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Abstract. Many recent efforts have shown the effectiveness of dictio-
nary learning methods in solving several computer vision problems. How-
ever, when designing dictionaries, training and testing domains may be
different, due to different view points and illumination conditions. In this
paper, we present a function learning framework for the task of trans-
forming a dictionary learned from one visual domain to the other, while
maintaining a domain-invariant sparse representation of a signal. Domain
dictionaries are modeled by a linear or non-linear parametric function.
The dictionary function parameters and domain-invariant sparse codes
are then jointly learned by solving an optimization problem. Experiments
on real datasets demonstrate the effectiveness of our approach for appli-
cations such as face recognition, pose alignment and pose estimation.

1 Introduction

In recent years, sparse and redundant modeling of signals has received a lot of
attention from the vision community [1]. This is mainly due to the fact that
signals or images of interest are sparse or compressible in some dictionary. In
other words, they can be well approximated by a linear combination of a few
elements (also known as atoms) of a redundant dictionary. This dictionary can
either be an analytic dictionary such as wavelets or it can be directly trained
from data. It has been observed that dictionaries learned directly from data
provide better representation and hence can improve the performance of many
applications such as image restoration and classification [2].

When designing dictionaries for image classification tasks, we are often con-
fronted with situations where conditions in the training set are different from
those present during testing. For example, in the case of face recognition, more
than one familiar view may be available for training. Such training faces may be
obtained from a live or recorded video sequences, where a range of views are ob-
served. However, the test images can contain conditions that are not necessarily
presented in the training images such as a face in a different pose. The problem
of transforming a dictionary trained from one visual domain to another without
changing signal sparse representations can be viewed as a problem of domain
adaptation [3] and transfer learning [4].

Given the same set of signals observed in different visual domains, our goal
is to learn a dictionary for the new domain without corresponding observations.
We formulate this problem of dictionary transformation in a function learning
framework, i.e., dictionaries across different domains are modeled by a paramet-
ric function. The dictionary function parameters and domain-invariant sparse
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(a) Example dictionaries learned at known
poses with observations.

(b) Domain adapted dictionary at a pose
(θ = 17◦) associated with no observations.

Fig. 1: Overview of our approach. Consider example dictionaries corresponding to
faces at different azimuths. (a) shows a depiction of example dictionaries over a curve
on a dictionary manifold which will be discussed later. Given example dictionaries,
our approach learns the underlying dictionary function F (θ,W). In (b), the dictionary
corresponding to a domain associated with observations is obtained by evaluating the
learned dictionary function at corresponding domain parameters.

codes are then jointly learned by solving an optimization problem. As shown in
Figure 1, given a learned dictionary function, a dictionary adapted to a new do-
main is obtained by evaluating such a dictionary function at the corresponding
domain parameters, e.g., pose angles.

For the case of pose variations, linear interpolation methods have been dis-
cussed in [5] to predict intermediate views of faces given a frontal and profile
views. These methods essentially apply linear regression on the PCA coefficients
corresponding to two different views. In [6], Vetter and Poggio present a method
for learning linear transformations from a basis set of prototypical views. Their
approach is based on the linear class property which essentially states that if a
3D view of an object can be represented as the weighted sum of views of other
objects, its rotated view is a linear combination of the rotated views of the other
objects with the same weights [6], [7], [8]. Note that our method is more general
than the above mentioned methods in that it is applicable to visual domains
other than pose. Second, our method is designed to maintain consistent sparse
coefficients for the same signal observed in different domains. Furthermore, our
method is based on the recent dictionary learning methods and is able to learn
dictionaries that are more general than the ones resulting from PCA.

This paper makes the following contributions

– A general continuous function learning framework is presented for the task
of dictionary transformations across domains.

– A simple and efficient optimization procedure is presented that learns dictio-
nary function parameters and domain-invariant sparse codes simultaneously.

– Experiments for various applications, including pose alignment, pose and
illumination estimation and face recognition across pose, are presented.

