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Abstract—Facial landmarks constitute the most compressed
representation of faces and are known to preserve information
such as pose, gender and facial structure present in the faces.
Several works exist that attempt to perform high-level face-
related analysis tasks based on landmarks alone without the
aid of face images. In contrast, in this work, an attempt is
made to tackle the inverse problem of synthesizing faces from
their respective landmarks. The primary aim of this work
is to demonstrate that information preserved by landmarks
(gender in particular) can be further accentuated by leveraging
generative models to synthesize corresponding faces. Though
the problem is particularly challenging due to its ill-posed
nature, we believe that successful synthesis will enable several
applications such as boosting performance of high-level face
related tasks using landmark points and performing dataset
augmentation. To this end, a novel face-synthesis method known
as Gender Preserving Generative Adversarial Network (GP-
GAN) that is guided by adversarial loss, perceptual loss and
a gender preserving loss is presented. Further, we propose a
novel generator sub-network UDeNet for GP-GAN that leverages
advantages of U-Net and DenseNet architectures. Extensive
experiments and comparison with recent methods are performed
to verify the effectiveness of the proposed method. Our code
is available at: https://github.com/DetionDX/GP-GAN-Gender-
Preserving-GAN-for-Synthesizing-Faces-from-Landmarks

I. INTRODUCTION

Facial landmarks can be regarded as the most compressed
representation of a face due to the fact that very few number
of points are required to capture the landmark locations. In
spite of the incredibly low number of keypoints, they are
known to preserve important information about the face such
as pose, gender [4] and structure [34], [28], [33]. Success of
facial analysis tasks using just landmark keypoints is essential
from the perspective of memory management and information
privacy. Considering that size of landmarks is an order of
magnitude smaller as compared to the image size, it will result
in significant savings in terms of memory. Essentially, we are
now able to store only landmark key points and throw away
face image for a particular application. In addition, landmark
information can be safely stored, transported, and distributed
without potential violation of human privacy and confiden-
tiality. Motivated by these reasons, it would be interesting to
understand how landmarks can be exploited for performing
high-level facial analysis tasks in the absence of corresponding
face images.

Several researchers have demonstrated that facial land-
marks can be used in many face analysis tasks such as face

Fig. 1. Overview of the proposed GP-GAN method for synthesizing faces
from landmarks. In addition to adversarial loss function, the generator sub-
network is guided by a perceptual loss and a gender preserving loss.

recognition [5], [19], [20], facial attribute inference [41],
age estimation [34], gender recognition [4] and expression
analysis [30]. However, these methods operate on a small set of
keypoints due to which their performance is severely limited.
To overcome this problem, we propose a novel solution that
involves synthesis of faces from landmark points using the
recently popular generative models [7], [43], [2], [42], [38],
[32], [37]. While, several methods [41], [31], [14], [29] have
been proposed in the literature for landmark detection, the
inverse problem of synthesizing faces from their corresponding
landmarks is a largely unexplored problem. We believe that
using synthesized faces will result in better recognition perfor-
mances as they leverage the capabilities of generative models
to accentuate information present in landmarks. Apart from
their use in high-level facial analysis tasks, these generative
methods can be used to create virtually unlimited stochastic
samples by conditioning on both landmarks and a stochastic
noise vector enabling us to augment existing datasets for large
scale learning [3].

In this work, generative models are exploited to synthesize
faces from landmarks in an attempt to accentuate information
(gender in particular) present in the landmarks. Cao et al.[4]
specifically address the question if facial metrology can be
used to predict gender and they further go on to demonstrate
that gender recognition using landmarks achieves reasonable
performance. This is remarkable considering the fact that only
68 keypoints are used to predict gender of the face represented
by these keypoints. However, generating faces from landmarks
will enable us to achieve further improvement in performance
as this process will leverage generative models to learn the
distribution of landmarks and their mappings to the respective
faces. While recognition of other attributes like ethnicity, pose,



identity, etc. can all be improved, in this work, we specifically
focus on the gender attribute. To this end, we propose Gen-
der Preserving Generative Adversarial Network (GP-GAN) to
generate faces from their respective landmarks (as shown in
Fig. 1). To further enhance the network’s performance, it is
guided by perceptual loss and a gender preserving loss in
addition to adversarial loss. To summarize, following are the
key contributions of this work:

• To the best of our knowledge, this is the first attempt to
generate faces from landmark keypoints while preserving
gender information.

