 2, . . . ,K) and M.

5. Experiments
To illustrate the effectiveness of our method, we present ex-

perimental results on four publicly available multimodal datasets:
NUS-WIDE dataset [9], RGB-D Object dataset [20], CIN 2D3D
object dataset [7] and SUN RGB-D dataset [32]. The details of
these datasets, experimental setups and experimental results are
given in the following subsections.

For experiments on each dataset, we include (1) the baseline
result (without metric learning) obtained by certain features plus
either NN or SVM classifiers depending on which was used to
report the baseline result, (2) the proposed HM3L method as well
as other publicly available multiple metrics learning methods [10,
43] to first transform the features used in the baseline result, then
apply NN or SVM classifier, (3) other methods which reported the
best results on that experiment.



5.1. Tagged image classification on NUS-WIDE
dataset

The NUS-WIDE dataset [9] consists of 269,648 web images
and tags from Flickr. For a fair comparison with previous results
reported in [39], same subset of tagged images, same train/test
splitting, same sets of similar (dissimilar) pairs of instances and
same feature extraction procedures are applied. A subset of 1521
tagged images are used. These tagged images consist of 30
classes (actor, airplane, bicycle, bridge, buddha, building, butter-
fly, camels, car, cathedral, cliff, clouds, coast, computers, desert,
flag, flowers, food, forest, glacier, hills, lake, leaf, monks, moon,
motorcycle, mushrooms, ocean, police, pyramid) and roughly 50
tagged images per class are randomly selected. By randomly split-
ting the dataset, 765 tagged images are used as training data and
the remaining are used as testing data. From the training data,
9613 pairs of similar instances and 10067 pairs of dissimilar in-
stances are selected to learn distance metrics. For images, 1024-
D bag of visual words based on SIFT descriptors is extracted to
represent the image modality; for tags, 1000-D bag of words is
extracted to represent the associated tag modality. Therefore, one
instance of tagged image is represented by feature vectors of two
modalities.

5.1.1 Experiment Setup

For every approach considered, distance metrics are first learned.
Then, KNN classification under the learned distance metrics is
performed using the training and testing data. The value of K
is chosen to be 1, 3, 5, 10 and 20. We compare the performance
of our method with that of ”Xing + Original”, ”ITML+Original”,
”Xing + MWH”, ”ITML + MWH”, ”MKE” [26], Heteroge-
neous Multi-Metric Learning (HMML) [43] and PMML [10].
”Xing+Original” and ”ITML+Original” methods essentially apply
algorithms proposed in [40] and [12] on the concatenated feature
vectors from different modalities. Similarly, ”Xing+MWH” and
”ITML+MWH” correspond to the algorithms combined with the
MWH model proposed in [39]. All parameters are tuned using
cross-validation on training data.

5.1.2 Experimental Results

Table 1 shows the KNN classification accuracies of different meth-
ods. As can be seen from the table, the HM3L method performed
the best and it outperforms all the other methods. This experiment
clearly show that our method can provide better distance measures
which can enhance the performance of a classification algorithm.

To show whether the proposed algorithm converge, we empir-
ically show the convergence of our algorithm by plotting the nor-
malized cost function values versus iterations. From Figure 2, we
can observe that the proposed algorithm converges in a few itera-
tions.

5.2. Object recognition on RGB-D Object dataset
RGB-D Object dataset [20] is a large scale multi-view dataset

for 3D object recognition, segmentation, scene labeling and so on.
It consists of video recordings of 300 everyday objects organized
into 51 different categories. The video recordings were captured
by cameras mounted at 3 different elevation angles of 300, 450
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Figure 2. Normalized cost function over iterations.

and 600. A single RGB-D frame which consists of both an RGB
image and a depth image. Evaluations for various computer vision
tasks such as instance recognition and category recognition were
set in [20]. RGB-D Images were sampled every 5th frame of the
videos and in total about 45,000 RGB-D images were collected.

Kernel descriptors [3] [4] were extracted as features for RGB
images and depth image. For RGB images, LBP kernel descriptor,
Gradient kernel descriptor and normalized color kernel descriptor
were extracted. For depth images, gradient kernel descriptor, LBP
kernel descriptor were extracted from depth images; normal ker-
nel descriptor and size kernel descriptor were extracted from point
clouds which were converted from the depth images. For each
kernel descriptor, object-level features was obtained from 1000 di-
mensional basis vector for 1×1, 2×2, 3×3 pyramid sub-regions.
The basis vector was learned by K-means on about 400,000 sam-
ple kernel descriptors from training data. The dimensionality of
each kernel descriptor is (1+ 4+9)× 1000 = 14000 and further
apply principal component analysis to reduce the the dimensional-
ity to 1000. After feature extraction, each RGB-D image is repre-
sented by 7 kernel descriptors and each kernel descriptor is 1000
dimensional vector.

