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Abstract— In this paper, we propose to improve the perfor-
mance of mobile Active Authentication (AA) systems in the low
false alarm region using the statistical Extreme Value Theory
(EVT). The problem is studied under a Bayesian framework
where extremal observations that contribute to mis-verification
are given more prominence. We propose modeling the tail of
the match distribution using a Generalized Pareto Distribution
(GPD) in order to make better inferences about the extremal
observations. A method based on the mean excess function is
introduced for parameter estimation of the GPD. Effectiveness
of the proposed framework is demonstrated using publicly
available unconstrained mobile active authentication datasets. It
is shown that the proposed EVT-based method can significantly
enhance the performance of traditional AA systems in the low
false alarm rate region.

I. INTRODUCTION

Mobile devices have become an integral part of human
life at an increasing rate in the recent years. Largely owing
to the expeditious growth in the fields of semi-conductor
electronics and communications, modern mobile devices are
well equipped with higher data rates, faster clock speeds and
a colossal amount of internal memory. As a consequence, it
has transformed its role from being a simple communication
tool to become the perfect personal assistant that manages
multiple personal needs including communication, network-
ing, finance and entertainment. Subsequently, modern mobile
devices contain a range of sensitive personal information
including personal photographs, messages, contacts, bank
account numbers, passwords, etc. Therefore, mobile device
theft in the present context could directly lead to information
theft which has a huge intangible cost associated.

Industry surveys have shown that 10% of phone theft
victims have claimed to lost confidential company data, 9%
of the victims have experienced identity theft, and 12% of
the victims have experienced fraudulent charges on their
accounts [18]. The total cost associated with information
theft is substantial considering that 2.1 million cases of
phone thefts were reported in 2015 in US alone [8]. In
this context, mobile user authentication is paramount in
safeguarding information security of the user. Traditional
mobile authentication systems are essentially based on a one-
time user verification methods such as a PIN number, a swipe
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Fig. 1. Operable region of an AA system. To comply with security needs,
an AA system should operate with a very low FAR rate. This operable region
is shaded in the standard ROC curve (Left). Performance in this region is
more observable in the log scaled plot (Right). In this paper we discuss how
performance of this region can be improved using the statistical EVT.

pattern or a password. However, recent studies reveal that
such one-time verification schemes (also know as explicit
authentication) have failed to prevent fraudulent access to
devices [1], [5].

As an alternative, both biometrics and security research
communities have developed techniques for active authenti-
cation (AA) on mobile devices [21]. These methods essen-
tially make use of physiological and behavioral biometrics
using built-in sensors and accessories such as gyroscope,
touchscreen, accelerometer, orientation sensor, and pressure
sensor to continuously monitor the user identity. For instance,
physiological biometrics such as face can be captured using
the front-facing camera of a mobile device and can be
used to continuously authenticate a mobile device user [13],
[19], [7], [9], [24], [22]. On the other hand, sensors such
as gyroscope, touchscreen and accelerometer can be used
to measure behavioral biometric traits such as gait [34],
[14], touch gestures [10], [28] and hand movement [29]
transparently1.

In principle, the primary goal of an authentication system
is to ensure information security through intruder prevention.
In order to prevent intrusions, an authentication mechanism
should operate with a very low degree of false alarms as
shown in Figure 1. However, how well previously proposed
AA systems perform in the low false alarm region has not
extensively studied in the literature. Nevertheless, for AA to

1Note that the terms continuous authentication, active authentication,
implicit authentication, and transparent authentication have been used in-
terchangeably in the literature [21].978-1-5090-4023-0/17/$31.00 c©2017 IEEE



Fig. 2. Overview of the proposed system. Non shaded blocks represent
typical components of an AA system. Shaded components are the proposed
additions for performance enhancement.

be a viable alternative for traditional explicit authentication,
this remain an important criterion. In this paper, we focus
on the performance of AA systems at the low false alarm
region (from 0.001 to 0.1) and we present a performance
enhancement mechanism in this region for unimodal mobile
AA systems based on the statistical Extreme Value Theory
(EVT).