• A GAN-based framework guided by perceptual and
gender preserving loss is proposed. The generator is
constructed using a novel combination of UNet [23] and
DenseNet [8], which we call it as UDeNet.

• Detailed experiments are conducted to demonstrate the
improvements in gender recognition obtained from syn-
thesized images using the proposed method.

II. RELATED WORK

In contrast to landmark detection methods [24], [29], [14],
[1] , we focus on the inverse problem of synthesizing or
generating faces from landmark keypoints which is a relatively
unexplored problem. To this end, recently popular generative
models are explored in this work. Among these methods, we
specifically study Generative Adversarial Network (GAN)[7],
[43], [2], [42] and Variational Auto-encoder (VAE) [22], [13].

VAEs are powerful generative models that use deep net-
works to describe distribution of observed and latent variables.
A VAE consists of two networks, with one network encod-
ing a data sample to a latent representation and the other
network decoding latent representation back to data space.
VAE regularizes the encoder by imposing a prior over the
latent distribution. Conditional VAE (CVAE) [27] [35] [6] is
an extension of VAE that models latent variables and data, both
conditioned on side information such as a part or label of the
image. GANs [7] are another class of generative models that
are used to synthesize realistic images by effectively learning
the distribution of training images. Recently, several variants
based on this game theoretic approach have been proposed
for image-to-image translation tasks. Isola et al.[11] proposed
Conditional GANs [17] for several tasks such as labels to street
scenes, labels to facades, image colorization, etc. In an another
variant, Zhu et al.[43] proposed CycleGAN that learns image-
to-image translation in an unsupervised fashion. Berthelot et
al.[2] proposed a new method for training auto-encoder based
GANs that is relatively more stable. Their method is paired
with a loss inspired by Wasserstein distance. Some of the other
applications of GANs include image de-hazing [39], crowd
counting [26], and image de-raining [38].

III. PROPOSED METHOD

Given an application where only facial landmarks are
available, we explore how to leverage information preserved
in these keypoints. To this end, we propose to model the
joint distribution of facial landmarks and corresponding face

images 1 using generative modeling. Inspired by the success
of GANs [7], we explore adversarial networks in this work for
synthesizing faces from landmark keypoints. GANs, motivated
by game theory, consist of two competing networks: generator
G and discriminator D. The goal of GAN is to train G to
produce samples from training distribution such that the syn-
thesized samples are indistinguishable from actual distribution
by discriminator D. Conditional GAN is another variant where
the generator is conditioned on additional variables such as
discrete labels [17], text [21] and images [11]. The objective
function of a conditional GAN is defined as follows

LcGAN (G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]+

Ex∼Pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))],
(1)

where y, the output image, and x, the observed image, are
sampled from distribution Pdata(x, y) and they are distin-
guished by the discriminator, D. While for the generated fake
G(x, z) sampled from distributions x ∼ Pdata(x), z ∼ pz(z)
would like to fool D.

As shown in Fig. 2, the proposed network consists of a
generator sub-network G (based on U-net [23] and DenseNet
[8] architecture) conditioned on a facial landmark image and
a patch-based discriminator sub-network D. G takes landmark
as input and attempts to generate corresponding face image,
while D attempts to distinguish between real and synthe-
sized images. The two sub-networks are trained iteratively.
In addition to the adversarial loss, we propose to guide the
generator using three other loss functions: perceptual loss
based on VGG-16 architecture [25], gender preserving loss
and L1 reconstruction error.

A. Generator

Deeper networks are known to better capture high-level
concepts, however, the vanishing gradient problem affects
convergence rate as well as the quality of convergence. Several
works have been developed to overcome this issue among
which U-Net [23] and DenseNet [8] are of particular interest.
While U-Net incorporates longer skip connections to preserve
low-level features, DenseNet employs short range connections
within micro-blocks resulting in maximum information flow
between layers in addition to an efficient network. Motivated
by these two methods, we propose UDeNet for the generator
sub-network G in which, the U-Net architecture is seamlessly
integrated into the DenseNet network in order to leverage
advantages of both the methods. This novel combination
enables more efficient learning and improved convergence
quality.

