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Abstract

We present a face detection algorithm based on De-
formable Part Models and deep pyramidal features. The
proposed method called DP2MFD is able to detect faces
of various sizes and poses in unconstrained conditions. It
reduces the gap in training and testing of DPM on deep fea-
tures by adding a normalization layer to the deep convolu-
tional neural network (CNN). Extensive experiments on four
publicly available unconstrained face detection datasets
show that our method is able to capture the meaningful
structure of faces and performs significantly better than
many competitive face detection algorithms.

1. Introduction
Face detection is a challenging problem that has been

actively researched for over two decades [37], [36]. Cur-
rent methods work well on images that are captured un-
der user controlled conditions. However, their performance
degrades significantly on images that have cluttered back-
grounds and have large variations in face viewpoint, expres-
sion, skin color, occlusions and cosmetics.

The seminal work of Viola and Jones [32] has made face
detection feasible in real world applications. They use cas-
caded classifiers on Haar-like features to detect faces. The
cascade structure has been a subject of extensive research
since then. Cascade detectors work well on frontal faces,
however, sometimes they fail to detect profile or partially
occluded faces. A recently developed joint cascade-based
method [1] yields improved detection performance by in-
corporating a face alignment step in the cascade structure.
Headhunter [25] uses rigid templates along similar lines.
The method based on Aggregate Channel Features (ACF)
[34] deploys a cascade of channel features while Pixel In-
tensity Comparisons Organized (Pico) [24] uses a cascade
of rejectors for improved face detection.

Most of the recent face detectors are based on the De-
formable Parts Model (DPM) structure [6] where a face is
defined as a collection of parts. These parts are trained side-

by-side with the face using a spring-like constraint. They
are fine-tuned to work efficiently with the HOG [3] features.
A unified approach for face detection, pose estimation and
landmark localization using the DPM framework was re-
cently proposed in [38]. This approach defined a “part” at
each facial landmark and used mixture of tree-structured
models resilient to viewpoint changes. A properly trained
simple DPM is shown to yield significant improvement for
face detection in [25].

The key challenge in unconstrained face detection is that
features like Haar wavelets and HOG do not capture the
salient facial information at different poses and illumina-
tion conditions. The limitation is more due to the features
used than the classifiers. However, with recent advances in
deep learning techniques and the availability of GPUs, it is
becoming possible to use deep Convolutional Neural Net-
works (CNN) for feature extraction. In has been shown in
[17] that a deep CNN pretrained with a large generic dataset
such as Imagenet [4], can be used as a meaningful feature
extractor. The deep features thus obtained have been used
extensively for object detection. For instance, Regions with
CNN (R-CNN) [7] computes regions-based deep features
and attains state-of-art on the Imagenet challenge. Meth-
ods like Overfeat [28] and Densenet [10] adopt a sliding
window approach to detect objects from the pool5 features.
Deep Pyramid [8] and Spatial Pyramid [9] remove the fixed-
scale input dependency from deep CNNs which makes them
attractive to be integrated with DPMs. Although, a lot of
research on deep learning has focused on object detection
and classification, very few have used deep features for face
detection which is equally challenging because of high vari-
ations in pose, ethnicity, occlusions, etc. It was shown in [5]
that deep CNN features fine-tuned on faces are informative
enough for face detection, and hence do not require an SVM
classifier. They detect faces based on the heat map score ob-
tained directly from the fifth convolutional layer. Although
they report competitive results, detection performance for
faces of various sizes and occlusions needs improvement.

In this paper, we propose a face detector which detects
faces at multiple scales, poses and occlusion by efficiently



Figure 1. Overview of our approach. (1) An image pyramid is built from a color input image with level 1 being the lowest size. (2) Each
pyramid level is forward propagated through a deep pyramid CNN [8] that ends at max variant of convolutional layer 5 (max5). (3) The
result is a pyramid of max5 feature maps, each at 1/16th the spatial resolution of its corresponding image pyramid level. (4) Each max5

level features is normalized using z-score to form norm5 feature pyramid. (5) Each norm5 feature level gets convoluted with every
root-filter of a C-component DPM to generate a pyramid of DPM score (6). The detector outputs a bounding box for face location (7) in
the image after non-maximum suppression and bounding box regression.

integrating deep pyramid features [8] with DPMs. This pa-
per makes the following contributions:

1. We propose a novel method for training DPM for faces
using deep pyramidal features.

2. We propose adding a normalization layer to the deep
CNN to reduce the bias in face sizes.

3. We achieve new state-of-the-art detection perfor-
mances on four challenging face detection datasets.

This paper is organized as follows. Section 2 describes
our proposed face detector in detail. Section 3 provides the
detection results on four challenging datasets. Finally, Sec-
tion 4 concludes the paper with a brief summary and dis-
cussion.

2. Face Detection with Deep Pyramid DPM
Our proposed face detector, called Deep Pyramid De-

formable Parts Model for Face Detection (DP2MFD), con-
sists of two modules. The first one generates a seven level
normalized deep feature pyramid for any input image of ar-
bitrary size. Fixed-length features from each location in the
pyramid are extracted using the sliding window approach.
The second module is a linear SVM which takes these fea-
tures as input to classify each location as face or non-face,
based on their scores. In this section, we provide the design
details of our face detector and describe its training and test-
ing processes.