2 Overall Approach

We consider the problem of dictionary transformations in a learning framework,
where we are provided with a few examples of dictionaries Di with corresponding
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domain parameter θi. Let the parameter space be denoted by Θ, i.e. θi ∈ Θ. Let
the dictionary space be denoted D. The problem then boils down to constructing
a mapping function F : Θ 7→ D. In the simple case where Θ = R and D = Rn,
the problem of fitting a function can be solved efficiently using curve fitting
techniques [9]. A dictionary of d atoms in Rn is often considered as an n × d
real matrix or equivalently a point in Rn×d. However, often times there are
additional constraints on dictionaries that make the identification with Rn×d
not well-motivated. We present below a few such constraints:
– Subspaces: For the special case of under-complete dictionaries where the

matrix is full-rank and thus represents a choice of basis vectors for a d-
dimensional subspace in Rn, the dictionary space is naturally considered as
a Grassmann manifold Gn,d [10]. The geometry of the Grassmann manifold
is studied either as a quotient-space of the special orthogonal group or in
terms of full-rank projection matrices, both of which result in non-Euclidean
geometric structures.

– Products of subspaces: In many cases, it is convenient to think of the dictio-
nary as a union of subspaces, e.g. a line and a plane. This structure has been
utilized in many applications such as generalized PCA (GPCA), sparse sub-
space clustering [11] etc. In this case, the dictionary-space becomes a subset
of the product space of Grassmann manifolds.

– Overcomplete dictionaries: In the most general case one considers an over-
complete set of basis vectors, where each basis vector has unit-norm, i.e. each
basis vector is a point on the hypershere Sn−1. In this case, the dictionary
space becomes a subset of the product-space S(n−1)×d.
To extend classic multi-variate function fitting to manifolds such as the ones

above, one needs additional differential geometric tools. In our case, we pro-
pose extrinsic approaches that rely on embedding the manifold into an ambient
vector space, perform function/curve fitting in the ambient space, and project
the results back to the manifold of interest. This is conceptually simpler, and
we find in our experiments that this approach works very well for the problems
under consideration. The choice of embedding is in general not unique. We de-
scribe below the embedding and the corresponding projection operations for the
manifolds of interest describe above.
– Subspaces: Each point in Gn,d corresponds to a d-dimensional subspace of

Rn. Given a choice of orthonormal basis vectors for the subspace Y, the
n × n projection matrix given by P = YYT is a unique representation for
the subspace. The projection matrix represntation can then be embedded
into the ambient vector-space Rn×n. The projection operation Π is given by
Π(M) = UUT, where M = UΣVT is a rank-d SVD of M [12].

– Products of subspaces: Following the procedure above, each component of
the product space can be embedded into a different vector-space and the
projected back to the manifold using the corresponding projection operation.

– Overcomplete dictionaries: The embedding from Sn−1 to Rn is given by a
vectorial representation with unit-norm. The projection Π : Rn 7→ Sn−1 is
given by Π(V) = V

‖V‖ , where ‖.‖ is the standard Euclidean norm. A similar

operation on the product-space S(n−1)×d can be defined by component-wise
projection operations.
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Fig. 2: The vector transpose (VT) operator over dictionaries.

In specific examples in the paper, we consider the case of over-complete dic-
tionaries. We adopt the embedding and projection approach described above as
a means to exploit the wealth of function-fitting techniques available for vector-
spaces. Next, we describe the technique we adopt.

2.1 Problem Formulation

We denote the same set of P signals observed inN different domains as {Y1, ...,YN},
where Yi = [yi1, ...,yiP], yip ∈ Rn. Thus, yip denotes the pth signal observed
in the ith domain. In the following, we will use Di as the vector-space em-
bedded dictionary. Let Di denote the dictionary for the ith domain, where
Di = [di1...diK], dik ∈ Rn. We define a vector transpose (V T ) operation over
dictionaries as illustrated in Figure 2. The V T operator treats each individual
dictionary atom as a value and then perform the typical matrix transpose oper-
ation. Let D denote the stack dictionary shown in Figure 2b over all N domains.
It is noted that D = [DVT]VT.

