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Abstract—Synthetic Aperture Radar (SAR) images are of-
ten contaminated by a multiplicative noise known as speckle.
Speckle makes the processing and interpretation of SAR images
difficult. We propose a deep learning-based approach called,
Image Despeckling Generative Adversarial Network (ID-GAN),
for automatically removing speckle from the input noisy images.
In particular, ID-GAN is trained in an end-to-end fashion using
a combination of Euclidean loss, Perceptual loss and Adversarial
loss. Extensive experiments on synthetic and real SAR images
show that the proposed method achieves significant improvements
over the state-of-the-art speckle reduction methods.

Index Terms—Generative adversarial network, synthetic aper-
ture radar, despecking, denoising, image restoration, perceptual
loss.

I. INTRODUCTION

Synthetic aperture radar (SAR) is a coherent radar imaging
method which is able to produce high-resolution images of
targets and landscapes. Due to its ability to capture images
both at night and in bad weather conditions, SAR imaging has
several advantages compared to optical and infrared systems.
However, coherent imaging methods often suffer from mul-
tiplicative noise known as speckle [1]. Speckle is caused by
the constructive and destructive interference of the coherent
returns scattered by small reflectors within each resolution
cell. The presence of speckle in SAR images can often make
the processing and interpretation difficult for computer vision
systems as well as human interpreters. Hence, it is important to
remove speckle from SAR images to improve the performance
of various computer vision algorithms such as segmentation,
detection and recognition.

Let Y ∈ RW×H be the observed image intensity, X ∈
RW×H be the noise free image, and F ∈ RW×H be the
speckle noise. Then assuming that the SAR image is an
average of L looks, the observed image Y is related to X
by the following multiplicative model [2]

Y = FX, (1)

where F is the normalized fading speckle noise random
variable. One common assumption on F is that it follows a
Gamma distribution with unit mean and variance 1

L and has
the following probability density function [3]

p(F ) =
1

Γ(L)
LLFL−1e−LF , (2)

where Γ(·) denotes the Gamma function and F ≥ 0, L ≥ 1.
Various methods have been developed in the literature to

suppress speckle including multi-look processing [4], [5], fil-
tering methods [6], [7], [8], wavelet-based despecking methods

(a) Speckled image (b) Despeckled image

Fig. 1: Sample results of the proposed ID-GAN method for
image despeckling

[9], [10], [11], [12], block-matching 3D (BM3D) algorithm
[13] and Total Variation (TV) methods [14]. Note that some
of these methods apply homomorphic processing in which the
multiplicative noise is transformed into an additive noise by
taking the logarithm of the observed data [12]. Furthermore,
due to local processing nature of some of these methods, they
often fail to preserve sharp features such as edges and often
contain block artifacts in the denoised image.

Recently, Convolutional Neural Network (CNN) based
methods have shown to produce state-of-the-art results on
various image restoration tasks such as image de-noising [15],
image de-raining [16] and image super-resolution [17]. In par-
ticular, Generative Adversarial Networks (GANs) based image
restoration methods have gained a lot of interest in recent years
[18] [19], [20], [21]. The optimization goal of most of CNN-
based image restoration algorithms is commonly the minimiza-
tion of the pixel-wise Euclidean loss between the corrupted
observation and the ground truth. However, due to the fact
that every pixel is treated the same way and independently by
the Euclidean loss, perceptually meaningful information may
be lost during the optimization. Meanwhile, the discriminative
information should also be taken into consideration to ensure
that the despeckled image is indistinguishable from its clean
one. To make sure that the restored image is indistinguishable
from its clean one, an Image Despeckling Generative Adver-
sarial Network (ID-GAN) approach is proposed in this paper.

