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Abstract

Tattoo is a soft biometric that indicates discriminative
characteristics of a person such as beliefs and personali-
ties. Automatic detection and recognition of tattoo images
is a difficult problem. We present deep convolutional neu-
ral network-based methods for automatic matching of tat-
too images based on the AlexNet and Siamese networks.
Furthermore, we show that rather than using a simple con-
trastive loss function, triplet loss function can significantly
improve the performance of a tattoo matching system. Ex-
tensive experiments on a recently introduced Tatt-C dataset
show that our method is able to capture the meaningful
structure of tattoos and performs significantly better than
many competitive tattoo recognition algorithms.

1. Introduction
Soft biometrics are physiological and behavioral charac-

teristics that provide some identifying information about an
individual [5]. Color of eye, gender, ethnicity, skin color,
height, weight, hair color, scar, birthmarks, and tattoos are
examples of soft biometrics. Several techniques have been
proposed to identify or verify an individual based on soft
biometrics [5], [15], [1], [19] in the literature. In particu-
lar, person identification and retrieval systems based on tat-
toos have gained a lot of interest in recent years [11], [7],
[8], [12]. Tattoos, in some extent, indicate one’s personal
beliefs and characteristics. Hence, the analysis of tattoos
can lead to a better understanding of one’s background and
membership to gang and hate groups [11]. They have been
used to assist law enforcement in investigations leading to
the identification of criminals [13].

In order to promote research and development in tattoo-
based recognition applications, a tattoo dataset called Tattoo
Recognition Technology - Challenge (Tatt-C) was recently
developed by NIST [12], [13]. This dataset contains a total
of 16,716 tattoo images collected operationally by law en-
forcement and is partitioned into five use cases derived from

Figure 1. Samples images from the Tatt-C database. 1st row: im-
ages corresponding to the tattoo detection use case., 2nd row: im-
ages corresponding to the tattoo similarity use case. 3rd row: im-
ages corresponding to the mixed media use case.

operational scenarios. These use cases are as follows

• Tattoo Identification: matching different instances of
the same tattoo image from the same subject over time,

• Region of Interest: matching a subregion of interest
that is contained in a larger tattoo image,

• Mixed Media: matching visually similar or related tat-
toos using different types of images (i.e., sketches,
scanned print, computer graphics, and graffiti),

• Tattoo Similarity: matching visually similar or related
tattoos from different subjects,

• Tattoo Detection: detecting whether an image contains
a tattoo or not.

In this paper, we mainly focus on the following three
use cases - tattoo detection, tattoo similarity and mixed me-
dia. Figure 1 shows samples images from the Tatt-C dataset
corresponding to these use cases. Tattoo detection has sev-
eral implications in database maintenance and construction
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Figure 2. The AlexNet architecture.

when a dataset consists of weakly labeled data. Partially or
ambiguously labeled data often makes the automatic inter-
pretation and extraction of different types of images chal-
lenging. As was indicated in [13], in the ANSI/NIST Type
10 record, facial mugshot images and scar, mark, tattoo im-
ages are stored in the same record type. If some data are
mislabeled or unlabeled, then automatic extraction of the
data based on image content becomes a major issue.

Tattoo similarity is another use case that has applications
in group or gang affiliations. Since members of a group or
gang tend to have similar tattoos, one can try to identify
individuals belonging to the same gang by looking for peo-
ple with similar tattoos. In this use case, the objective is to
match a probe image with one or more gallery images.

Mixed media is the use case that has application in inves-
tigative intelligence gathering where the tattoo is not neces-
sarily captured by a camera but described as a sketch. In this
test case, data consists of mixed media and tattoo images
and given a mixed media probe image, one has to match
one or more tattoos in the dataset [13].