The domain dictionary learning problem can be formulated as (1). Let X =
[x1, ...,xP], xp ∈ RK , be the sparse code matrix. The set of domain dictionary
{Di}Ni learned through (1) enables the same sparse codes xp for a signal yp

observed across N different domains to achieve domain adaptation.

arg
{Di}Ni ,X

min

N∑
i

‖Yi −DiX‖2F s.t. ∀p ‖xp‖o ≤ T, (1)

where ‖x‖o counts the number of non-zero values in x. T is a sparsity constant.
We propose to model domain dictionaries Di through a parametric function

in (2), where θi denotes a vector of domain parameters, e.g., view point angles,
illumination conditions, etc., and W denotes the dictionary function parameters.

Di = F (θi,W) (2)

Applying (2) to (1), we formulate the domain dictionary function learning as
(3).

arg
W,X

min

N∑
i

‖Yi − F (θi,W)X‖2F s.t. ∀p ‖xp‖o ≤ T. (3)

Once a dictionary is estimated it is projected back to the dictionary-space
by the projection operation described earlier.
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2.2 Domain Dictionary Function Learning

We first adopt power polynomials to model DVT
i in Figure 2a through the fol-

lowing dictionary function F (θi,W),

F (θi,W) = w0 +

S∑
s=1

w1sθis + ...+

S∑
s=1

wmsθ
m
is (4)

where we assume S-dimensional domain parameter vectors and an mth-degree
polynomial model. For example, given θi a 2-dimensional domain parameter
vector, a quadratic dictionary function is defined as,

F (θi,W) = w0 + w11θi1 + w12θi2 + w21θ
2
i1 + w22θ

2
i2

Given Di contains K atoms and each dictionary atom is in the Rn space, as
DVT

i = F (θi,W), it can be noted from Figure 2 that wms is a nK-sized vector.
We define the function parameter matrix W and the domain parameter matrix
Θ as

W =


w

(1)
0 w

(2)
0 w

(3)
0 ... w

(nK)
0

w
(1)
11 w

(2)
11 w

(3)
11 ... w

(nK)
11

.

.

.

w
(1)
mS w

(2)
mS w

(3)
mS ... w

(nK)
mS

 Θ =


1 1 1 ... 1
θ11 θ21 θ31 ... θN1

.

.

.
θm1S θ

m
2S θ

m
3S ... θ

m
NS


Each row of W corresponds to the nK-sized wTms, and W ∈ R(mS+1)×nK . N
different domains are assumed and Θ ∈ R(mS+1)×N . With the matrix W and
Θ, (4) can be written as,

DVT = WTΘ (5)

where DVT is defined in Figure 2b. Now dictionary function learning formulated
in (3) can be written as,

arg
W,X

min ‖Y − [WTΘ]VTX‖2F s.t. ∀p ‖xp‖o ≤ T (6)

where Y is the stacked training signals observed in different domains as illus-
trated in Figure 3. With the objective function defined in (6), the dictionary
function learning can be performed as described below:
Step 1: Obtain the sparse coefficients X and [WTΘ]VT via any dictionary
learning method, e.g., K-SVD [13].
Step 2: Given the domain parameter matrix Θ, the optimal dictionary function
can be obtained as [14],

W = [ΘΘT]−1Θ[[[WTΘ]VT]VT]T. (7)

Step 3: Sample the dictionary function at desired parameters values, and project
it to the dictionary-space using an appropriate projection operation.
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Fig. 3: The stack P training signals
observed in N different domains.
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Fig. 4: Illustration of exponential maps expm
and inverse exponential maps logm [12].

2.3 Non-linear Dictionary Function Models

Till now, we only assume power polynomials for the dictionary model. In this
section, we discuss non-linear dictionary functions. We only focus on linearizeable
functions, and a general Newton’s method based approach to learn a non-linear
dictionary function is presented in Algorithm 2 in Appendix A.

Linearizeable Models There are several well-known linearizeable models, such
as the Cobb-Douglass model, the logistic model, etc. We use the Cobb-Douglass
model as the example to discuss in detail how dictionary function learning can
be performed over these linearizable models.