Rather than using a homomorphic transformation [12], we
directly estimate the clean image using the input images based
on the observation model (1). The proposed ID-GAN method
consists of a generator network G and a discriminator network
D. Both subnetworks consists of several convolutional layers



along with batch normalization [22] and rectified linear unit
(ReLU) [23] activation function (see Figure 2). A game
theoretic min-max optimization framework [18] is used to
simultaneously train both G and D. The goal of GAN is
to train G to produce samples from training distribution
such that the synthesized samples are indistinguishable from
actual distribution by the discriminator D. The generator
G is trained in an end-to-end fashion using a combination
of Euclidean loss, perceptual loss and adversarial loss with
appropriate weights. The perceptual loss, evaluated on high-
level features of G is optimized in the network to capture the
perceptually meaningful detail. Meanwhile, the incorporation
of the perceptual loss can also guarantee that the despeckled
image is able to generate similar high-level features compared
with its clean one. One of the main advantages of using
deep learning-based methods for image despeckling is that
they learn parameters for image restoration directly from the
training data rather than relying on pre-defined image priors or
filters. To the best of our knowledge, this is the first approach
to image despeckling using GANs. Extensive experiments
evaluated on synthetic and real SAR images show that the
proposed method achieves significant improvements over the
state-of-the-art speckle reduction methods.

Figure 1 shows a sample output from our ID-GAN method.
Given the noisy image in Figure 1 (a), ID-GAN estimates the
denoised image shown in Figure 1 (b). As can be seen by
comparing Figure 1 (a) and (b), one can see that our method
is able to denoise the speckled image reasonably well.

II. PROPOSED METHOD

In this section, we provide details of the proposed ID-
GAN method in which we aim to learn a mapping from input
speckled SAR images to despeckled images for noise removal.
The proposed method consists of three main components: gen-
erator network (G), discriminator network (D) and combined
loss function. The generator sub-network G is a symmetric
deep CNN network with auto-encoders structure as shown in
Figure 2(a). Its primary goal is to restore a despeckled image
from a noisy observation. The discriminator sub-network D,
as shown in Figure 2(b), serves to distinguish the de-speckled
image synthesized by the generator G from the corresponding
ground truth image. In other words, it provides guidance to
G. Since GANs are known to be unstable to train which
often results in artifacts in the output image synthesized by
G, we define a refined perceptual loss function to address this
issue. Additionally, the introduction of perceptual loss can also
guarantee that the despeckled results preserve semantically
meaningful details.

A. Network Architecture

As the goal of SAR image de-speckling is to generate
pixel level de-speckled image, the generator should be able
to remove speckle as much as possible without losing any
detail information of the underlying clean image. So the key
part lies in designing a good structure to generate de-speckled
image. Inspired by some recent convolutional encoder-decoder
type networks for image restoration tasks [24], we adopt a
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(b) Discriminator

Fig. 2: Proposed ID-GAN network architecture for image
despeckling.

similar network for G. The combination of both convolutional
and de-convolutional layers allows the network to capture
the abstraction of image contents (features) while eliminat-
ing noise/corruptions through convolutional layers and hence
recover the image details from features through the following
de-convolutional layers.

As for the discriminator D, we follow the structure that was
proposed in [25]. Once we calculate the learned features from
a sequence of convolution, batch normalization and rectified
linear unit (Conv-BN-ReLU) layers, a sigmoid function is
stacked at the end to map the output to a probability score
normalized to [0, 1]. The proposed discriminator sub-network
D is shown in Figure 2(b). Note that the n48s1 in the figure
stands for 48 feature maps with one stride.

B. Loss Function

In order to learn a good generator G so as to fool the learned
discriminator D and to make the discriminator D good enough
to distinguish synthesized despeckled image from real ground
truth, the proposed method alternatively updates G and D
following the structure proposed in [18]. To ensure that the
results have good visual and quantitative scores along with
good discriminatory performance, we propose a new refined
loss function for G. Specifically, we combine the pixel-to-pixel
Euclidean loss, perceptual loss and adversarial loss together
with appropriate weights to form our new refined loss function.
The new loss function is defined as follows

L = LE + λaLA + λpLP , (3)

where LA represents adversarial loss (loss from the discrim-
inator D), LP is perceptual loss and LE is the normal per-
pixel Euclidean loss function. Here, λp and λa are pre-defined
weights for perceptual loss and adversarial loss, respectively.
If we set both λp and λa to be 0, then the network reduces
to a normal CNN configuration, which aims to minimize only
the Euclidean loss between the output image and the ground
truth. If λp is set to 0, then the network reduces to a normal



GAN. And finally, if λa set to 0, then the network reduces to
the structure proposed in [26].

