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ABSTRACT

We propose a new formulation of the classical two-dimensional
phase unwrapping problem. Using a sparse-error, gradient-domain
measurement model, we simultaneously seek the absolute phase
and sparse gradient errors that minimize a novel energy functional
that strongly encourages the integrability of the corrected gradient
field. Our approach can be cast as a generalized lasso problem, and
we compute the solution using the alternating direction method of
multipliers (ADMM) algorithm. Adopting a commonly-used inter-
ferometric synthetic aperture radar noise model, we evaluate our
technique for several synthetic surfaces.

Index Terms— Phase unwrapping, sparse error correction, in-
tegrability, interferometric synthetic aperture radar

1. INTRODUCTION

Phase unwrapping is a problem that arises in many applications, in-
cluding magnetic resonance imaging, optical interferometry, and in-
terferometric synthetic aperture radar (InSAR). The task is to infer
the real-valued absolute phase from measurements of the principal
phase. It is usually the case that the absolute phase carries the in-
formation of interest, but the principal phase is the only observable
quantity. The two quantities are related as follows: if φ ∈ R rep-
resents the absolute phase, then the corresponding principal phase
value is given by ψ = W (φ), where the wrapping operator W is
defined as

W : R→ [−π, π)

W (φ) = [(φ+ π) mod2π]− π, (1)

and applied componentwise in the case of multivariate φ. Using the
above notation, the phase unwrapping problem is that of inferring φ
from ψ.

Due to the many-to-one nature ofW , this problem is ill-posed.
Therefore, in order to find a unique solution, additional constraints
must be imposed on φ. One such constraint that is applied almost
universally in the literature is derived from the Itoh condition [1].
Assuming a two-dimensional φ that is comprised of phase samples
obtained on a uniformly-spaced discrete grid, the Itoh condition is
said to be satisfied if neighboring phase values do not differ by more
than π. Whether or not this condition is satisfied is related to both the
spatial sampling rate and the smoothness of the underlying physical
quantity. However, if the Itoh condition is satisfied, then it can be

This work was partially supported by Army Research Office MURI
Grant W911NF-09-1-0383.

shown that

∇φ =W (∇ψ) , (2)

where ∇ computes differences between four-connected neighbors.
Unfortunately, even in the case of sufficiently-smooth φ and suffi-
cient spatial sampling, (2) may fail to hold due to noise in the sys-
tem that acquires ψ. Nevertheless, this gradient constraint is used
in virtually every unwrapping procedure, and the distinguishing trait
among these procedures is the way in which this issue is addressed.

In this paper, we propose a novel phase unwrapping technique
that explicitly models the error in (2) as a sparse quantity, i.e., that
significant inequality occurs in a relatively small number of loca-
tions. We find the error by explicitly enforcing integrability in the
corrected gradient measurements. We formulate the unwrapping
problem as one of jointly estimating both the absolute phase and
the sparse errors, and cast it as a generalized lasso [2][3] problem.
We then propose the use of the alternating direction method of mul-
tipliers (ADMM) algorithm [2] to compute the estimates.

1.1. Organization

This paper is organized as follows. In Section 2, we review related
work in the field of phase unwrapping. In Section 3 we develop our
formulation of sparse-error-corrected phase unwrapping, which cul-
minates in an interpretation of the problem in the generalized lasso
framework. In Section 4, we provide details of the optimization al-
gorithm. We present the results of our technique in Section 5, and
Section 6 concludes the paper with a summary.

2. RELATED WORK

Phase unwrapping is a problem that has received a great deal of at-
tention from the research community. While early efforts focused on
estimating the absolute phase directly from wrapped observations,
more recent work has also dealt with the more limited task of de-
noising the wrapped observations (see, e.g., [4, 5]). These denoising
methods do not explicitly perform the unwrapping, but they do often
produce very good results when used to preprocess the input before
applying absolute-phase-estimation techniques.

The method we present in this paper is one that computes an es-
timate of the absolute phase directly from wrapped, possibly noisy,
observations. Virtually all such techniques rely on (2), which allows
one to useψ to generate measurements of the horizontal and vertical
absolute phase differences. The unwrapping problem then becomes
one of estimating a two-dimensional image (φ) from measurements
of the corresponding gradient field. This more general problem is



one with a wide variety of applications beyond that of phase un-
wrapping. For a thorough treatment, see [6].

