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Abstract— We propose multi-task, multivariate low-rank
representation-based methods for multimodal biometrics recog-
nition. Our methods can be viewed as a generalized version of
multivariate low-rank regression, where low-rank representa-
tion across all the modalities is imposed. One of our meth-
ods takes into account coupling information among different
biometric modalities simultaneously by enforcing the common
low-rank representation within each biometric’s observations.
We further modify our methods by including a background
occlusion term that is assumed to be sparse. Alternating direc-
tion method of multipliers is proposed to solve the proposed
optimization problems. Extensive experiments using face and
touch gesture dataset show that our method compares favorably
with other feature level fusion-based methods.

I. INTRODUCTION

Developments in sensing and communication technology
have let to an explosion in the availability of visual data from
multiple sources and modalities. Millions of cameras have
been installed in buildings, streets, and airports around the
world that are capable of capturing multimodal information
such as light, depth and heat. This has resulted in the
development of various multi sensor fusion algorithms. In
particular, multimodal classification has received a lot of
attention in recent years where one uses information from
various modalities recording the same physical event to
achieve an improved classification performance [1], [2].

Multimodal biometrics recognition [3], [4] can be regarded
as a special case of multi sensor classification. In a multi-
modal biometrics system, the evidence presented by multiple
sources of information such as face, fingerprints and iris
are integrated for recognition. One of the advantages of
multibiometric systems is that they are less vulnerable to
spoof attacks. Fusion can be achieved at multiple levels,
which can be broadly divided into sensor level, feature level,
score level and decision or rank level fusion. Since feature
level fusion preserves the raw information, it can be more
discriminative than score or rank level fusion. However, the
differences in features extracted from different sensors in
terms of types and dimensions make the feature level fusion
very difficult. One of the simplest methods for feature level
fusion is feature concatenation. While feature concatenation
has been used for multibiometric fusion [5], [6], they often
tend to be non-robust and inefficient.

Multiple Kernel Learning (MKL) can also be used to
integrate information from multiple features by learning a
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weighted combination of appropriate kernels. See [7] for
details on various MKL algorithms. Recently, various sparse
representation-based multimodal fusion algorithms have been
proposed in the literature [8], [9], [10]. In [8], a multi-task
sparse linear regression model is proposed for image classi-
fication. In order to recognize the same object viewed from
multiple observations (e.g. poses), a joint dynamic sparse
representation method was proposed in [9]. In [10] a joint
sparse representation-based method was proposed for fusing
multiple biometrics features. This method is based on multi-
task multivariate Lasso [11]. It imposes common sparsities
both within each biometric modality and across different
modalities. This method produced state-of-the-art results on
various multimodal biometrics recognition problems. One of
the advantages of using sparse representation-based fusion
for classification is that they are robust to noise and occlusion
[12], [13].

Different from sparse representation-based fusion meth-
ods, we propose low-rank representation-based methods for
multimodal biometrics recognition. Our method seeks the
lowest-rank representation when the data is represented as a
linear combination of the training data. Low-rank represen-
tations come with good theory, and powerful computational
tools [14], [15] and hence have had impact on a wide
variety of problems such as subspace clustering [16], [17],
matrix competition [14], image alignment [18] and object
recognition [19]. We propose multimodal, multivariate, low-
rank representation for fusing multiple biometric traits. One
of the proposed methods is based on multivariate low-rank
regression [20], [21]. It can deal with multimodal as well
as multivariate low-rank representations. The other method
imposes common low-rank representation across different
modalities. The resulting optimization problems are solved
using the classical Alternating Direction Method of Multi-
pliers (ADMM) [22].

This paper makes the following contributions:

• Robust multi-modal recognition methods using Multi-
task Multivariate Low-Rank Representations are pro-
posed for multi-modal biometric fusion.

• Efficient iterative methods based on the ADMM are pro-
posed for solving the proposed optimization problems.

• The algorithms are evaluated on a new dataset consist-
ing of face and touch gestures collected from 50 mobile
phone users for active authentication.