The three loss functions, LP , LE and LA are defined as
follows. Given an image pair (X,Y ), where Y is the noisy
input image and X is the corresponding ground truth, the per-
pixel Euclidean loss is defined as

LE(φG) =
1

WH

W∑
w=1

H∑
h=1

‖φG(Y w,h)−Xw,h‖22, (4)

where φG is the learned generator G (parameters) for generat-
ing the despeckled output and X̂ = φG(Y w,h). Note that we
have assumed that X and Y are of size W ×H .

Similarly, the perceptual loss is defined as

LP (φG) =
1

WH

W∑
w=1

H∑
h=1

||V (φG(Y w,h))−V (Xw,h)||22, (5)

where V represents a non-linear CNN transformation. Inspired
by the idea proposed in [26], we aim to minimize the distance
between high-level deep features corresponding to the output
and the ground truth images using the relu7 layer of a pre-
trained VGG16 model [27].

Finally, given a set of N despeckled images generated
from the generator {X̂i}Ni=1, the adversarial (entropy) loss
computed from the discriminator that serves as a guidance
to the generator is defined as

LA = − 1

N

N∑
i=1

log(D(X̂i)). (6)

III. EXPERIMENTAL RESULTS

In this section, we present the results of our proposed ID-
GAN algorithm on both synthetic and real SAR images. We
compare the performance of our method with that of the
following six despeckling algorithms: Lee filter [6], Kuan
filter [28], PPB [29], SAR-BM3D [30], CNN [15] and SAR-
CNN [31]. Note that [29], [30], [15], [31] are the most
recent state-of-the-art image restoration algorithms. For all the
compared methods, parameters are set as suggested in their
corresponding papers. For the basic CNN method, we adopt
the network structure proposed in [15] and train the network
using the same training dataset as used to train our network.

To train the proposed ID-GAN, we generate a dataset that
contains 3665 image pairs. Training images are collected
from the UCID [32], BSDS-500 [33] and scraped Google
Maps images [34] and the corresponding speckled images are
generated using (1). All images are resized to 256 × 256.
The entire network is trained using the ADAM optimization
method [35], with mini-batches of size 16 and learning rate of
0.0002. During training, we set λA = 6.6×10−3 and λP = 1.

A. Ablation Study

We perform an ablation study to demonstrate the effects of
different losses in the proposed method. Each of the losses
are added one by one to the network and the results for each
configuration is compared. In the first configuration, only LE

loss is minimized to train the network. The number of looks,

(a) Speckled image (b) ID-GAN without adversarial
and perceptual loss

(c) ID-GAN without perceptual
loss

(d) ID-GAN with all 3 losses

Fig. 3: Sample results of the proposed ID-GAN with and
without adversarial and perceptual losses.

L, is set equal to 1 and the corresponding noisy image is shown
in Figure 3 (a). The restored image is shown in Figure 3 (b). It
can seen that most of the speckle is removed from the noisy
image, however, the denoised image still suffers from over-
smoothness and fine details are missing. When the network is
trained by minimizing both Euclidean and adversarial losses,
more sharp edges are preserved in the result, as shown in
Figure 3 (d). However, some artifacts are still present in
the results. Finally, the use of our refined loss (6) removes
those unwanted artifacts present in Figure 3 (c) and generates
sharper edges than Figure 3 (b). This can be clearly seen
by comparing Figure 3 (d) with (b) and (c). Meanwhile, the
introduction of perceptual loss in the network helps to preserve
fine details in the output. This experiment clearly shows the
significance of having all three losses in our framework.

B. Results on Synthetic Images

We randomly selected 85 speckled images out of the 3665
images as the testing dataset. The remaining 3580 images are
used for training the network. Experiments are carried out on
three different noise levels. In particular, the number of looks
L is set equal to be 1, 4 and 10, respectively. The Peak Signal
to Noise Ratio (PSNR), Structural Similarity Index (SSIM)
[36], Universal Quality Index (UQI) [37] and VGG16 feature
loss (VGG16) 1 are used to measure the denoising performance
of different methods. Results corresponding this experiment
are shown in Table I. As can be seen from this table, ID-GAN
provides very promising performance compared to the other

1VGG16 feature loss is considered as the mean square error between two
features extracted at layer relu7 in a pre-trained VGG16 model.