The Cobb-Douglass model is written as,

DVT
i = F (θi,W) = w0 exp(

S∑
s=1

w1sθis + ...+

S∑
s=1

wmsθ
m
is ) (8)

The logarithmic transformation yields,

log(DVT
i ) = log(w0) +

S∑
s=1

w1sθis + ...+

S∑
s=1

wmsθ
m
is

As the right side of (8) is in the same linear form as (4), we can define the
corresponding function parameter matrix W and the domain parameter matrix
Θ as discussed. The dictionary function learning is written as,

arg
W,X

min ‖Y − [exp(WTΘ)]VTX‖2F s.t. ∀p ‖xp‖o ≤ T.

Through any dictionary learning methods, we obtain [[exp(WTΘ)]T]VT and
X. Then, the dictionary function is obtained as,

W = [ΘΘT]−1Θ[log([[exp(WTΘ)]VT]VT)]T.

2.4 Domain Parameter Estimation

Given a learned dictionary function F (θ,W), the domain parameters θy asso-
ciated with an unknown image y, e.g., pose (azimuth, altitude) or light source
directions (azimuth, altitude), can be estimated using Algorithm 1.
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Input: a dictionary function F (θ,W), an image y, domain parameter matrix Θ
Output: an S-dimensional domain parameter vector θy associated with y
begin

1. Initialize with mean domain parameter vector: θy = mean(Θ) ;

2. Estimate θ(s), the sth value in θy ;
for s← 1 to S do

3. Obtain the value range to estimate θ(s)

θ
(s)
min = min (sth row of Θ) ;

θ
(s)
max = max (sth row of Θ) ;

θ
(s)
mid = (θ

(s)
min + θ

(s)
max)/2 ;

4. Estimate θ(s) via a search for the parameters to best represent y.
repeat

θmin ← replace the sth value of θy with θ
(s)
min ;

θmax ← replace the sth value of θy with θ
(s)
max ;

xmin ← min
x
|y − F (θmin,W)|22, s.t.|x|o ≤ t (sparsity) ;

xmax ← min
x
|y − F (θmax,W)|22, s.t.|x|o ≤ t (sparsity) ;

rmin ← y − F (θmin,W)xmin ;
rmax ← y − F (θmax,W)xmax ;
if rmin ≤ rmax then

θ
(s)
max = θ

(s)
mid ;

else

θ
(s)
min = θ

(s)
mid ;

end

θ
(s)
mid = (θ

(s)
min + θ

(s)
max)/2 ;

until |θ(s)max − θ(s)min| ≤ threshold ;

θ(s) ← θ
(s)
mid;

end
7. return θy;

end

Algorithm 1: Domain parameters estimation.

It is noted that we adopt the following strategy to represent the domain
parameter vector θ for each pose in a linear space: we first obtain the rotation
matrix Rθ from the azimuth and altitude of a pose; we then compute the inverse
exponential map of the rotation matrix logm(Rθ) as shown in Figure 4. We
denote θ using the upper triangular part of the resulting skew-symmetric matrix
[12]. The exponential map operation in Figure 4 is used to recover the azimuth
and altitude from the estimated domain parameters. We represent light source
directions in the same way.

3 Experimental Evaluation

We conduct our experiments using two public face datasets: the CMU PIE
dataset [15] and the Extended YaleB dataset [16]. The CMU PIE dataset con-
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Fig. 5: Frontal face alignment. For the first row of source images, pose azimuths are
shown below the camera numbers. Poses highlighted in blue are known poses to learn
a linear dictionary function (m=4), and the remaining are unknown poses. The second
and third rows show the aligned face to each corresponding source image using the
linear dictionary function and Eigenfaces respectively.

sists of 68 subjects in 13 poses and 21 lighting conditions. In our experiments
we use 9 poses which have approximately the same camera altitude, as shown
in the first row of Figure 5. The Extended YaleB dataset consists of 38 subjects
in 64 lighting conditions. All images are in 64 × 48 size. We will first evaluate
the basic behaviors of dictionary functions through pose alignment. Then we
will demonstrate the effectiveness of dictionary functions in face recognition and
domain estimation.