The paper is organized as follows. In Section II,



we define the proposed multitask, multivariate, low-rank
representation-based multimodal recognition problems. Op-
timization procedures are described in Section III. Exper-
imental evaluations are described in Section IV. Finally,
concluding remarks are presented in Section V with a brief
summary and discussion.

II. BACKGROUND AND PROBLEM
FORMULATION

Suppose we are given a C-class classification problem
with D different modalities. Assume that there are m training
samples in each modality. For each modality, i = 1, · · · , D,
we denote Xi = [Xi

1,X
i
2, · · · ,Xi

C ] as an ni × m matrix
of training samples containing C sub-matrices Xi

j’s cor-
responding to C different classes. Each sub-matrix Xi

j =
[xij,1,x

i
j,2, · · · ,xij,mj ] ∈ Rni×mj contains a set of training

samples from the ith modality corresponding to the jth
class. Here, mj is the number of training samples in class
j and ni is the feature dimension of each sample. As a
result, there are in total m =

∑C
j=1mj many samples in

Xi
C . Given a test matrix Y, which consists of D different

modalities, {Y1, · · · ,YD}, where each sample Yi consists
of di observations Yi = [yi1,y

i
2, · · · ,yidi ] ∈ Rni×di , the

objective is to identify the class to which a test sample Y
belongs to.

A. Multitask Multivariate Low-Rank Representation (MLRR)

Let {Yi}Di=1 be a set of D observations each consisting of
di samples from each modality. Let Γ = [Γ1,Γ2, · · · ,ΓD] ∈
Rm×d be the coefficient matrix formed by concatenating
D representation matrices with d =

∑D
i=1 di. We wish to

solve for the low-rank matrix Γ by solving the following
multivariate, low-rank representation problem

Γ̂ = argmin
Γ

1

2

D∑
i=1

‖Yi −XiΓi‖2F + λ‖Γ‖∗, (1)

where ‖A‖F =
√∑

i,j A
2
i,j is the Frobenius norm of A, λ

is a positive regularization parameter and ‖A‖∗ =
∑
i σi(A)

is the sum of the singular values of A (i.e. the nuclear norm
of A). Once the low-rank matrix Γ̂ is obtained, the class
label associated with an observation vector is declared as
the one that produces the smallest approximation error

ˆ̀= argmin
`

D∑
i=1

‖Yi −Xiδ`(Γ̂
i
)‖2F , (2)

where δ`(·) is the matrix indicator function that keeps rows
corresponding to the `th class and sets all other rows equal
to zero. In the case when D = 1, (1) reduces to multivariate,
low-rank regression problem [20], [21]. See [23], [24], [25]
and the references therein for more details on low-rank
regression1.

Ideally, the learned coefficients corresponding to the cor-
rect class should exhibit relative larger values compared to
the coefficients corresponding to the incorrect classes. In

1also known as reduced rank regression

order take this assumption into the classification mechanism,
for a given coefficient vector obtained from the ith modality,
we define wi

` as:

wi
` =

C ‖δ`(Γ̂
i
)‖∗

‖Γ̂i‖∗
− 1

C − 1
. (3)

Therefore, the classification rule (2) can be modified as:

ˆ̀= argmin
`

D∑
i=1

wi
`‖Yi −Xiδ`(Γ̂

i
)‖2F . (4)

Note that similar idea has been explored in [12] and [10].

B. Robust Multitask Multivariate Low-Rank Representation
(RMLRR)

In the case when the data is contaminated by noise and
occlusion, the observation can be modeled as follows

Yi = XiΓi + Ni + Ei,

where Ni is a small dense additive noise and Ei is a matrix
of sparse occlusion (background noise) with arbitrary large
magnitude. By taking advantage of the fact that Ei is sparse,
one can simultaneously estimate Γi and Ei by solving the
following optimization problem

Γ̂, Ê = argmin
Γ,E

1

2

D∑
i=1

‖Yi −XiΓi −Ei‖2F

+ λ1‖Γ‖∗ + λ2‖E‖1, (5)

where E = [E1,E2, · · · ,ED] is the spare occlusion matrix
and ‖A‖1 =

∑
i,j |Ai,j | is the `1-norm of A. Note that

E is just a compact representation and we solve each Ei

separately since their dimensions are different because of
different modalities they are related to. Here, λ1 and λ2

are positive parameters that control the rank and sparsity,
respectively. Once Γ and E are estimated, the effect of
occlusion can be removed by setting Ŷi = Yi− Êi. Finally,
one can declare the class label associated to an observation
vector as

ˆ̀= argmin
`

D∑
i=1

wi
`‖Yi −Xiδ`(Γ̂

i
)−Ei‖2F , (6)

where wi
` is defined in (3).