5.2.1 Experimental Setup

For the instance recognition experiment, images corresponding to
the videos captured at angles 300 and 600 are used for training, and
images corresponding to the videos captured at angle 450 are used
for testing. For the category recognition experiment, one object
was randomly chosen and left out from each category for testing
and all views of the remaining objects were used for training. 10
trials were repeated for category recognition.

For the instance and category recognition tasks, we first learn
multiple metrics for 7 kernel descriptors using the similar and
dissimilar set of the RGB-D images generated from the training
data. We then perform linear SVM classification [14] based on the
learned metrics. We also compare the performance of our method
with the results reported in [34] which are based on deep learning-
based methods for RGB-D image classification.

5.2.2 Experiment Results

Classification results for instance recognition and category recog-
nition are shown in Table 2 and Table 3 respectively. From



Methods Xing+Original ITML+Original Xing+MWH ITML+MWH MKE[26] Xie[39] PMML[10] HMML[43] HM3L
1-NN 0.8995 0.8995 0.8995 0.9286 0.8056 0.9352 0.9233 0.9140 0.9524
3-NN 0.8108 0.6653 0.8849 0.8929 0.6944 0.9021 0.9220 0.9246 0.9431
5-NN 0.6971 0.4868 0.8426 0.8519 0.5860 0.8849 0.9299 0.9114 0.9418

10-NN 0.4775 0.2394 0.7646 0.7394 0.4405 0.8333 0.9139 0.9008 0.9339
20-NN 0.1548 0.0450 0.6230 0.4841 0.1746 0.7130 0.9074 0.8876 0.9223

Table 1. KNN Classification Accuracy under learned metrics for tagged images.

Methods RGB Depth RGB-D
Lai [20] 60.7 46.2 74.8
Bo [4] 90.8 54.7 91.2
Blum [2] 82.9 - 90.4
HMP [5] 92.1 51.7 92.8
MMSS [34] - - 94.0
PMML [10] + linear SVM 92.7 53.4 92.9
HMML [43] + linear SVM 90.0 51.9 92.1
HM3L + linear SVM 93.34 55.6 95.0

Table 2. Instance recognition accuracy on RGB-D Object dataset.

Methods RGB Depth RGB-D
Lai [20] 64.7±2.2 74.5±3.1 83.8± 3.5
Bo [4] 80.7±2.1 80.3±2.9 86.5±2.1
Blum [2] - - 86.4±2.3
HMP [5] 82.4± 3.1 81.2± 2.3 87.5±2.9
MMSS [34] - - 88.5± 2.2
PMML [10] + linear SVM 80.2 77.7± 2.4 88.5± 1.4
HMML [43] + linear SVM 75.8± 3.2 77.4± 2.4 87.3± 1.8
HM3L + linear SVM 81.0± 2.7 79.1± 2.4 89.2± 1.6

Table 3. Category recognition accuracy on RGB-D Object dataset.
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Figure 3. Confusion matrix for Instance recognition result.

these tables, we have following observations. (1) the proposed
HM3L-based classification outperform the best results obtained
from MMSS [34] which applies deep architectures on the RGB-
D images for both instance recognition testing on over 13800 in-
stances and category recognition overall 10 trials. (2) The pro-
posed HM3L algorithm can boost the classification accuracy com-
pared to the case where metrics learning were not performed. (3)
HM3L-based multimodal classification outperforms other multi-
ple metrics learning-based classification and this shows that the
idea of capturing the relationship for different multiple metrics can
help to learn more appropriate distance measures.

Confusion matrices of classification results based on the pro-
posed algorithm are shown in Figure 3 for instance recognition
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Figure 4. Confusion matrix for 8th trial category recognition re-
sult.

Figure 5. Examples of prediction errors in category recognition
experiment.

experiment and in Figure 4 for the 8th trial of category recogni-
tion experiment. The testing data of recognition experiment are
placed such that testing samples of the same objects are put to-
gether and objects from the same category are grouped together.
As we can see from Figure 3, for each of 300 objects, most samples
are classified correctly (diagonal) and large portion of the errors
are made due to the misclassification of certain samples to other
objects from the same category. Examples of misclassification in
category recognition is shown in Figure 5. For each column, the
objects on top was misclassified to the category represented by
certain object in the bottom. We can see that errors occur due to
similar color and shape.