Figure 2 gives an overview of the proposed EVT-based
AA system. A typical AA system extracts features of a
probe and compares them against the enrolled features. In
the proposed system, distribution of the probability scores are
also obtained in the enrollment phase. Tail of the probability
score distribution is modeled using the EVT and is used
together with the similarity score generated in the standard
AA system to enhance the performance of the standard
system. It should be noted that the proposed mechanism is
independent of sensors and features used in the underline AA
system. Therefore, any existing AA system can be extended
by incorporating the proposed performance enhancement
scheme.

The statistical EVT has been previously used to modal
the occurrence of extreme events in finance [15], hydrology
[30] and novelty detection [23], [6], [17], [12]. In particular,
several recent works have proposed using EVT for computer
vision applications such as score-level fusion [32], open-set
recognition [16], and visual attributes [26]. However, to the
best of our knowledge this is the first attempt of using EVT
to enhance the performance of an AA system.

This paper is organized as follows. Traditional and AA
user verification systems are described in Section II. Sec-
tion III briefly introduces the statistical EVT. EVT-based
performance enhancement methods for unimodal AA sys-
tems are presented in Section IV. Experimental evaluations
are described in Section V. Finally, concluding remarks are
presented in Section VI with a brief summary and discussion.

II. USER VERIFICATION IN THE AA SYSTEMS

A. Traditional Verification Problem

Taking face as an example, in the traditional face verifi-
cation problem, the verification task determines whether the
given probe matches the enrolled faces or not. Mathemati-
cally, based on a set of face images X (the gallery) belonging
to a person, the verifier generates a distance figure and uses

hard thresholding to assign a label L(x) to a given image x
(the probe) based on whether it belongs to the same person
or not as in,

L(x) =

{
Non-match, if dX(x) ≥ δ
Match, if dX(x) < δ,

(1)

where, dX(.) is the distance with respect to the distribution
of X and δ is a predetermined threshold. Performance of the
verification system solely depends on the produced distance
distributions for positive and negative probes. Distributions
of positive and negative probes are henceforth referred to as
match distribution and non-match distribution, respectively.
Placement and shape of match and non-match distributions
of a subject in the UMDAA-01 dataset [9] is shown in
Figure 3(a). An ideal verification system is characterized by a
zero overlap between its match and non-match distributions.
However, in practice these distributions often overlap.

B. Verification in the AA Systems

By definition, AA falls under the problem of user verifica-
tion where the requirement is to verify the claimed identity
of the current user. A typical AA system would operate on
a set of obtained features and a specific comparison rule to
evaluate the similarity between gallery and probe images. In
what follows, we use face biometric to describe concepts,
challenges and modifications in AA. It should be noted that
applicability of the discussion is valid for all AA systems
based on other sensor data as well.

An overview of a typical AA system is shown in Fig-
ure 3(b). At the initiation of the device, the owner of the
device is prompted to enroll herself and features of enrolled
data are evaluated in advance to form a set of signatures. In
the authentication phase, when a probe is presented, his/her
likeliness is sensed through the mobile sensor (a face picture
in this case) and relevant features are extracted. Extracted
features are compared against the enrolled signatures in-
dependently and the distance score generated by the best
match is considered. Probe is authenticated by thresholding
the distance score.

At the first glance, it is evident that the AA process is very
similar to an identity verification scenario. Since verification
is a very well studied problem in the literature, it may appear
that solution to AA problem is trivial. However, AA itself
is a unique problem with a number of inherent constrains.
The unique nature of the application poses a number of
challenges.

1) Sensor data acquired from mobile devices are often
partial or noisy. For example, images of the user
captured from the front-facing camera could be clipped
depending on the device orientation. Therefore, the
similarity between gallery and a true probe could be
considerably low at times.