Early attempts to solve the phase unwrapping problem included
path-following [7, 8, 9] techniques, which seek suitable paths over
which simple gradient-measurement integration can be used to com-
pute the absolute phase. A more popular class of phase unwrapping
techniques formulates the problem as one of energy minimization,
i.e.,

φ∗ = arg min
φ
J (φ), (3)

where the distinguishing trait among these methods lies in how the
energy function, J , is defined. Hunt [10] selects

J (φ) = ‖∇φ−W(∇ψ)‖22, (4)

where ∇φ =
[
∇xφ

T ∇yφ
T
]T

, and ∇xφ and ∇yφ denote the
vectorized horizontal and vertical components, respectively, of the
spatial gradient. Using this functional, φ∗ can be computed by solv-
ing the standard Poisson equation. Several modifications of (4) have
been proposed [11], including the addition of regularization terms
that encourage properties such as smoothness [12] and gradient inte-
grability [13]. Others[14] generalize (4) to a p-norm. Certain values
of p can affect the convexity of J and therefore require more cre-
ative computational techniques, such as approaches from network
programming [15][16], in order to compute a solution.

The method we propose here is an energy-minimization ap-
proach to phase unwrapping. We select a J that enforces the
gradient constraint as in (4) but is able to robustly handle outliers in
W (∇ψ) by simultaneously enforcing sparsity in an error term that
ensures integrability. This formulation allows us to use a primal-dual
algorithm in order to efficiently compute a solution.

3. PROBLEM FORMULATION

Let φ ∈ Rmn represent the unknown, vectorized, m × n absolute
phase image. Similarly, let ψ ∈ [−π, π)mn represent the corre-
sponding wrapped observation. We shall assume that ψ = W (φ),
whereW is defined as in (1).

Let Gx ∈ {−1, 0, 1}mn×mn be a matrix that enables the com-
putation of the vectorized forward-difference approximation to the
horizontal component of the spatial gradient for an input image
vectorized in column-major order, and let Gy ∈ Rmn×mn do the
same for the vertical component. From these two matrices, we form
G =

[
GT
x GT

y

]T
, a 2mn × mn sparse matrix that we can use

to computed the stacked, vectorized spatial gradient components,[
∇xφ

T ∇yφ
T
]T

.
Let us also define a matrix we can use to compute the curl of

a gradient field, which is usually done by considering two-by-two
loop integrals over the underlying spatial domain. Let p,q ∈ Rmn
define the horizontal and vertical components, respectively, of an
m × n gradient field. Then the curl for a single two-by-two loop at
spatial location (x, y) is defined as:

curl(y, x) =p(y + 1, x)− p(y, x)

+ q(y, x)− q(y, x+ 1). (5)

where x and y denote the vertical and horizontal pixel coordinates,
respectively. We can compute all mn curl values using a matrix-
vector equation C

[
pTqT

]T
, where C ∈ {−1, 0, 1}mn×2mn is de-

fined such that each row computes (5) for a different spatial location.

Using the above, we now focus on our formulation of the phase
unwrapping problem. Because the gradient constraint (2) is often
violated, we model the error explicitly using

Gφ =W (Gψ)− e, (6)

where e ∈ R2mn represents the error. Using this modified measure-
ment model, we propose the following energy function for unwrap-
ping:

Ju (φ) =‖Gφ− (W (Gψ)− e)‖22 + |aTkφ|2, (7)

where ak is the kth column of the identity matrix and the second term
is included in order to address the unknown constant of integration.

While (7) enables the computation of an optimal φ, we have not
yet addressed how to find e. To this end, we examine the integrabil-
ity of the measured gradient field. For noiseless gradient measure-
ments, such as Gφ, (5) yields a value of zero for each loop. That
is, the gradient field is integrable (also known as irrotational in the
phase unwrapping literature [9]), or CGφ = 0. Left-multiplying
both sides of (6) by C ultimately yields the following integrability
constraint:

Ce = CW (Gψ) . (8)

Especially in noise-free conditions, it is often the case that (2) is
violated over a relatively small set of components, i.e., e is sparse.
In a similar fashion to the work of Reddy et al. [17], we use the `1-
norm as a proxy for sparsity and use ‖e‖1 =

∑
i |ei| as a regularizer

when seeking the optimal e. We can also cast this problem as one of
energy minimization with the functional

Je(e) = λc‖Ce−CW (Gψ)‖22 + λs‖e‖1, (9)

where the values chosen for λc and λs specify the relative impor-
tance of satisfying each criterion.