From the use cases described above, we can see that
tattoo detection is a two class classification problem and
the other two cases, mixed media and tattoo similarity,
are both one-to-many verification problems. Previous ap-
proaches essentially tackle these problems by first extract-
ing some sort of generative or discriminative features from
the given images and then training discriminative classifiers
for matching. The performance of these methods is limited
by the strength of the features they use. In previous ap-
proaches, the features used are often hand-crafted such as
Gabor, LBP or SIFT [11], [13]. In recent years, features
obtained using deep convolutional neural networks (CNNs)
have yielded impressive results on various computer vision
applications such as object detection [6], [14], [17] and
recognition [10], [3]. Recent studies have shown that in

the absence of massive datasets, transfer learning can be ef-
fective as it allows one to introduce deep networks without
having to train them from scratch [22]. For instance, one
can use deep CNNs such as AlexNet [10] or Siamese net-
work [2], [4] pre trained with a large generic dataset such as
ImageNet [16] as meaningful feature extractors.

In this paper, we study the performance of deep CNN
features on tattoo recognition problems. For the classifi-
cation problems, such as tattoo detection, we extract fine-
tuned deep features based on the AlexNet network using
the tattoo images from the Tatt-C dataset and train a linear
SVM for classification. For the verification problems, we
extract deep features using the Siamese network and match
the data using the Euclidean distance as well as a measure
based on a triplet loss function.

Rest of the paper is organized as follows. Details of our
deep CNN-based methods for tattoo recognition are given
in Section 2. Experimental results on the Tatt-C dataset are
presented in Section 3. Finally, Section 4 concludes the pa-
per with a brief summary and discussion.

2. Proposed Method
In this section, we describe the details of our pro-

posed methods for tattoo recognition based on AlexNet and
Siamese networks.

2.1. Deep Tattoo Detection

The proposed tattoo detection framework consists of two
main stages. In the first stage, we extract the deep fea-
tures based on the AlexNet framework. Figure 2 shows the
AlexNet architecture. Then, in the second stage, we train
a linear SVM to determine whether a given image contains
tattoo or not. We implemented the deep CNN model using
caffe [9]. As the AlexNet has been trained on the ImageNet



Name Type Filter Size/Stride Output Size
Conv1 Convolution 11× 11/4 55× 55× 96
Relu1 ReLU 55× 55× 96
Norm1 LRN 5× 5 55× 55× 96
Pool1 Max Pooling 3× 3/2 27× 27× 96
Conv2 Convolution 5× 5(pad2)/1 27× 27× 256
Relu2 ReLU 27× 27× 256
Norm2 LRN 5× 5 27× 27× 256
Pool2 Max Pooling 3× 3/2 13× 13× 256
Conv3 Convolution 3× 3(pad1)/1 13× 13× 384
Relu3 ReLU 13× 13× 38)
Conv4 Convolution 3× 3(pad1)/1 13× 13× 384
Relu4 ReLU 13× 13× 384
Conv5 Convolution 3× 3(pad1)/1 13× 13× 256
Relu5 ReLU 13× 13× 256
Pool5 max Pooling 3× 3/2 6× 6× 256
Fc6 fully connection 4096× 1

Relu6 ReLU 4096× 1
Drop6 Dropout 50% 4096× 1

Fc7 fully connection 4096× 1
Relu7 ReLU 4096× 1

Fc8_tattoo fully connection 2× 1
Table 1. The AlexNet architecture used in this paper.

images conv1 conv2 conv3

Figure 3. Some feature maps from Conv1, Conv2, and Conv3 layers. The upper feature maps are more robust the illumination changes.

LSVRC-2010 database [16], we fine-tune the network on
the Tatt-C dataset for tattoo detection [12].

Table 1 gives the details of the deep CNN architecture
used for tattoo detection. All the images, during the training
process are scaled into [0, 1] and subtracted from the their
mean value. These training images are also flipped about
the horizontal and vertical axis before feeding them into the
network in order to increase the number of training data for

learning the network parameters. During the training and
validation phases, we cropped the image into the standard
227 × 227 size. The basic learning rate for the tattoo de-
tection was set equal to 10−4. The decay rate, gamma, was
selected to be 0.1 for every 3500 iterations. The multipli-
cations of the convolutional layers are 1 for weights and 2
for biases. The weights values for the filter and are set ran-
domly according to a Gaussian distribution with 0.01 stan-



dard deviation and weight for the bias is set equal to 1. We
set the negative slope to 0 in ReLU layer. The softmax loss
layer computes the multinomial logistic loss of the softmax
of its inputs. It is conceptually identical to a softmax layer
followed by a multinomial logistic loss layer, but provides a
more numerically stable gradient [9]. The momentum and
total iteration numbers are set equal to 0.9 and 10500, re-
spectively.