2) Only a set of samples belonging to the true user is
available during enrollemnt. However, complete infor-
mation is absent as to how all non-users look like.
Therefore, mobile AA problem can be viewed as an
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Fig. 3. (a) Match and non-match distributions corresponding to a user in the UMDAA-01 dataset. (b) An overview of a typical mobile AA system.

open set verification problem [27], [25]. This constraint
disrupts the possibility of producing a classifier based
on discrimination (for example a classifier based on
SVM cannot be trained since complete information on
non-matches are unknown).

3) Limited memory and processing power in mobile
devices require the use of easily extracted features
and simple matching algorithms. Hence, mobile AA
systems cannot use more complex and sophisticated
classification schemes.

Due to these constraints, practical classification methods
employable for AA problems are inherently poor in nature.
Therefore, there exists a considerable overlap between score
distributions generated by true and false probes. This phe-
nomenon is clearly observed in Figure 3(a). In this paper, we
refer to scores that falls in this region as ambiguous scores.
In the context of AA, ambiguous scores predominantly
appear at the tail of the match distribution. This is the
key contributor in performance degradation in mobile AA
systems.

From a practical perspective, when the obtained distance
score is considerably large, it is safe to decide that the probe
image does not belong to the enrolled user. On contrary,
when a very low distance score (closer to 0) is obtained,
user’s authenticity is apparent. However, when distance score
is in the ambiguous score region, the decision is not so
straight forward. Therefore, the ambiguous score region
plays a significant role in the performance of any AA system.
One of the biggest challenges in the AA systems is to reject
intruder faces when they produce an ambiguous score.

Due to the poor nature of the AA classifiers, performance
enhancement of the classifier even by the slightest amount
is greatly valued. The most straight forward approach to
enhance recognition performance is to reject scores that
fall in to the ambiguous region and take an alternative
sensor reading instead [20]. However, in an event where an
intruder’s likeliness is relatively similar to that of the enrolled
user, the similarity score generated will continue to fall in
the ambiguous score region. Therefore, a more scientific ap-
proach is desired to differentiate ambiguity scores generated

by intruders from that of the legitimate user to enhance the
continuous authentication performance.

III. EXTREME VALUE-BASED ENHANCEMENT

A. Empirical Tail Estimation

Motivated by the significance that the tail region of a
match distribution holds, we propose a performance en-
hancement scheme based on extreme values of the match
distribution. For an observation x, since matched scores
are bound to take lower score values, probability for a
probe x been matched is given by 1 − FX(x), where FX
is the cumulative distribution function of the match score
distribution. If the distribution of the extreme values FZ is
known in advance, a two-fold similarity assessment of the
probe can be done in order to incorporate information about
the tail (ambiguous region). If all values above u are regarded
as ambiguous, let α = FX(u). Then, probability of been
matched PM (x) can be re-written as,

PM (x) =

{
1− (α+ (1− α)× FZ(x− u)), FX(x) > α

1− FX(x), O.W.
(2)

However, most of the time distribution of the extreme
values are not known in advance. In addition, what values
fall under extreme values themselves are distribution specific.
Therefore, it is necessary to infer these information about the
match distribution prior to such a modification. An intuitive
way of estimating the match distribution is to use the training
data itself for estimation. Let us assume that the training
data (enrollment data) of the legitimate user is divided in
to two portions. If one portion serves as signatures of the
user, then the other portion can be used to construct the
matched distribution of the user. A high percentile of the
distribution (95 % is commonly used to estimate the tail [4])
can be used to determine a probability boundary that defines
the tail of the distribution. For example, given a set of data
x1, x2, ..., xn, if 1−α is the fraction of data that belongs to
the tail, the boundary u that defines the tail would be

u = x(round(nα)), (3)



where x(i) is the ith order statistic of x1, x2, ..., xn. The
tail distribution can be estimated by the distribution of all
x > u. With this formulation in hand, one could expect to
obtain better results through (2). However, such empirical
tail estimation methods do not generalize well due to the
low number of extreme events present in a finite training
set (for a typical AA dataset, this number ranges from 30-
100). As a result, an empirical formulation over fits the tail
distribution thereby producing an inapt estimate.