C. Multitask Multivariate Common Low-Rank Representa-
tion (MCLRR)

In this section, we propose a different formulation in which
a common low-rank representation is enforced for different
modalities. By sharing the same low-rank representation
across the modalities, we can enforce the similarity of the
representations among the different modalities. As a results,
we can obtain a more robust low-rank representation. Similar
ideas have been explored in [26] for jointly learning sparse
representation for image super-resolution.

In this case, we assume that the observations are of the
following form:

Yi = XiΓ + Ni.



Note that, the same representation is used for all the modal-
ities in the above model and we assume that the number of
samples from each modality is the same, i.e Yi ∈ Rni×d.
We propose the following optimization problem

Γ̂ = argmin
Γ

1

2

D∑
i=1

‖Yi −XiΓ‖2F + λ‖Γ‖∗ (7)

for jointly learning the lowest rank representation. Once Γ̂
is estimated, it can be used to declare the class label of the
observation by the minimum reconstruction error criteria as
follows

ˆ̀= argmin
`

D∑
i=1

w`‖Yi −Xiδ`(Γ̂)‖2F , (8)

where w` is defined as

w` =
C ‖δ`(Γ̂)‖∗
‖Γ̂‖∗

− 1

C − 1
. (9)

.

D. Robust Multitask Multivariate Common Low-Rank Rep-
resentation (RMCLRR)

Similar to the MLRR method, the joint low-rank repre-
sentation model can be extended for the case when the data
is contaminated by sparse errors. Assuming the following
observation model

Yi = XiΓ + Ni + Ei, (10)

one can recover the common low-rank representation by
solving the following optimization problem

Γ̂, Ê = argmin
Γ,E

1

2

D∑
i=1

‖Yi −XiΓ−Ei‖2F

+ λ1‖Γ‖∗ + λ2‖E‖1. (11)

After estimating Γ, the class label associated with an obser-
vation can be declared as follows

ˆ̀= argmin
`

D∑
i=1

w`‖Yi −Xiδ`(Γ̂)−Ei‖2F , (12)

where w` is defined in Eq. (9).

III. OPTIMIZATION

In this section we propose an approach based on the
ADMM method [22] to solve the optimization problems
denoted by Eqs. (1), (5), (7) and (11). Due to the similarity
of these problems and page limitations, we only provide
details on the optimization of the RMLRR problem. In
ADMM, appropriate auxiliary variables are introduced into
the optimization program, the constraints are augmented into
the objective function and the Lagrangian is iteratively min-
imized with respect to the primal variables and maximized
with respect to the Lagrange multipliers. Note that we let
all the primal variables and lagrange multipliers be zero to
initialize the algorithm.

A. Optimization of RMLRR

The problem (5) can be reformulated by introducing the
auxiliary variables as follows

arg min
Γ,E,V,U

1

2

D∑
i=1

‖Yi −XiΓi −Ei‖2F + λ1‖V‖∗

+ λ2‖U‖1 s.t. Γ = V,E = U. (13)

Note that Eq.(13) is equally constrained problem
which can be solved using the Augmented Lagrangian
Method (ALM) [22]. The augmented Lagrangian function
fαΓ,αE (Γ,E,V,U;AE ,AΓ) is defined as

arg min
Γ,E,V,U

1

2

D∑
i=1

‖Yi −XiΓi −Ei‖2F + λ1‖V‖∗

〈AΓ,Γ−V〉+ αΓ

2
‖Γ−V‖2F + λ2‖U‖1 + 〈AE ,E−U〉

+
αE
2
‖E−U‖2F , (14)

where AE and AΓ are the multipliers of the two lin-
ear constrains,αE and αΓ are the positive parameters, and
〈A,B〉 denotes tr(ATB). In the ALM algorithm, fαΓ,αE is
solved with respect to Γ,E,U and V jointly, while keeping
AΓ and AE fixed and then updating AΓ and AE keeping
the remaining variables fixed.