Combining (7) and (9) above, our formulation can now be writ-
ten as a single energy-minimization problem:

(φ∗, e) = arg min
φ,e
Ju (φ) + Je (e) . (10)

3.1. Generalized Lasso Formulation

Optimization problem (10) can be rewritten as

min
x

1

2
‖Ax− b‖22 + λ‖Fx‖1, (11)

where λ = λs controls the trade-off between satisfying the `2 and
`1 constraints, and

x =

[
φ
e

]
,

A =

G I
aTk 0T

0 λcC

 ,
F =

[
0 I

]
,

b =

 W (Gψ)
0

λcCW (Gψ)

 . (12)

The optimization problem (11) can be viewed as the generalized
lasso problem [2][3] which can be efficiently solved via the alter-
nating direction method of multipliers (ADMM) algorithm [2].



4. OPTIMIZATION

In a more general form, (11) can be seen as an instance of the fol-
lowing optimization problem

min f(x) + g(z) such that Dx + Hz = c, (13)

where f and g are convex functions. Rewriting the above with
f(x) = 1

2
‖Ax − b‖22, g(z) = λ‖z‖1, D = F, H = −I, and

c = 0, the equivalence with (11) is made more clear:

min
1

2
‖Ax− b‖22 + λ‖z‖1 such that Fx = z. (14)

The ADMM method finds a saddle point for the augmented La-
grangian of the above, Fρ, by optimizing x, z, and Lagrange multi-
pliers u sequentially (see [2] for details). Specifically, the iterations
are defined as follows:

xk+1 = arg min
x
Fρ(x, zk,uk) (15)

zk+1 = arg min
z
Fρ(xk, z,uk) (16)

uk+1 = uk + ρ(Fxk+1 − zk+1), (17)

where the exact form of each iteration for our problem is given in
Algorithm 1. For the z-update step, S denotes the soft-thresholding
operator, with the threshold given in the subscript. Since this method
is the solution to our generalized lasso formulation of the phase un-
wrapping problem, we refer to this procedure as phase unwrapping
using the generalized lasso, or PUGL.

Algorithm 1: PUGL
Input: λ,b,A,F,ρ,maxIter
Initialization:
- Set Terminate← False.
- Set z0 = 0,x0 = 0,u0 = 0.
while (Terminate == False) do
- Calculate xk+1 by solving the following system of
equations

(ATA + ρFTF)xk+1 = (ATb + ρFT (zk − uk))

- Calculate zk+1 according to

zk+1 = Sλ
ρ

(
Fxk+1 +

uk
ρ

)
- Calculate uk+1 according to

uk+1 = uk + ρ(Fxk+1 − zk+1)

- k ← k + 1
- if (k ≥ maxIter)
then

Terminate← True
end if

end while
Output: x̂ = xk.

5. EXPERIMENTS

In this section, we shall describe the data, models, and experiments
we used to evaluate the proposed unwrapping scheme.

Fig. 1. Absolute phase surfaces used for experimental evaluation.
Left: Gaussian surface. Right: Longs Peak.

5.1. Phase data

We tested our algorithm using two absolute phase surfaces. The first
is a Gaussian surface that is synthetically generated: it is a 128×128
image, centered at (0, 0), of a two-dimensional Gaussian with peak
height 14π and σx = 10 and σy = 15. The second surface is
the Longs Peak surface distributed with [9]: a real elevation map
corresponding to a geographic area located in Colorado, USA. These
surfaces are shown in Figure 1.