Due to this limitation, we introduce the statical EVT-based
modeling scheme to estimate the tail distribution of the match
samples instead of using the raw empirical data.

B. Extreme Value Theory

1) The Fisher-Tippett Theorem: Consider n number of
independent identically distributed (i.i.d.) samples X =
{x1, x2, ..., xn} drawn from the same unknown continuos
distribution with a CDF of FX(x). If the maximum of the
samples are Mn, where Mn = max(X), there exists a
sequence of real numbers (an, bn) such that an > 0 for
all n and a distribution H(x) such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= H(x). (4)

The limit distribution H(x) takes the form of a Generalized
Extreme Value (GEV) distribution given by

H(x; ζ, µ, σ) =

{
exp(−[1 + ζ(x− µ)/σ]−1/ζ), if ζ 6= 0

exp(− exp−(x−µ)/σ), if ζ = 0,

where, 1+ζ(Mn−µ)/σ > 0 [2], [4], [12]. The parameters µ,
σ and ζ correspond to scalar, tendency and tail index of the
distribution, respectively. Larger tail index results a CDF with
a fat tail and when it is zero, the CDF reduces to a Gumbel
distribution. When the tail index is negative and positive
the distribution reduces to Weibull and Frechet distributions,
respectively. The asymptotic maximal distribution can be
estimated without any assumptions on the underline CDF
FX(x). In its original form Fisher-Tippett Theorem is formu-
lated focusing on discrete batches of data. In order to extend
its applicability to continuous data, Picklands, Balkema and
de Haan formulation was later introduced.

2) Picklands, Balkema and de Haan Formulation: Con-
sider a set of samples from X that exceed a sufficiently high
threshold u. If FU is the cumulative distribution of the excess
of X over u such that

FU (x) = P (X − u ≤ x|X > u), (5)

where x > 0, then the CDF of FU can be approximated
using a Generalized Pareto Distribution (GPD)

G(x; ξ, β) =

{
1− (1 + ξx

β )−1/ξ, if ξ 6= 0

1− e−x/β , if ξ = 0,

such that −∞ < ξ < ∞, 0 < β < ∞, x > 0 and ξx > −β
[2], [4], [12]. When ξ = 0, GPD reduces to an exponential
distribution with mean β. When ξ > 0 and ξ < 0, the
GPD takes the form of Pareto distribution and Pareto II
distribution, respectively.

3) Parameter Selection for GPD: The main challenge that
arises in using GPD for tail distribution is the ambiguity in
selecting the parameter u. According to Picklands, Balkema
and de Haan result, it is stated that selecting a sufficiently
large u would ensure that the tail distribution can be ap-
proximated using a GPD. However, a method to select a
specific value for parameter u is not specified. In practice,
heuristic values such as 80%, 90% and 95% have been used
in the literature [16]. In this section, we present an automated
method to estimate the threshold u based on the mean excess
function (MEF) [11].

For the random variable X , the mean excess function
M(u) is defined as

M(u) = E[X − u|X > u], (6)

provided that E[X]+ < ∞. For a given m, the number of
i.i.d. samples X , the empirical mean excess function M̂(u)
for parameter u can be empirically calculated as follows [11]

M̂(u) =

∑n
i=1(Xi − u)I(xi > u)∑n

i=1 I(xi > u)
, (7)

where I is the indicator function. It should be noted that the
mean excess function stays finite for all X when ξ < 0. If the
random variable X is from a GPD, the mean excess function
is linear with a positive slope [2], [11]. It can be shown that
the mean excess function takes the following form [2]

M(u) =
β

1− ξ
+

ξ

1− ξ
u. (8)

This theory essentially provides us a way to estimate the
parameter u while ensuring that the defined tail could be
approximated using a GPD. The proposed algorithm for
parameter estimation is depicted in Algorithm 1. Here, all
entries of the training data sample are sorted in the ascending
order and the MEF at each point is calculated. Maximum
number of extremal data points that would lie linearly in
the mean excess plot is determined by assessing how good
a straight line could fit the MEF. Parameter u is estimated
based on this information.