1) Update step for Γ: Obtain Γt+1 by minimizing fαΓ,αE

with respect to Γ. This can be done by taking the first-
order derivative of fαΓ,αE and setting it equal to zero.
Furthermore, the first term of fαΓ,αE is a sum of convex
functions associated with sub-matrices Γi, one can find
Γit+1, i = 1, · · · , D, by solving the following linear system

(XiTXi+αΓI)Γit+1 = XiT (Yi−Ei
t)+αΓVi

t−Ai
Γ,t (15)

where I is m×m identity matrix and Ei
t,V

i
t and Ai

Γ,t are
submatrices of Γt,Vt and AΓ,t, respectively. When m is
is not very large, one can simply apply matrix inversion to
obtain Γit+1 from Eq.(15). For large values of m, gradient-
based methods should be employed to obtain Γit+1.

2) Update step for E: The second optimization is similar
in nature whose solution is give as follows

Ei
t+1 = (1 + αE)

−1(Yi −XiΓi
t+1 + αEUi

t −Ai
E,t),

where Ui
t and Ai

E,t are sub-matrices of Ut and AE,t,
respectively.

3) Update step for U: In order to update U, one needs
to solve the following `1 minimization problem

min
1

2
‖Et+1 + α−1

E AE,t −U‖2F +
λ2

αE
‖U‖1 (16)

whose solution is given by [27]

Ut+1 = S
(

Et+1 + α−1
E AE,t,

λ2

αE

)
,

where S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero
otherwise.



4) Update step for V: The final suboptimization for
updating V has the following form

min
1

2
‖Γt+1 + α−1

Γ AΓ,t −V‖2F +
λ1

αΓ
‖V‖∗. (17)

Solution to this optimization problem is obtained by shrink-
ing the singular values of Γt+1 + α−1

Γ AΓ,t [14], [15]. As a
result, we obtain the following update for V

Vt+1 = FL λ1
αΓ

(Σ)BT ,

where FΣBT is the Singular Value Decomposition (SVD)
of Γt+1 + α−1

Γ AΓ,t and

L λ1
αΓ

(x) =


x− λ1

αΓ
, x > λ1

αΓ

x+ λ1

αΓ
, x < − λ1

αΓ

0, otherwise.

5) Update steps for AΓ and AE: Finally, the Lagrange
multipliers are updated as

AΓ,t+1 = AΓ,t + αΓ(Γt+1 −Vt+1) (18)
AE,t+1 = AE,t + αE(Et+1 −Ut+1). (19)

The proposed ADMM algorithm for solving the RMLRR
problem is summarized in Algorithm 1.

Algorithm 1: Robust Multitask Multivariate Low-Rank Rep-
resentation (RMLRR) using ADMM.

Input: Training samples {Xi}Di=1, test sample {Yi}Di=1, λ1, λ2

Initialization:
Γ0,V0,U0,AE,0,AΓ,0, αΓ, αE

While not converged do
1. Update Γ: Γt+1 = [Γ1

t+1, · · · ,ΓD
t+1], where

Γi
t+1 = (XiT Xi + αΓI)−1(XiT (Yi −Ei

t) + αΓVi
t −Ai

Γ,t)

2. Update E: Et+1 = [Ei
t+1, · · · ,ED

t+1], where

Ei
t+1 = (1 + αE)−1(Yi −XiΓi

t+1 + αEUi
t −Ai

E,t)

3. Update U:

Ut+1 = S
(

Et+1 + α−1
E AE,t,

λ2

αE

)
4. Update V:

Vt+1 = FL λ1
αΓ

(Σ) BT

5. Update AΓ: AΓ,t+1 = AΓ,t + αΓ(Γt+1 −Vt+1)
6. Update AE : AE,t+1 = AE,t + αE(Et+1 −Ut+1)

Output: Ê = Et+1 and Γ̂ = Γt+1.