A set of 3 dense-blocks (along with transition blocks)
are stacked in the front, followed by a set of 5 dense-
block layers (transition blocks). The initial set of
dense-blocks are composed of 6 bottleneck layers. For
efficient training and better convergence, symmetric
skip connections are involved into the generator sub-
network, similar to [16]. Details regarding the number

1Face images are available only during training



Fig. 2. Architecture of the proposed GP-GAN framework. Left: Generator (G) synthesizes face image from landmarks and is based on UNet and DenseNet
architecture. D is a patch-based discriminator that is trained to distinguish between real/fake face images and it is responsible for providing adversarial
feedback to G. G is also guided by a perceptual loss (based on VGG-16 architecture) and a gender-preserving loss. Right: Dense-block used in generator G.

of channels for each convolutional layer are as follows:
C(64)-M(64)-D(256)-T(128)-D(512)-T(256)-
D(1024)-T(512)-D(1024)-DT(256)-D(512)-DT(128)-
D(256)-DT(64)-D(64)-D(32)-D(32)-DT(16)-C(3),
where C(K) is a set of K-channel convolutional layers
followed by batch normalization and ReLU activation. M
is max-pooling layer. D(K) is the dense-block layer with
K-channel output, T(K) is transition layer with K-channel
output for downsampling. DT(K) is similar to T(K) except
for transposed convolutional layer instead of convolutional
layer for upsampling.

B. Discriminator
Motivated by [11], patch-based discriminator D is used and

it is trained iteratively along with G. The primary goal of D is
to learn to discriminate between real and synthesized samples.
This information is backpropagated into G so that it generates
samples that are as realistic as possible. Additionally, patch-
based discriminator ensures preserving of high-frequency de-
tails which are usually lost when only L1 loss is used. All the
convolutional layers in D have a filter size of 4 × 4. Details
regarding the number of channels for each convolutional layer
are specified in Fig. 2.

C. Objective function
The network parameters are learned by minimizing the

following objective function:

L = LA + λPLP + λCLC + λ1L1, (2)

where LA is the adversarial loss, LP is the perceptual loss,
LC is the gender preserving loss and L1 is the loss based on
L1-norm between the target and reconstructed image, λP , λC
and λ1 are weights respectively for perceptual loss, gender
preserving loss and L1 loss.

Adversarial loss: Adversarial loss is based primarily on the
discriminator sub-network D. Given a set of N synthesized
faces, {x̂i}Ni=1, the entropy loss from D that is used to learn
the parameters of G is defined as:

LA = − 1

N

N∑
i=1

log(D(x̂i)), (3)

Perceptual loss: Johnson et al.[12] introduced the perceptual
loss function for style transfer and super-resolution. Instead
of relying only on L1 or L2 reconstruction error, they learn
the network parameters using errors between high-level image
feature representations extracted from a pre-trained convolu-
tional neural network. Similar to their work, pre-trained VGG-
16 [25] network is used to extract high-level features (conv4 3
layers) and the L1 distance between these features of real and
fake images is used to guide the generator G. The perceptual
loss function is defined as:

LP = ||V (x̂)− V (x)||1, (4)

where, x and x̂ indicate real and fake images, respectively
and V is a particular layer of the VGG-16 network.

Gender preserving loss: Inspired largely by the perceptual
loss, we define a gender preserving loss. As indicated by the
name, this function measures the error in terms of gender
attribute of the synthesized image as compared to that of real
image. It is defined as:

LC = − 1

N

∑
i

(C(xi) log(C(x̂i)) + (1− C(xi)) log(C(x̂i)),

where C represents a pre-trained gender classification
network. In this work, C is constructed using the standard
VGG-16 network in which, the convolutional layers are
retained and the fully connected layers are replaced by a new
set of layers as shown in Fig. 2. This network is trained by
minimizing the standard binary cross entropy error.

L1 loss: L1 loss measures the reconstruction error between
the synthesized face image and the corresponding real image
and is defined as

L1 = ||G(x̂)− x||1 (5)



TABLE I
QUANTITATIVE COMPARISON OF GENDER RECOGNITION ACCURACY (%) FOR VARIOUS METHODS.