After fine-tuning the AlexNet on the tattoo database, we
extract the deep feature as the output of the fc7 layer, which
is a 4096 dimension vector. Then, we implemented a 2-class
linear SVM using vlfeat [20] to classify the probe images
based on their deep features. The parameter lambda is set
equal to 0.01, and the maximum number of iterations is set
equal to 104.

The tattoo detection dataset has 2349 images, which in-
cludes the tattoo and non-tattoo images. Also, there is
a ground_truth.txt file, which gives the labels “tattoo" or
“non-tattoo" for each image. In this use case, we use label
1 to indicate the tattoo images, and label -1 to indicate the
non-tattoo images. Following the standard protocol defined
in [13], we use four out of five probe images for training and
use the remaining images for testing. For instance, when
testing on the 1st probe-list images, we use the images from
the 2nd, 3rd, 4th, and 5th probe-lists for training. We repeat
this process for all the probe-list images. Figure 3 shows the
output from the first three convolutional layers correspond-
ing to three sample images in the Tatt-C dataset. We can see
that these features do capture meaningful information about
tattoos such as edges, lines and corner points.

2.2. Deep Tattoo Recognition

For the tattoo verification cases such as tattoo similarity
and tattoo mixed media use cases, we trained the Siamese
network directly on the Tatt-C dataset. The Siamese net-
work used in this paper is shown in Figure 4 and details are
given in Table 2. As before, we use the data augmentation
by flipping the mixed media and tattoo similarity images
horizontally and vertically and scaled them into [0, 1].

Name Type Filter Size/Stride Output Size
Conv1 Convolution 5× 5/1 52× 42× 20
Pool1 Pooling 2× 2/2 26× 21× 20
Conv2 Convolution 5× 5/1 22× 17× 50
Pool2 Pooling 2× 2/2 11× 9× 50

ip1 InnerProduct 500× 1
relu1 ReLU
ip2 InnerProduct 10× 1
feat InnerProduct 2× 1

Table 2. Details of the Siamese network used in this paper for tat-
too recognition.

For the mixed media use case, we use the contrastive loss

function [4] which is defined as

L(W ) =

P∑
i=1

L(W, (Y,X1, X2)
i),

L(W, (Y,X1, X2)
i) = (1− Y )LG(EW (X1, X2)

i)

+Y LI(EW (X1, X2)
i),

(1)

where (Y,X1, X2)
i) is the i-th sample which is composed

of a pair of images (X1, X2) and a label Y , LG is the partial
loss function for a genuine pair, LI the partial loss func-
tion for an impostor pair, and P is the number of train-
ing samples. In caffe, we use the Euclidean distance for
EW (X1, X2). The margin we set in the training is 1. The
total training iteration is set equal to 7 × 104. The initial
learning rate is set equal to 10−4 and it decreases by 10%
every 2 × 104 iterations. The multiplication learning rate
for the neuron is set equal to 1 and 2 for the bias.

There are a total of 453 images (181 probe and 272
gallery) in the mixed media dataset. We also made the
“genuine pairwise", which consists of the probe images
and their verified gallery images, and the “impostor pair-
wise", which consists of the probe images and their unver-
ified images. The number of “impostor pairwise" images
were much larger than the “genuine pairwise" images. As
a result, we randomly chose the equal number of “impos-
tor pairwise" images and “genuine pairwise" images as the
training subset. We cropped the images to 56 × 46. After
training the network, output from the “ip2" layer is used as
features. Finally, the images are verified based on the Eu-
clidean distances.