5.2. Noise model

In order to evaluate unwrapping performance in the presence of
noise, we adopt a synthetic noisy observation model that is com-
monly used in InSAR phase unwrapping literature [18]. We form
the noisy wrapped phase, ψ using

ψ = arg (x1x
∗
2) , (18)

where x1 = z1e
jφ, x2 = z2, and z1 and z2 are complex-valued

random variables with E
[
|z1|2

]
= E

[
|z2|2

]
= θ2 and E [z1z

∗
2 ] =

αθ2. The parameter α ∈ [0, 1] is referred to as the coherence.
The level of noise in this observation model is determined by

the value of α: α = 1 indicates that there is no noise in ψ, while
α = 0 corresponds to a ψ that is comprised entirely of of noise. In
order to evaluate unwrapping performance in the presence of noise,
we performed experiments and generated results for every value of
α in the set {0.7, 0.85, 1}.

Table 1. Surface Reconstruction MSE for Noisy Wrapped Phase
Observations

Gaussian Surface α = 0.70 α = 0.85 α = 1
PhaseLa 72.18 16.84 1.30
PUMA 5.09 0.68 0.00
PUGL 6.58 0.62 0.00

Longs Peak α = 0.70 α = 0.85 α = 1
PhaseLa 476.00 408.01 334.50
PUMA 151.03 117.95 100.23
PUGL 150.48 107.70 82.08

5.3. Evaluation

The metric of evaluation we use is the mean-squared error between
the true surface, φ, and the estimate φ̂. In order to account for the
unresolved degree of freedom that results from using only gradient
measurements, we first ensure that each estimated surface has zero



Fig. 2. PUGL-generated phase reconstructions. Left column: Guas-
sian surface reconstructions. Right column: Longs Peak reconstruc-
tions. Top: reconstructions for α = 1. Bottom: reconstructions for
α = 0.85.

mean, i.e., we calculate the mean-squared error according to

MSE
(
φ, φ̂

)
=

1

mn

∑
i

[(
φi − φ̄i

)
−
(
φ̂i − ¯̂

φi
)]2

, (19)

where φ̄ and ¯̂
φ denote the across-pixel mean values for φ and φ̂,

respectively.
We compared our technique with two recent phase-unwrapping

algorithms: PhaseLa [19] and PUMA [16]. To generate results, we
used the implementations made available by the authors. For the
PhaseLa algorithm, we used the ICI-adaptive approach with H =
[1, 2, 3, 4] and Γ = 2.0 (see [19] for definitions). For the PUMA
algorithm, we used the convex clique potential induced by selecting
p = 2.

Table 1 shows the mean-squared errors that result from each un-
wrapping procedure when using the noisy wrapped observations. It
can be seen that PUGL usually performs better than the other algo-
rithms presented, especially for the more-realistic Longs Peak sur-
face. To visualize the unwrapping results, we show some of the
PUGL-generated absolute phase estimates in Figure 2.

5.4. Parameters and error correction

To generate the PUGL estimates, parameter values λc = 200 and
λs = 1 were used. We found that these values strongly enforced the
integrability constraint while still allowing for e to be reasonably
sparse. Figure 3 illustrates that e corrects wrapping artifacts: we
show the estimated phase and significant components of the optimal
e for a truncated version of the Gaussian surface (upper-left quadrant
set to zero). The sharp discontinuity induced by truncation violates
the Itoh condition, and it can be seen that this is exactly where the
significant components of the optimal e cluster. The resulting phase
estimate is a slightly-smoothed version of the true surface.

6. SUMMARY AND FUTURE WORK

In this paper, we proposed a novel formulation of the phase unwrap-
ping problem, and provided a practical scheme by which to make
the corresponding absolute phase estimate. We posed the problem

Fig. 3. Sparse error analysis. Upper-left: Truncated Gaussian sur-
face. Upper-right: noise-free wrapped phase. Lower-left: PUGL
estimate. Lower-right: locations of the significant components of
the optimal e.

as one of sparse error correction by explicitly modeling the error in
gradient field measurements obtained from the wrapped phase. We
then estimated the error term as one that induced an integrable gra-
dient field while remaining as sparse as possible. We combined the
above with a classical `2-based unwrapping scheme in such a way
that the joint absolute phase and error estimation could be cast in the
generalized lasso framework, and we used the ADMM algorithm to
efficiently compute the optimal values. We termed the overall algo-
rithm phase unwrapping using the generalized lasso, or PUGL, and
examined its performance for a variety of surfaces and noise levels.
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