LM (D) LM (A) CycleGAN CVAE BEGAN CGAN GP-GAN (UNet+GP-Loss) GP-GAN (UDeNet,No GP Loss) GP-GAN (UDeNet+GP-Loss)
LFW 78.0 ± 1.9 79.8 ± 2.4 81.8 ± 1.1 80.3 ± 2.0 84.4 ± 1.9 86.3 ± 2.5 91.1 ± 1.1 91.7 ± 1.6 93.1 ± 1.2
CASIA 61.0 ± 11.8 61.7 ± 13.6 64.8 ± 3.3 62.0 ± 4.1 67.8 ± 5.0 70.4 ± 5.5 73.2 ±3.9 76.7 ± 4.3 78.4 ± 4.1

Fig. 3. Sample qualitative results of synthesis experiments from LFW
dataset. The proposed method GP-GAN (UDeNet + GP Loss) achieves
more realistic synthesis compared to the other methods (CycleGAN, CVAE,
BEGAN, CGAN) and the baseline methods from the ablation study: GP-GAN
(UNet+GP Loss), GP-GAN (UDeNet+ No GP Loss).

IV. EXPERIMENTS AND EVALUATIONS

In this section, experimental settings and evaluation of
the proposed method are discussed in detail. We present the
qualitative and quantitative results of the synthesis experiment.
The quantitative performance is measured using gender recog-
nition rates. Results are compared with four state-of-the-art
generative models: Conditional GAN [11], Cycle GAN [43],
CVAE [27] [35] and adopted BEGAN2 in addition to two
baseline methods (a) GP-GAN using U-Net generator with
GP-Loss, and (b) GP-GAN using UDeNet generator without
GP-Loss. The baseline comparisons are performed to demon-
strate the improvements achieved by the gender preserving loss
and UDeNet components. Also, we demonstrate that the use
of synthesis using GP-GAN accentuates gender information
present in landmarks by comparing gender recognition rates
with methods that directly compute these rates from landmark
points [4]. Furthermore, we conduct an experiment to evaluate
the data augmentation capabilities of the synthesis method.

A. Preprocessing and training details

Prior to preforming these experiments, all images in both
datasets are fed through a pre-processing pipeline. First,

2https://github.com/taey16/pix2pixBEGAN.pytorch

Fig. 4. Sample qualitative results of synthesis experiments from CASIA
WebFace dataset. The proposed method GP-GAN (UDeNet + GP Loss)
achieves more realistic synthesis compared to the other methods (CycleGAN,
CVAE, BEGAN, CGAN) and the baseline methods from the ablation study:
GP-GAN (UNet+GP Loss), GP-GAN (UDeNet+ No GP Loss).

MTCNN [40] is employed for detecting face bounding boxes
which are further used to crop the faces followed by landmark
key point detection using TCDCN algorithm [41]. Pairs of
these detected landmarks and faces are used for training the
proposed method. Since we consider this problem as an image-
to-image translation, the input landmark is encoded using a
heatmap (similar to [15]) as shown in Fig. 1 which is a created
by imposing a 2D Gaussian with standard deviation of 0.2 at
every landmark location on a blank image like could counting
work [26]. Note that the cropped face images are resized to
64×64.

The proposed network is trained on a single TitanX GPU
for approximately 10 hours (200 epochs). A learning rate of
2 × 10−4 is used for G and D. For perceptual network, the
input images are resized to a size of 224× 224. The learning
rate is decayed by a factor of 2× 10−6 for every epoch after
100 epochs. The weights λA, λP and λC are set equal to 100,
1 and 1, respectively.

For learning the parameters of the proposed method and
baselines, training set from the LFW official deep funneling
aligned dataset [10][9] is used. It contains 5749 identities,
and 13233 images. The official training, validating and testing
View 1 was used for this experiment. After detection and
crop procedure, we are left with 3757 images in the training



set and 1615 images in the test set. The trained network
is evaluated on the LFW test set and a subset of CASIA-
Webface dataset [36]. The test subset for CASIA-Webface
is constructed by randomly selecting 1000 male and 1000
female face images. Note that, in order to demonstrate the
generalization performance, the proposed network is trained
using only the LFW training set and evaluated on the LFW
test set and the CASIA-Webface dataset.