For the tattoo similarity use case, rather than using the
contrastive loss function, we replace it with the triplet loss
function [21], [18]. The triplet loss function is defined as

L =

N∑
i=1

max(0, ||f(xai )− f(x
p
i )||

2
2

−||f(xai )− f(xni )||22 + α),

(2)

where xai is the reference image, xpi is the “genuine pair-
wise" image (positive pairwise), and xni is the “impostor
pairwise" (negative pairwise). The threshold α is referred
to as “margin". In tattoo similarity case, we replace the
contrastive loss function with the triplet loss function. We
set the margin equal to 0.005 and the total iteration number
to 4 × 104. All the parameters are the same as the original
Siamese Network Configuration shown in Table 2 except
that the dimension of “ip2" is 256 instead of 10. The initial
learning rate is set equal to 0.0002 and decreases to 10% ev-
ery 1×104 iterations. As before, the multiplication learning
rates for the neuron is set equal to 1 and 2 for the bias. Tat-
too similarity dataset has 2212 images, which consists of
851 probe images and 1361 gallery images. All the images



Figure 4. The Siamese network architecture.

for mixed media and tattoo similarity are gray-scaled before
training. Output from the “ip2" layer is used as features.

3. Experimental Results
In this section, we present results of our deep CNN-

based methods for tattoo recognition on the Tatt-C dataset.
We compare the performance of our methods with those re-
ported in [13]. The performance of different methods are
compared using accuracy and Cumulative Match Charac-
teristic (CMC) curves. Tattoo accuracy is defined as the
number of correctly classified tattoo images TT , divided by
the total number of tattoo images Ntattoo as

Tattoo accuracy =
TT

Ntattoo
. (3)

Non-tattoo accuracy is defined as the number of correctly
classified non-tattoo images NT , divided by the total num-
ber of non-tattoo images Nnon−tattoo as

Non− Tattoo accuracy =
NT

Nnon−tattoo
. (4)

The overall accuracy is defined as the sum of correctly clas-
sified tattoo and non-tattoo images divided by the total num-
ber of images

Overall accuracy =
TT +NT

Ntattoo +Nnon−tattoo
. (5)

The CMC is defined as the fraction of searches that return
the relevant images as a function of the candidate list length.
The longer the candidate list, the greater the probability that
relevant images are on the list. For searches that have multi-
ple relevant matches in the gallery, the cumulative accuracy
or hit rate at any particular rank is calculated with the best-
ranked match and represents a best-case scenario.

3.1. Tattoo Detection

The first row of Figure 1 shows some sample images
from the Tatt-C dataset corresponding to the detection use
case. There are in total 2349 images in this subset - 1349
tattoo images and 1000 non-tattoo images. The non-tattoo
images are essentially face images extracted from the Mul-
tiple Encounter Database 2 (MEDS- II) [13]. The perfor-
mance of different methods on the tattoo detection experi-
ment is shown in Table 3. As can be seen from this table,
our method outperforms the previous best methods reported
in [13] and achieves the overall accuracy of 99.83%.

Figure 5. Wrongly classified images. Only 4 out of 2349 images
are wrongly classified by our deep CNN-based method.

In Figure 5, we display the images on which our algo-
rithm fails to correctly detect a tattoo image. In particular,
only 4 out of 2349 images are misclassified by our algo-
rithm. Two tattoo images are classified as non-tattoo images
and two non-tattoo images are classified as tattoo images. In



Algorithm Non-Tattoo Accuracy Tattoo Accuracy Overall Accuracy
CEA_1 0.988 0.932 0.956

Compass 0.386 0.798 0.622
MITRE_1 0.750 0.734 0.741
MITRE_2 0.948 0.924 0.934

MorphoTrak 0.950 0.972 0.963
Deep Tattoo 0.9980 0.9985 0.9983

Table 3. Performance comparison of different methods on the detection use case. Results other than Deep Tattoo are taken directly from
[13].

the first row of this figure, a tattoo image is recognized as a
face image and in the second row, two face images are rec-
ognized as tattoo images. As can be seen from this figure,
the reason why our method fails is that the wrongly clas-
sified tattoo image is a face-like image and our algorithm
classifies it as a face image.