B. Optimization of RMCLRR

The RMCLRR problem (11) can be optimized in a similar
way using the ADMM method. However, there are a few key
differences in the implementation details. In particular, the
update steps of Γ cannot be separated into D different sub
optimization problems. Different steps of the optimization
algorithm are summarized in Algorithm 2.

Algorithm 2: Robust Multitask Multivariate Common Low-
Rank Representation (RMCLRR) using ADMM.

Input: Training samples {Xi}Di=1, test sample {Yi}Di=1, λ1, λ2

Initialization:
Γ0,V0,U0,AE,0,AΓ,0, αΓ, αE

While not converged do
1. Update Γ: Γt+1 =(

D∑
i=1

XiT Xi + αΓI

)−1( D∑
i=1

XiT (Yi −Ei) + αΓVt −AΓ,t

)

2. Update E: Et+1 = [Ei
t+1, · · · ,ED

t+1], where

Ei
t+1 = (1 + αE)−1(Yi −XiΓt+1 + αEUi

t −Ai
E,t)

3. Update U:

Ut+1 = S
(

Et+1 + α−1
E AE,t,

λ2

αE

)
4. Update V:

Vt+1 = FL λ1
αΓ

(Σ) BT

5. Update AΓ: AΓ,t+1 = AΓ,t + αΓ(Γt+1 −Vt+1)
6. Update AE : AE,t+1 = AE,t + αE(Et+1 −Ut+1)

Output: Ê = Et+1 and Γ̂ = Γt+1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithm on a
face and touch gesture dataset collected by the authors’ group
using a mobile device for active authentication in different
ambient conditions. We compare our proposed methods
with several sate-of-the-art feature level multimodal fusion
methods including MKL [28] and Sparsity-based Multimodal
Biometrics Recognition (SMBR-WE and SMBR-E) [10] and
score-level fusion method based on Sparse logistic Regres-
sion (SLR) [29] which is named as SLR-sum in [10].

A. Face and Screen Touch Gesture Dataset

Most mobile devices use passwords, pin numbers, or secret
patterns for authenticating users. As long as the device
remains active, there is no mechanism to verify that the
user originally authenticated is still the user in control
of the device. As a result, unauthorized individuals may
improperly gain access to personal information of the user if
the password is compromised. Active authentication systems
deal with this issue by continuously monitoring the user
identity after the initial access has been granted. Examples of
such systems include screen touch gesture-based recognition
[30] and gait-based recognition [31].

Faces have shown to be a promising biometric for verify-
ing a user identity. In order to study the effectiveness of both
faces and touch gestures for active authentication on mobile
devices, we collected data from 50 users in an application
environment on iPhone 5s. The users were asked to perform
different tasks such as scrolling a document, viewing pic-
tures, reading a long article etc. While users performed these
tasks, their touch data sensed by the screen and face images
acquired by the front-facing camera were simultaneously
captured. The users were asked to perform these tasks in
different sessions with different ambient conditions, namely
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Fig. 1: First row: Example faces in this dataset. Second row: Detected landmarks on the images shown on the first row.

in a well-lit room, in a dim-lit room, and in a room with
natural daytime illumination. During data collection, users
were free to use the phone in either orientation mode and
hold the phone in any position of their choice. The goal
was to simulate real-world scenarios to study how ambient
changes can influence users’ face data captured by the frontal
camera and can possibly influence touch gestures as users
might swipe differently under different lighting conditions.
Data collection from 50 users over 3 sessions resulted in
750 videos consisting of facial data with each video lasting
between 0.5 minute to 2 minutes and 15490 touch swipes.
It is a very challenging dataset. Since facial video data were
collected in an unconstrained manner, many faces exhibit
different poses, rotations and illuminations. In particular,
partial faces are common in this dataset. First row of Figures
1 shows sample face images from this dataset. Each row
shows images from a particular ambient condition. Raw
touch swipes on the screen from this dataset are shown in
Figure 2.