IV. EVT-BASED AA PERFORMANCE ENHANCEMENT

In this section, we present the performance enhancement
framework based on EVT for the unimodal AA systems
(AEVT). It is possible to invoke EVT to the AA problem
given that data beyond a threshold u is considered. The
threshold u is decided based on the score distribution of the
training data according to Algorithm 1.

1) Training: As shown in Figure 2, sensor data captured
during the enrollment phase are used to derive features
for training. The entire training process is presented in
Algorithm 2. A portion of enrollment features are used to
construct user specific signatures. The total obtained feature
set is then compared with the obtained signatures one at a
time and the lowest obtained distance value is recorded.

Once the distribution of the lowest scores is obtained,
its tail is modeled using EVT. First, the tail bound of the
distribution (parameter u) is found by using Algorithm 1



input : Set of training data x of size n
output: Estimate for parameter u, tail propotion α

For each data point calculate the Meand Excess
Function (MEF);

Sort x ;
for i← 1 to n− 1 do

M = [ ]; // Initialize M;
for j ← 1 to n do

if xj > xi then
//Store values greater than the

considered entry ;
M =M ∪ xj ;

else
end

end
MEF[i] = mean(M)/length(M) ;

end

For different number of extremal points fit a line;
for k ← 1 to n/10 do

Sort MEF retaining k largest values of MEF and
x ;
[m, c] = FitLine({MEF}, {x});
//Find the MSE at data points for the fitted line ;
E[k]← MSE(line(m, c, x), x);

end
//Determine bound of the tail based on best possible

line fit;
u = argmink{E} ;
//Find value of α ;
N = [ ];
for j ← 1 to n do

if xj > u then
//Store values greater than u ;
N = N ∪ xj ;

else
end

end
α = n−length(N)

n ;
Algorithm 1: Parameter estimation for GPD.

on the distribution. Then, based on the estimated parameter,
tail of the distribution is extracted and parameters of the
corresponding GPD is found through Maximum Likelihood
estimation. In the case when the Maximum Likelihood
process fails for a GPD, the tail of the distribution is modeled
using an exponential distribution.

2) Testing: When probe data is obtained, as illustrated
in Figure 2, same features as in the enrollment phase
are extracted from the probe. Extracted probe features are
compared against the obtained signatures in the enrollment
phase and the resulting minimum distance score is recorded.
This score is then enhanced by the means of update equation
(2). The entire testing procedure is presented in Algorithm
3.

input : Set of training data x of size n
output: GPD distribution parameters ξ and β for

the tail distribution

Divide data into two portions randomly;
Signatures ← Rand(x,m);
foreach element x[i] do
for j ← 1 to m do

d[j]← distance(x[i], signature[j]) ;
end
;
//Get the minimum matching distance;
D[i] = Min(d);
//Parameters for GPD is found using Algorithm I;
[alpha, u] = Algorithm1(D);
//Select data points over the threshold u ;
M = []; for j ← 1 to n do

if xj > u then
//Store values greater than the considered
entry ;
M =M ∪ xj ;

else
end

end
//Fit a GPD for the tail ;
[ξ, β] = gpdfit(M,u);

Algorithm 2: Training procedure for the AA system.

V. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method us-
ing four publicly available unconstrained AA datasets - MO-
BIO face dataset [19], UMDAA-01 face dataset, UMDAA-
01 touch gesture dataset [9] and BTAS-2013 touch gesture
dataset [28]. The following features and matching methods
were used to generate scores from these datasets:

1) UMDAA-01 face dataset: LBP features and cosine
distance

2) UMDAA-01 face dataset: HOG features of facial com-
ponents [7] and cosine distance

3) MOBIO face dataset: LBP features and cosine distance
4) MOBIO face dataset: facial attribute-based features

[24] and cosine distance
5) UMDAA-01 touch gesture dataset: 27-dimensional

features [33] and SVM with RBF kernel
6) BTAS 2013 touch gesture dataset: 28-dimensional fea-

tures [28] and SVM with RBF kernel
We use the scores obtained using the specified feature-

matching pairs as the baseline for comparisons. The Receiver
Operating Characteristic (ROC) curves are used to measure
the performance of EVT-based enhancement method (de-
noted by EVT), automated EVT-based enhancement method
(denoted by AEVT) and raw scores (denoted by original).
Experiments carried out on the UMDAA-01 face dataset
showed that the best possible performance for EVT is
obtained when α = 0.95 for the dataset. Based on this
result, we use α = 0.95 to construct the EVT curves in



input : Probe data y, m number of Signatures from
training, ξ, β, α, CDF of Signatures FY

output: Probability score s

for j ← 1 to m do
d[j]← distance(y, signature[j]) ;

end
//Get the minimum matching distance;
D = Min(d);
if D > u then

//If y lies in the tail, use EVT ;
s = 1− (α+ (1− α)× gpcdf(y, ξ, β));

else
//Else use the original score ;
s = 1− FY (y) ;

end
Algorithm 3: Testing procedure for a probe

all experiments. Experiments described below show that the
automatic threshold selection-based AEVT closely resembles
the performance of EVT.

(a)

(c)

(b)

Fig. 4. Sample data from (a) UMDAA-01 face dataset, (b) MOBIO face
dataset, and (c) UMDAA-01 touch gesture dataset.

A. MOBIO Dataset

The MOBIO dataset [19] contains videos of 152 subjects
taken across two phases where each phase consists of six
sessions each (See Figure 4(b)). Videos in this dataset are
acquired using a standard 2008 Macbook laptop computer
and a NOKIA N93i mobile phone. Following the protocol
defined in [24], video frames of the 12th session were con-
sidered as the enrollment data and video frames of all other
sessions were used as probes. We conducted our experiments
on the laptop image data based on the LBP features and
the facial attributes. Obtained ROC curves for each cases
are illustrated in Figure 5(a) and (b). As can be seen from
these ROC curves, the proposed EVT-based method induces
a significant performance improvement on the benchmark
AA systems considered. Moreover, the automated parameter
selection method has performed better than when a fixed
parameter (where α = 0.95) was used. The True Accept

Rate (TAR) values for a series of False Accept Rate (FAR)
values are tabulated in Table I. It is evident from Table I,
that in general, the performance of the automated parameter
selection based on the MEF is generally on par with the
performance when the parameter is handpicked manually.
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Fig. 5. Performance evaluation on the MOBIO dataset. (a) Results
corresponding to the LBP features. (b) Results corresponding to the facial
attributes.

B. UMDAA-01 Dataset

The UMDAA-01 dataset [9] consists of images and touch
gestures of 50 individuals taken from an iPhone 5 device
across three sessions performing five tasks including an
enrollment task. Sample face and touch data from this dataset
are shown in Figure 4 (a) and (c), respectively.

1) Face Dataset: Following the protocol defined in [9],
video frames of the enrollment task were used as enrollment
data and frames of all other tasks were used as probes for
testing. The ROC curves obtained using the attribute features
and the LBP features along with the improvement induced
by the EVT are shown in Figure 6. TAR values for a series
of FAR values are also tabulated in Table I.
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Fig. 6. Performance evaluation on the UMDAA-01 face dataset. (a) Results
corresponding to the LBP features. (b) Results corresponding to the HOG
features.