3.1 Dictionary Functions for Pose alignment

Frontal Face Alignment In Figure 5, we align different face poses to the
frontal view. We learn for each subject in the PIE dataset a linear dictionary
function F (θ,W) (m=4) using 5 out of 9 poses. The training poses are high-
lighted in blue in the first row of Figure 5. Given a source image ys, we first
estimate the domain parameters θs, i.e., the pose azimuth here, by following
Algorithm 1. We then obtain the sparse representation xs of the source image
as minxs ‖ys − F (θs,W)xs‖22, s.t. ‖xs‖o ≤ T (sparsity level) using any pursuit
methods such as OMP [17]. We specify the fontal pose azimuth (00o) as the
parameter for the target domain θt, and obtain the frontal view image yt as
yt = F (θt,W)xs. The second row of Figure 5 shows the aligned frontal view
images to the respective poses in the first row. These aligned frontal faces are
close to the actual image, i.e., c27 in the first row. It is noted that images with
poses c02, c05, c29 and c14 are unknown poses to the learned dictionary function.

For comparison, we learn Eigenfaces for each of the 5 training poses and
obtain adapted Eigenfaces at 4 unknown poses using the same function fitting
method in our framework. We then project each source image (mean-subtracted)
on the respective eignefaces and use frontal Eigenfaces to reconstruct the aligned
image shown in the third row of Figure 5. Our method of jointly learning the
dictionary function parameters and domain-invariant sparse codes in (6) signifi-
cantly outperforms the Eigenfaces approach, which fails for large pose variations.
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(b) Pose synthesis using Eigenfaces

Fig. 6: Pose synthesis using various degrees of dictionary polynomials. All the synthe-
sized poses are unknown to learned dictionary functions and associated with no actual
observations. m is the degree of a dictionary polynomial in (4).

Pose Synthesis In Figure 6, we synthesize new poses at any given pose azimuth.
We learn for each subject in the PIE dataset a linear dictionary function F (θ,W)
using all 9 poses. In Figure 6a, given a source image ys in a profile pose (−62o),
we first estimate the domain parameters θs for the source image, and sparsely
decompose it over F (θs,W) for its sparse representation xs. We specify every 10o

pose azimuth in [−50o, 50o] as parameters for the target domain θt, and obtain
a synthesized pose image yt as yt = F (θt,W)xs. It is noted that none of the
target poses are associated with actual observations. As shown in Figure 6a, we
obtain reasonable synthesized images at poses with no observations. We observe
improved synthesis performance by increasing the value of m, i.e., the degree of a
dictionary polynomial. In Figure 6b, we perform curve fitting over Eigenfaces as
discussed. The proposed dictionary function learning framework exhibits better
synthesis performance.

Linear vs. Non-linear In Figure 7, we conduct the same frontal face align-
ment experiments discussed above. Now we learn for each subject both a linear
and a nonlinear Cobb-Douglass dictionary function discussed in Section 2.3. As
a Cobb-Douglass function is linearizeable, various degrees of polynomials are ex-
perimented for both linear and nonlinear dictionary function learning. As shown
in Figure 7a and Figure 7c, the nonlinear Cobb-Douglass dictionary function
exhibits better reconstruction while aligning pose c05, which is also indicated
by the higher PSNR values. However, in Figure 7b and 7d, we notice that the
Cobb-Douglass dictionary function exhibits better alignment performance only
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Fig. 7: Linear vs. non-linear dictionary functions. m is the degree of a dictionary
polynomial in (4) and (8) .

when m ≤ 7, and then the performance drops dramatically. Therefore, a linear
dictionary function is a more robust choice over a nonlinear Cobb-Douglass dic-
tionary function; however, at proper configurations, a nonlinear Cobb-Douglass
dictionary function outperforms a linear dictionary function.

3.2 Dictionary Functions for Classification

Two face recognition methods are adopted for comparisons: Eigenfaces [18] and
SRC [19]. Eigenfaces is a benchmark algorithm for face recognition. SRC is a
state of the art method to use sparse representation for face recognition. We
denote our method as the Dictionary Function Learning (DFL) method. For a
fair comparison, we adopt exactly the same configurations for all three methods,
i.e., we use 68 subjects in 5 poses c22, c37, c27, c11 and c34 in the PIE dataset
for training, and the remaining 4 poses for testing.