50 100 150 200 250 300 350
260

270

280

290

300

310

320

330

340

1

111

1

1

1

1

1

1

X coordinate 

Y
 c

o
o
rd

in
at

e 

trajectory of 3 swipes for user11

2

22222

2

2

2

2

2

3
333

3

3

3

3

3

3

50 100 150 200 250
290

300

310

320

330

340

350

360

1

1

1

1

X coordinate 

Y
 c

o
o
rd

in
at

e 

trajectory of 3 swipes for user42

22
2

2

2

2

2

3

3

3

3

3

3

50 100 150 200 250
305

310

315

320

325

330

335

1

111111
1

1

1

1

1

1

X coordinate 

Y
 c

o
o
rd

in
at

e 

trajectory of 3 swipes for user1

2
22

2

2

2

2

2
2

22
2

3

33
3

3

3

3

3

3

333

50 100 150 200 250
290

300

310

320

330

340

350

360

370
1

1

1

1

1

X coordinate 

Y
 c

o
o
rd

in
at

e 

trajectory of 3 swipes for user33

2
22

2

2

333

3

3

3

Fig. 2: Trajectories of sample touch swipes from our dataset.

B. Preprocessing and Feature Extraction

Since this dataset consists of two modalities, we perform
preprocessing and feature extraction for face and screen
touch data separately.

1) Faces: For the face data, we first detect the landmarks
of the face images frame by frame from the videos using
the tree-based landmarks detector [32]. These detected land-
marks are shown in the second row of Figure 1. We then
crop and align the faces using the method described in [33]
based on the landmarks’ locations. We then applied the
illumination normalization method described in [34] to the
cropped face images. Finally the face images were rescaled to
dimension 192×168×3 and converted to grayscale images.
After preprocessing, we down sampled the preprocessed face
images to 24 by 21 and used the whole image as a feature
vector of dimension 504.

2) Touch Gestures: Every touch swipe S is encoded as a
sequence of vectors

si = (xi, yi, ti, Ai, o
ph
i ),

i ∈ {1, · · · , Nc} where xi, yi are the location points, ti is
the time stamp, Ai is the area occluded by the finger and ophi
is the orientation of the phone (e.g. landscape or portrait).
Given these touch data, we extracted a 27 dimensional
feature vector for every single swipe in the dataset using the
method described in [30]. These features are summarized in
Table I.

The new dataset is a relative large dataset. In order
to evaluate the proposed multi-modal fusion methods, we
sampled a small subset from this dataset. For the face
component, for each user, we selected 30 faces from each
session. As a result, in total we selected 4500 face images
for 50 users across 3 different sessions. Similarly, for the
touch component, we also selected the corresponding 4500
touch swipes. All the experiment done will be based on these
selected 4500 face images and 4500 touch swipes. This part
of the data and the Matlab implementation of our low-rank
fusion methods will be made available for research purposes.



FeatureID Description
feature 1 inter-stroke time
feature 2 stroke duration
feature 3 start x
feature 4 start y
feature 5 stop x
feature 6 stop y
feature 7 direct end-to-end distance
feature 8 mean resultant length
feature 9 up/down/left/right flag
feature 10 direction of end-to-end line
feature 11 20%-perc. pairwise velocity
feature 12 50%-perc. pairwise velocity
feature 13 80%-perc. pairwise velocity
feature 14 20%-perc. pairwise acceleration
feature 15 50%-perc. pairwise acceleration
feature 16 80%-perc. pairwise acceleration
feature 17 median velocity at last 3 points
feature 18 largest deviation from end-to-end line
feature 19 20%-perc. dev. from end-to-end line
feature 20 50%-perc. dev. from end-to-end line
feature 21 80%-perc. dev. from end-to-end line
feature 22 average direction
feature 23 length of trajectory
feature 24 ratio end-to-end dist and length of trajectory
feature 25 average velocity
feature 26 median acceleration at first 5 points
feature 27 mid-stroke area covered

TABLE I: Description of the 27 dimensional feature vector.