B. Results

Fig. 3 and Fig. 4 show sample results of reconstruction
using various methods on the LFW and CASIA datasets,
respectively. The landmark image is used as the input for
all the methods except CVAE [27] [35]. For CVAE, the
inputs are original image and normalized landmark locations
as the attributes. It can be clearly observed that Conditional
GAN [11], Cycle GAN [43] and BEGAN [2] are unable to
reconstruct visually coherent faces. Though CVAE is able
to generate visually appropriate faces, they fail to preserve
the gender information. Since their network implements an
auto-encoder like architecture and uses pixel-wise Euclidean
measure, the output is often blurry, due to which gender
classification becomes very difficult. GP-GAN using UDeNet
generator without GP-Loss is able to generate perceptually
better results as compared to GP-GAN using UNet gener-
ator with GP-Loss demonstrating the superior performance
obtained using the novel combination of UNet and DenseNet
architectures. The proposed method GP-GAN (UDeNet and
GP-Loss) outperforms all existing and baseline methods. It
may be argued that identity information is lost during the
reconstruction process, however, note that the goal of the
proposed method is not to capture the exact mapping between
landmarks and corresponding faces. Instead, the idea is to
explore generation of visually coherent faces from landmark
keypoints which can further assist in data augmentation and
other tasks.

As discussed earlier, the quantitative performance is mea-
sured in terms of gender recognition rates and it is shown
in Table I. Gender recognition rates for the synthesized are
calculated using the LBP features [18] and a linear SVM
classifier that is trained using the LFW training set, whereas
the recognition rates for landmarks, LM(D) and LM(A), are
calculated using the distance and angle methods described
in [4]. Note that the gender recognition is performed based
only on landmark keypoints considering that the corresponding
face images are unavailable and hence recent state-of-the-art
gender recognition methods cannot be used for comparison
as they operate on actual face images rather than only on
facial landmarks. Similar to the observations made using
visual comparisons, it can be found from the quantitative
results that, gender recognition rates improve in general using
the generative models as compared to the landmark-based
methods.

With respect to the baseline comparisons, it can be observed
that GP-GAN using UDeNet generator without GP-Loss out-
performs GP-GAN using UNet generator with GP-Loss in

Fig. 5. Results of experiment for dataset augmentation where landmark
corresponding to a face is modified and used for synthesis. We are able to
generate new samples while preserving gender information. (i) Original face
image. (ii) Landmark corresponding to original face. (iii) Synthesized face
from original landmark. (iv) Landmark obtained after manipulating original
landmark. (v) Synthesized face image using manipulated landmark.

spite of the fact that GP-Loss is not used, thus indicating
the effectiveness of UDeNet architecture. Furthermore, the
proposed method GP-GAN (UDeNet with GP-Loss) outper-
forms all existing baseline methods by a large margin in terms
of gender recognition rates. This indicates that the proposed
synthesis method can be used to generate face images from just
facial landmarks while retaining gender information present in
these landmarks.

In addition, we conducted a face synthesis experiment to
verify if the proposed method can be used for data augmen-
tation. In this experiment, we manipulate the landmark of a
face (for instance, modify mouth open to mouth close) and
use this landmark to synthesize a face using generator G.
Sample results for this experiment are shown in Fig 5. It can be
seen that, the generator G is able to synthesize realistic faces
from the modified landmarks while reflecting this modification
in the synthesized face. Additionally, the gender attribute is
also retained. Based on these experiments, we can conclude
that the proposed method is able successfully generate face
samples which can be used for data augmentation for other
facial analysis tasks.

V. CONCLUSION

We explored the problem of synthesizing faces from land-
marks points using the recently introduced generative models.
The aim of this project was to demonstrate that information
(especially gender) present in the landmark keypoints can be
accentuated using synthesis models while generating realistic
images. The proposed network is based on the generative
adversarial networks and is guided by perceptual loss and
a novel gender preserving loss. Further, we propose a novel
generator based on UNet and DenseNet architectures. Eval-
uations are performed on two popular datasets, LFW and
CASIA-Webface, and the results are compared with recent



state-of-the-art generative methods. It is clearly demonstrated
that the proposed method achieves significant improvements in
terms of visual quality and gender recognition. Additionally,
we conducted a face synthesis experiment to demonstrate
that the proposed generative method can be used as a data
augmentation technique.
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