5.3. Object recognition on CIN 2D3D dataset
CIN 2D3D object classification dataset [7] contains segmented

color and depth images of 154 objects from 18 categories of com-
mon household and office objects. Each category contains be-
tween 3 to 14 objects. Each object was recorded using a high-



resolution color camera and a time-of-flight rang sensor. Objects
were rotated using a turn table and snapshots taken every 10 de-
grees and yields 36 views per object. Each view is one data sam-
ple consisting of RGB image and Depth image. Follow the similar
procedures to extract kernel descriptors for samples in RGB-D ob-
ject dataset, we also extract kernel descriptors for data samples in
2D3D dataset.

5.3.1 Experiment Results

The evaluation protocol for category classification was set in the
original paper [7]. 6 objects per category were used for training
and remaining objects were used for testing. For each object, 18
views are selected for training and 18 views for testing. The train-
ing set consisted of 82 objects with a total of 1476 views. The
test set contained 74 objects with 1332 views. Same methods as
included in RGB-D dataset are evaluated. Classification results
for category recognition are shown in Table 4. As can be seen
from this table, the proposed HM3L-based multimodal classifica-
tion gives the best performance on average.

Methods RGB Depth RGB-D
Browatzki [7] 66.6 74.6 82.8
HMP [5] 86.3 87.6 91.0
MMSS [34] - - 91.3
PMML [10] + linear SVM 90.6 82.7 91.8
HMML [43] + linear SVM 86.8 83.4 90.8
HM3L + linear SVM 89.9 86.4 92.9

Table 4. Category recognition accuracy (in %) on CIN 2D3D
dataset.

5.4. Scene Categorization on SUN RGB-D dataset
SUN RGB-D dataset [32] consists of 10355 RGB-D scene im-

ages including 3784 Kinect v2 images, 1159 Intel RealSense im-
ages as well as 1449 images taken from the NYU Depth Dataset
V2 [30], 554 scene images from the Berkeley B3DO Dataset [18],
and 3389 Asus Xtion images from SUN3D videos [38]. We choose
the same Places-CNN [46] scene features of dimension 4096 for
both RGB image and depth image which were used to report the
baseline results in [32].

5.4.1 Experimental Results

We followed the standard experimental setup for scene catego-
rization task according to [32]. Specifically, 19 scene categories
with more than 80 images are used. These scene categories are
bathroom, bedroom, classroom, computer room, conference room,
corridor, dining area, dining room, discussion area, furniture store,
home office, kitchen, lab, lecture theatre, library, living room, of-
fice, rest space, study space.

The train and test split is available in [32]. In total, 4845 sam-
ples are used for training and 4659 samples are used for testing.
The standard average categorization accuracy is used for evalua-
tion. We apply the proposed HM3L method to the Places-CNN
features, transform the original features with the learned matrices,
and then apply one-vs-all rbf SVM for classification. The scene
category recognition results are shown in Table 5.

From results, we have following observations. (1) the pro-
posed HM3L-based classification outperform the best results ob-
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Figure 6. Confusion matrix for scene recognition result.

tained from [35, 47]. (2) The proposed HM3L algorithm as well
other two multiple metrics learning algorithms can significantly
boost the classification accuracy compared to the baseline case in
which metrics learning were not performed. (3) HM3L-based mul-
timodal classification outperforms other multiple metrics learning-
based classification and this again shows that the importance of
capturing the relationship for different multiple metrics in the
learning process.

Methods RGB Depth RGB-D
Place-CNN + linear SVM [32] 35.6 25.5 37.2
Place-CNN + rbf SVM [32] 38.1 27.7 39.0
Liao [21] 36.1 - 41.3
Zhu [47] - - 41.5
Wang [35] - - 48.1
PMML [10] + rbf SVM 40.7 30.5 44.2
HMML [43] + rbf SVM 47.9 32.6 51.1
HM3L + rbf SVM 48.6 33.2 52.3

Table 5. Scene categorization accuracy (in %) on SUN RGB-D
dataset.

6. Conclusions
In this paper, we proposed hierarchical multimodal metric

learning algorithm which can efficiently learn multiple metrics
for multi-modal data while fully exploring the relationship among
these metrics. The proposed approach makes no assumption about
the feature type or applications. We view feature learning as a dif-
ferent problem and only focus on learning discriminative metrics
for multimodal data in order to improve the multimodal classifica-
tion accuracy. As we separate the feature learning process from the
metric learning process, the proposed approach can be applied to
many different applications with many different feature types. Ex-
perimental results on four datasets show that the proposed metric
learning algorithm outperforms other metric learning algorithms
dealing with multi-modal data and provide the best performance
for all the experiments considered. As the concept of modality is
quite general and many computer vision problems can be consid-
ered in multi-modal settings, the proposed HM3L algorithm can



be applied where appropriate distance metrics are required and can
boost the performance of related computer vision tasks.
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