C. Fusion of Face and Screen Touch Gestures

In this experiment, we select 10 (15) samples for each
user to form training data, and use rest of the data for
testing. In total, there are 500 (750) samples for training
and 4000 (3750) samples for testing. Each sample contains
a 504 dimensional feature vector for one face image and a
27 dimensional feature vector for one screen touch gesture.
By randomly splitting data for training and testing, we
repeated each experiment 10 times and report mean and
standard deviation of the rank 1 recognition accuracy. Rank
K recognition accuracy is often used to evaluate biometric
recognition algorithms. The experimental results comparing
our proposed methods with the other multi-modal fusion
methods are shown in Table II and Table III, respectively,
when we use 10 and 15 training samples for each user.

Methods Face Touch Face & Touch
SLR-sum 57.74 ± 0.96 22.05 ± 1.03 58.26 ±0.92

MKL 72.58 ± 1.08 36.02 ± 0.49 75.13 ±2.22
SMBR-WE 75.37 ± 1.13 30.40 ± 1.59 66.69 ±0.78
SMBR-E 73.05 ± 1.29 27.72 ± 1.50 64.49 ±1.61
MLRR 76.04 ± 0.92 21.95 ± 1.41 69.24 ±0.85

RMLRR 75.94 ± 1.16 21.88 ± 1.35 69.21 ±1.17
MCLRR 75.49 ± 1.03 22.02 ± 1.37 78.58± 1.21

RMCLRR 72.72 ± 1.49 21.88 ± 1.34 77.93± 1.35

TABLE II: Rank 1 recognition accuracy (in %) for different
fusion methods using 10 samples from each user for training.

From the results shown in Table II and Table III, we make
the following observations: (1) All the algorithm compared
can achieve better recognition accuracy on face modality than
on the touch modality. Faces as physical biometrics are more
robust and reliable while screen touch gestures, as a kind

Methods Face Touch Face & Touch
SLR-sum 74.77 ± 0.78 23.64 ± 1.23 75.26 ±0.92

MKL 77.23 ± 0.57 39.19 ± 1.25 80.80 ±1.22
SMBR-WE 81.44 ± 0.49 32.42 ± 1.13 74.31 ±1.10
SMBR-E 79.12 ± 0.61 30.18 ± 1.22 71.90 ±1.36
MLRR 81.04 ± 0.60 23.26 ± 1.57 75.82 ±1.06

RMLRR 81.19 ± 0.63 23.27 ± 1.69 76.28 ±1.06
MCLRR 80.60 ± 0.52 23.26 ± 1.58 83.68± 0.53

RMCLRR 79.19 ± 0.72 23.27 ± 1.65 83.75± 0.66

TABLE III: Rank 1 recognition accuracy (in %) for different
fusion methods using 15 samples from each user for training.

of behavioral biometric, exhibits more variations and can
changes more easily. (2) When fusing two modalities, not all
the methods perform better than using any single modality
alone for recognition. Compared to the other methods, our
proposed fusion methods, in particular RMCLRR performs
the best. SMBR-WE, SMBR-E, MLRR and RMLRR do
not achieve the best performance in this experiment. When
we try to learn a low-rank representation from these two
modalities (one strong, one weak), MLRR and RMLRR may
not be able to correctly obtain the correct internal structure
of the data. The reason may be the fact that one part of the
data (touch gestures) are too noisy. From the formulations
of MCLRR and RMCLRR, these methods try to learn a
common low-rank representation from different modalities.
The learned common representation can correctly capture
the low-rank structure of the input data with respect to the
training data. (3) When we use more training samples, all
methods can perform much better in terms of both single
modality and the fusion of two modalities.