Fig. 4: From left to right: SAR images, PPB, SAR-BM3D, SAR-CNN and ID-GAN.

despeckling methods in all three noise levels. Note that, for
VGG16 feature loss, lower is better. Interestingly, the CNN
method [15] that directly learns a mapping from a noisy input
image to a clean target image using a Euclidean loss performs
worse than our method and PPB [29] in many cases. This
experiment clearly shows the significance of the proposed
image despeckling generative adversarial network as well as
the use of perceptual loss for image despeckling.

C. Results on Real SAR Images
We also evaluated the performance of the proposed method

and recent state-of-the-art methods on real SAR images [38].
Since the true reflectivity fields are not available, we use
the Equivalent Number of Looks (ENL) [39] to measure the
performance of different image despeckling methods. The
ENL values are estimated from the homogeneous regions
(shown with red boxes in Figure 4). The ENL results are
also tabulated in Table II. It can be observed from these
results that the proposed ID-GAN outperforms the others
compared methods in all four homogeneous blocks. These
results also demonstrate that our ID-GAN method can achieve
better performance in suppressing speckle in real SAR images.

When a clean reference is missing, visual inspection is
another way to qualitatively evaluate the performance of
different methods. The despeckled results corresponding to the
real images are shown in Figure 4. The second to fifth columns
of Figure 4 show the despeckled images corresponding to PPB,
SAR-BM3D, SAR-CNN and ID-GAN, respectively. It can be
observed that ENL results are consistent with the visual results.
No obvious speckle exist in ID-GAN while PPB and SAR-
CNN suffer from some noticeable artifacts. It is also evident
from these figures that filter-based reconstructions such as PPB
and SAR-BM3D generally generate blurry edges compared to
SAR-CNN and ID-GAN.

IV. CONCLUSION

We have proposed a new method for speckle reduction
in SAR imagery based on GANs. Compared to nonlocal

TABLE I: Quantitative results for various experiments on
synthetic images.

Metric Noisy Lee Kuan PPB SAR-BM3D CNN SAR-CNN ID-GAN

PSNR 14.53 21.48 21.95 21.74 22.99 21.04 23.59 23.13

L = 1 SSIM 0.369 0.511 0.592 0.619 0.692 0.630 0.640 0.701
UQI 0.374 0.450 0.543 0.488 0.591 0.560 0.561 0.607

VGG16 1.071 0.895 0.763 1.210 0.636 0.633 0.630 0.480

PSNR 18.49 22.12 22.84 23.72 24.96 22.60 26.20 25.43

L = 4 SSIM 0.525 0.555 0.650 0.725 0.782 0.722 0.771 0.808
UQI 0.527 0.485 0.594 0.605 0.679 0.648 0.688 0.703

VGG16 0.677 0.713 0.599 0.718 0.390 0.412 0.375 0.320

PSNR 20.54 22.30 23.11 24.92 26.45 23.52 27.63 27.85
L = 10 SSIM 0.602 0.571 0.671 0.779 0.834 0.741 0.825 0.853

UQI 0.599 0.498 0.613 0.678 0.745 0.683 0.741 0.765
VGG16 0.512 0.637 0.531 0.448 0.222 0.339 0.266 0.206

TABLE II: The estimated ENL results on real SAR images.

# chip PPB SAR-BM3D CNN SAR-CNN ID-GAN

1 42.49 69.26 32.32 50.76 84.06
2 8.63 10.95 7.50 8.93 11.24
3 103.25 127.38 31.65 99.13 169.17
4 34.84 63.83 7.65 43.13 63.89

filtering and BM3D image despeckling methods, our GAN-
based method, ID-GAN, generates the despeckled version of
a SAR image through a single feedforward process. Results on
synthetic and real SAR data show promising qualitative and
quantitative results. An interesting feature of our method is
that the network is designed to minimize perceptual difference
between restored image and the ground truth image. Hence,
the despeckled SAR images can be used as inputs to many
SAR image understanding tasks such as road detection, rail-
way detection, ship wake detection, texture segmentation for
agricultural scenes and coastline detection, to obtain improved
results.
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