3.2. Mixed Media

Results of different methods corresponding to the mixed
media use case are shown in Table 4 and in Figure 6. As
can be seen from this table, our method significantly out-
performs the previous methods and achieves 100% accu-
racy at rank 28. The descriptor used by MITRE is the shape
contexts-based and Compass uses some low-level features
like color, brightness, contrast, etc. In contrast, our method
uses deep features directly learned on the tattoo images. As
a result, our method is able to capture the salient informa-
tion that is present in the tattoo images better than the other
methods. This experiment clearly shows the significance of
deep features compared to hand-crafted features for tattoo
recognition.

Figure 6. The CMC curves corresponding to different methods on
the mixed media use case.

To gain further insight into our method, in Figure 7 we

show some correctly matched and wrongly matched sam-
ples. First row displays images that are correctly classified
and the second row displays images on which our method
fails to correctly classify the mixed media images. Again
the reason why our method correctly classifies mixed media
images as tattoo images is because they look very similar to
the tattoo images. This can be clearly seen by comparing
images shown in the second row of Figure 7.

Figure 7. Sample result from the mixed media use case. First row:
correct matching. Second row: failed matches.

3.3. Tattoo Similarity

Table 5 and Figure 8 show the results of different meth-
ods on the tattoo similarity use case. As can be seen from
these results, our method outperforms the previous methods
especially when the triplet loss function incorporated within
our framework. For instance, at rank-10, our method with
triplet loss function gives an accuracy of 16.40% compared
to 14.9%, 7.4% and 11.1% for MITRE, Compass, and non-
triplet based method. Again, this experiment clearly shows
that one can significantly improve the performance of a tat-
too recognition algorithm by using deep features.

In Figure 9, we display a few correctly matched and in-
correctly matched images for the tattoo similarity use case.
First row of this figure shows the correctly matched images
and the second row shows the incorrectly matched images.



Algorithm Submission Rank 1 Accuracy Rank 10 Accuracy Rank 20 Accuracy Rank 30 Accuracy
Compass phase2 0.055 0.271 0.525 0.713
MITRE phase2 0.077 0.365 0.613 0.746

Deep Tattoo - - - - - 0.122 0.569 0.873 1
Table 4. Performance comparison of different methods on the mixed media use case. Results other than Deep Tattoo are taken directly
from [13]. Number of probes: 181, Average gallery size: 55.

Algorithm Submission Rank 1 Accuracy Rank 10 Accuracy Rank 20 Accuracy Rank 30 Accuracy
Compass phase2 0.005 0.074 0.147 0.199
MITRE phase2 0.035 0.149 0.239 0.309

Deep Tattoo triplet 0.055 0.164 0.249 0.316
Deep Tattoo non-triplet 0.017 0.111 0.155 0.210

Table 5. Performance comparison of different methods on the tattoo similarity media use case. Results other than Deep Tattoo are taken
directly from [13]. Number of probes: 851, Average gallery size: 272.

Figure 8. The CMC curves corresponding to different methods on
the tattoo similarity use case.

As can be seen from this figure, these images are extremely
difficult to match as they contain various illumination, pose
and resolution variations. One of the reasons why our deep
feature-based method does not work well in this particular
use case is that we do not have a significant number of tattoo
images with different variations to train our deep models.

4. Conclusion

In this paper, we presented deep feature-based methods
for tattoo detection and recognition using the recently in-
truded AlexNet and Siamese networks. Furthermore, we
showed that rather than using a simple contrastive loss func-
tion, triplet loss function can significantly improve the per-
formance of a tattoo matching system based on deep fea-
tures. Extensive experiments on the Tatt-C dataset demon-
strated the effectiveness of our proposed approach.

Figure 9. Sample result from the mixed media use case. First row:
629 correct matching. Second row: failed matches.
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