D. Fusion of Facical Components

As we can see from Figure 1, there are many variations
in the dataset especially out of plane rotations and partial
faces which make the face recognition difficult. As a result,
instead of extracting features from holistic face images, we
focus on different parts of the face such as right eye, left
eye, nose and mouth as shown in Figure 3. We treat each
face part as one modality and apply our proposed fusion
methods to perform face recognition. Similar ideas have been
proposed in [10] and [35]. Note that in this experiment, we
do not align the face image before extracting each face part.
Furthermore, we do not align the face components. For the
right and left eye components, we extract them using the
landmarks we obtained and resize the extracted components
to 20×30×3, and transformed it to grayscale image of size
20× 30. We then apply the illumination normalization [34]
to alleviate extreme illumination effects and finally get 600
dimensional feature vectors by concatenating each columns
of the processed image part from. Similarly, for the nose and
the mouth parts, we get 450 (15 × 30) dimensional feature
vectors.

We select 10 (15) samples for each user to form the
training data, and use rest of the data for testing. In total,
there are 500 (750) samples for training and 4000 (3750)
samples for testing. Each sample contains 4 feature vectors
representing 4 different facial components with dimension



Fig. 3: Different facial components extracted using the
detected landmarks.

600, 600, 450 and 450 for left eye, right eye, nose and
mouth, respectively. By randomly splitting data into training
and testing, we repeated each experiment 10 times and report
the mean and standard deviation of the rank 1 recognition
accuracy. The experimental results comparing the proposed
methods with other multi-modal fusion methods are shown
in Table IV and Table V, respectively, when we use 10 and
15 training samples for each user.

From the results shown in Table IV and Table V, we
make several observations. (1) All the algorithms compared
can achieve better recognition accuracy when fusing 4 facial
components than performing recognition using single face
part alone. Our proposed RMLRR method performs the best
since the learned low-rank representation from 4 modalities
can efficiently and correctly capture the structure of input
data samples. The SLR-sum method performs the worst on
this experiment since this method is performing score-level
fusion rather than feature level fusion. This method does not
fully utilize the information in the feature vectors for each
facial component. (2) The recognition performance based on
the right eye or left eye alone show relative high accuracy.
This result is consistent with the findings in psychological
studies of face recognition by humans as discussed in [36].
(3) Comparing the face recognition results based on the
holistic face image, fusing different face components can per-
form much better. This is because the face images obtained
from mobile devices shows many variations that typical
face preprocessing procedures struggle to tackle especially
when presented with pose variations and partial faces. This
suggests fusing face parts may be a good solution for mobile
face recognition.

E. Runtime Analysis and Convergence

To empirically show the convergence of our method,
in Fig 4 (a) and (b), we show the objective function vs
iteration plots of the ADMM method for solving Algorithm 1
(RMLRR ) and Algorithm 2 (RMCLRR), respectively. As
can be seen from this figure, the proposed algorithms do
converge in a few iterations. Furthermore, our method is
very efficient compared to other feature level fusion methods.
For the fusion of 4 facial parts experiment using 10 samples
from each subjects for training, on average MLRR, RMLRR,
MCLRR and RMCLRR take about 0.22s, 0.54s,0.06 and
0.43s respectively to classify a test sample, compared to
0.53s for SMBR-WE [10] and 0.87s for SMBR-E [10].
Note that, even tough MKL Algorithm [28] reqires 0.04s
to classify a test sample, it requires a lot of time to train

the model while our methods do not require any training.
Experiments were done in 64bit Matlab R2013a environment
on laptop with 2.9GHz Intel Core i7-3520M CPU and 8GB
Memory.
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Fig. 4: Objective function versus number of iterations.
(a)Algorithm 1 (RMLRR). (b)Algorithm 2 (RMCLRR).

V. CONCLUSION

In this paper, we proposed four new multi-modal fusion
methods based on low-rank representations, namely MLRR,
RMLRR, MCLRR and RMCLRR. Efficient optimization
procedures are proposed for solving the proposed problems
using the ADMM method. Extensive experiments on a
dataset consisting of face and touch gestures collected using
a mobile device show that the proposed methods can perform
better than recently proposed sparsity-based fusion methods.

Our future research will focus on applying our proposed
fusion methods for more general computer vision and patter
recognition problems which are associated with multiple
feature descriptors, like object recognition. Also, we will
extend the proposed methods to the nonlinear case for
application where the nonlinearity lies within the data.
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