For the SRC method, we form a dictionary from the training data for each
pose of a subject. For the proposed DFL method, we learn from the training data
a dictionary function across pose for each subject. In SRC and DFL, a testing
image is classified using the subject label associated with the dictionary or the
dictionary function respectively that gives the minimal reconstruction error. In
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Fig. 8: Face recognition accuracy on the CMU PIE dataset. The proposed method is
denoted as DFL in color red.

Eigenfaces, a nearest neighbor classifier is used. In Figure 8, we present the face
recognition accuracy on the PIE dataset for different testing poses under each
lighting condition. The proposed DFL method outperforms both Eigenfaces and
SRC methods for all testing poses.

3.3 Dictionary Functions for Domain Estimation

Pose Estimation As described in Algorithm 1, given a dictionary function, we
can estimate the domain parameters associated with an unknown image, e.g.,
view point or illumination. It can be observed from the face recognition experi-
ments discussed above that the SRC and eigenfaces methods can also estimate
the domain parameters based on the domain associated with each dictionary
or each training sample. However, the domain estimation accuracy using such
recognition methods is limited by the domain discretization steps present in the
training data. We perform pose estimation along with the classification experi-
ments above. We have 4 testing poses and each pose contains 1428 images (68
subjects in 21 lighting conditions). Figure 9 shows the histogram of pose azimuth
estimation. We notice that poses estimated from Eigenfaces and SRC methods
are limited to one of the 5 training pose azimuths, i.e., −62o (c22), −31o (c37),
00o (c27), 32o (c11) and 66o (c34). As shown in Figure 9, the proposed DFL
method enables a more accurate pose estimation, and poses estimated through
the DFL method are distributed in a continuous region around the true pose.

To demonstrate that a dictionary function can be used for domain estimation
for unknown subjects, we use the first 34 subjects in 5 poses c22, c37, c27, c11
and c34 in the PIE dataset for training, and the remaining 34 subjects in the
rest 4 poses for testing. We learn from the training data a dictionary function
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Fig. 9: Pose azimuth estimation histogram (known subjects). Azimuths estimated
using the proposed dictionary functions (red) spread around the true values (black).

across pose over the first 34 subjects. As shown in Figure 10, the proposed DFL
method provides a more accurate continuous pose estimation.

Illumination Estimation In this set of experiments, given a face image in the
Extended YaleB dataset, we estimate the azimuth and elevation of the single
light source direction. We randomly select 50% (32) of the lighting conditions in
the Extended YaleB dataset to learn a dictionary function across illumination
over all 34 subjects. The remaining 32 lighting conditions are used for testing.
For the SRC method and for each training illumination condition, we form a
dictionary from the training data using all 34 subjects. We perform illumination
estimation in a similar way as pose estimation. Figure 11a, 11b, and 11c show
the illumination estimation for several example lighting conditions. The proposed
DFL method provides reasonable estimation to the actual light source directions.

4 Conclusion

We have presented a general dictionary function learning framework to trans-
form a dictionary learned from one domain to the other. Domain dictionar-
ies are modeled by a parametric function. The dictionary function parameters
and domain-invariant sparse codes are then jointly learned by solving an op-
timization problem with a sparsity constraint. Extensive experiments on real
datasets demonstrate the effectiveness of our approach on applications such as
pose alignment, pose and illumination estimation and face recognition. The pro-
posed framework can be generalized for non-linearizeable dictionary functions,
however, further experimental evaluations are to be performed.
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(a) Pose c02 (−44o)
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(b) Pose c05 (−16o)
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(c) Pose c29 (17o)
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(d) Pose c14 (46o)

Fig. 10: Pose azimuth estimation histogram (unknown subjects). Azimuths estimated
using the proposed dictionary functions (red) spread around the true values (black).

25 

(a) Lighting condition f40

26 

(b) Lighting condition f45

27 

(c) Lighting condition f51

Fig. 11: Illumination estimation in the Extended YaleB face dataset.
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