It can be seen from these experiments that the proposed
method has increased the TAR values for very low FAR val-
ues. Practical AA systems operate in very low FAR regions
facilitate the security of the system [3] . Therefore, induced
improvement in this region would enhance the usability of
the user while maintaining the system security. Moreover,
the automated parameter selection method has performed



FAR%

TAR %
MOBIO UMDAA-01 BTAS2013

Face Attributes Face LBP Face HOG Face LBP Touch Gestures Touch Gestures

[24]
EVT AEVT

[31]
EVT AEVT [7] EVT AEVT

[31]
EVT AEVT

[33]
EVT AEVT

[28]
EVT AEVT

0.05 5.45 61.9 46.2 43.4 60.5 59.0 0.05 10.2 6.85 1.67 15.6 12.2 13.8 59.2 60.7 7.79 37.7 35.4
0.1 9.73 71.3 64.5 54.9 71.3 71.8 0.29 11.7 7.9 3.67 19.2 15.8 14.1 63.0 62.5 9.81 41.8 42.8
0.25 34.1 78.1 75.3 68.7 81.5 83.0 2.01 17.3 15.8 8.01 28.1 22.4 14.6 67.3 66.3 14.6 48.2 48.7
0.5 77.2 87.3 84.7 81.3 87.3 87.8 5.87 23.9 21.1 13.9 36.3 31.3 19.2 69.4 68.5 23.0 55.5 54.5
1 95.7 91.9 92.0 91.3 92.3 93.5 13.7 35.7 31.0 21.1 47.7 44.6 25.6 72.5 71.7 33.6 61.5 61.8

TABLE I
TABULATION OF THE TAR-FAR VALUES FOR THE EXPERIMENTS CONDUCTED IN THIS PAPER.

on par with the EVT method based on manual selection of
parameters. Therefore, it can be concluded that the automated
parameter estimation method provides a reasonable estimate
for practical applications.

2) Touch gesture dataset: Each touch gesture is rep-
resented by a 27-dimensional feature vector as described
in [33]. Half of the touch gestures corresponding to each
user were used to construct signatures. The remaining data
were used for testing. A one class SVM with RBF kernel
(γ = 0.1) was used to train a classifier for each user. In
addition a window of size 12 was used when a probe was
matched to obtain a distance figure as described in [33].
Shown in Figure 7 are the ROC curves obtained for this
experiment. In contrast to earlier experiments, there is a
significant improvement obtained by the proposed method
compared to the raw score-based benchmark. This is mainly
due to the fact that there is a significant overlap between
the match and non-match distributions as compared to face
datasets.
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Fig. 7. Performance evaluation on the UMDAA-01 touch gesture dataset.

C. BTAS2013 Touch Gesture Dataset

The touch gesture dataset introduced in [28] contains
swipes from 190 users collected across two sessions. Data
collection has been done on a Google Nexus S device run-
ning on Android 4.0. Similar to the UMDAA-01 experiment,
a 28 dimensional feature was extracted [28] from each swipe
and half of the swipe features were used to construct a

user specific signature 2. A one class SVM based on the
RBF kernel (γ = 10) was used to produce the matching
scores for each probe. The ROC curves corresponding to
different methods are shown in Figure 8. The corresponding
TAR values for a selected set of FAR values are tabulated
in Table I. As can be seen from these results, both EVT
and AEVT has outperformed the benchmark by a significant
margin for low FAR values.
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Fig. 8. Performance evaluation on the BTAS2013 touch gesture dataset.

VI. CONCLUSION

We presented a performance enhancement mechanism
based on the statistical EVT for the existing unimodal mobile
AA systems. Statistical EVT was used to model the tail
of the score distribution along with the introduced param-
eter selection mechanism. It was shown that the proposed
method improves the performance of the existing face and
touch gesture-based AA systems. This improvement is more
significant when there is a considerable overlap between the
original match and non-match distributions. Moreover, it was
shown that the proposed method does not depend on the
underlying features or the classifiers used - it only depends
on the generated score values. As a result, the performance
of our method can be even further improved by using better
features and classifiers to generate the matching scores. In
the future, we will examine how EVT can be used for multi-
modal fusion applications in AA.

2There is an additional feature corresponding to the pressure sensor in
this dataset. Hence, the feature dimension is 28 compared to 27 in the
UMDAA-01 dataset.
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