2.1. DPM Compatible Deep Feature Pyramid

We build our model using the feature pyramid network
implementation provided in [8]. It takes an input image of

variable size and constructs an image pyramid with seven
levels. Each level is embedded in the upper left corner of
a large (1713 × 1713 pixels) image and maintains a scale
factor of

√
2 with its next lower level in the hierarchy. Us-

ing this image pyramid, the network generates a pyramid of
256 feature maps at the fifth convolution layer (conv5). A
3× 3 max filter is applied to the feature pyramid at a stride
of one to obtain the max5 layer which essentially incorpo-
rates the conv5 “parts” information. Hence, it suffices to
train a root-only DPM on the max5 feature maps without
explicitly training on DPM parts. A cell at location (j, k)
in the max5 layer corresponds to the pixel (16j, 16k) in the
input image, with a highly overlapping receptive field of
size 163×163 pixels. Despite having a large receptive field
, the features are well localized to be effective for sliding
window detectors.

It has been suggested in [8] that deep feature pyramids
can be used as a replacement for HOG Pyramid in DPM im-
plementation. However, this is not entirely obvious as deep
features are different than HOG features in many aspects.
Firstly, the deep features from max5 layer have a receptive
field of size 163×163 pixels, unlike HOG where the recep-
tive region is localized to a bin of 8× 8 pixels. As a result,
max5 features at face locations in the test images would
be substantially different from that of a cropped face. This
prohibits us from using the deep features of cropped faces
as positive training samples, which is usually the first step
in training HOG-based DPM. Hence, we take a different
approach of collecting positive and negative training sam-
ples from the deep feature pyramid itself. This procedure is
described in detail in subsection 2.3.

Secondly, the deep pyramid features lack the normaliza-



Figure 2. Comparison between HOG, max5 and norm5 feature pyramids. In contrast to max5 features which are scale selective, norm5

features have almost uniform activation intensities across all the levels.

tion attribute associated with HOG. The feature activations
vary widely in magnitude across the seven pyramid levels as
shown in Figure 2. Typically, the activation magnitude for
a face region decreases with the size of pyramid level. As a
result, a large face detected by a fixed-size sliding window
at a lower pyramid level will have a high detection score
compared to a small face getting detected at a higher pyra-
mid level. In order to reduce this bias to face size, we ap-
ply a z-score normalization step on the max5 features at
each level. For a 256-dimensional feature vector xi,j,k at
the pyramid level i and location (j, k), the normalized fea-
ture x̂i,j,k is computed as:

x̂i,j,k =
xi,j,k − µi

σi
, (1)

where µi is the mean feature vector, and σi is the standard
deviation for the pyramid level i. We refer to the normalized
max5 features as ”norm5”. A root-only DPM is trained on
the norm5 feature pyramid using a linear SVM. Figure 1
shows the complete overview of our model.

2.2. Testing

At test time, each image is fed to the model described
above to obtain the norm5 feature pyramid. They are con-
volved with the fixed size root-filters for each component of
DPM in a sliding window fashion, to generate a detection
score at every location of the pyramid. Locations having
scores above a certain threshold are mapped to their cor-
responding regions in the image. These regions undergo a
greedy non-maximum suppression to prune low scoring de-
tection regions with Intersection-Over-Union (IOU) overlap
above 0.3. In order to localize the face as accurately as pos-
sible, the selected boxes undergo bounding box regression.

Owing to the subsampling factor of 16 between the input
image and norm5 layer, the total number of sliding win-
dows account to approximately 25k compared to approxi-
mately 250k for the HOG pyramid, which reduces the ef-
fective test-time.

2.3. Training

For training, both positive and negative faces are sam-
pled directly from the norm5 feature pyramid. The dimen-
sions of root filters for DPM are decided by the aspect ratio
distribution for faces in the dataset. The root-filter sizes
are scaled down by a factor of 8 to match the face size in
the feature pyramid. Since, a given training face maps its
bounding box at each pyramid level, we choose the optimal
level l for the corresponding positive sample by minimizing
the sum of absolute difference between the dimensions of
bounding box and the root filter at each level. For a root-
filter of dimension (h,w) and bounding box dimension of
(byi , b

x
i ) for the pyramid level i, l is given by

l = argmin
i
|byi − h|+ |b

x
i − w|. (2)

The ground truth bounding box at level l is then resized to
fit the DPM root-filter dimensions. We finally extract the
”norm5” feature of dimension h×w×256 from the shifted
ground truth position in the level l as a positive sample for
training.

The negative samples are collected by randomly choos-
ing root-filter sized boxes from the normalized feature pyra-
mid. Only those boxes having IOU less than 0.3 with the
ground truth face at the particular level are considered as
negative samples for training.

Once the training features are extracted, we optimize
a linear SVM for each component of the root-only DPM.



Since the training data is large to fit in the memory, we
adopt the standard hard negative mining method [31, 6] to
train the SVM. We also train a bounding box regressor to
localize the detected face accurately. The procedure is sim-
ilar to the bounding box regression used in R-CNN [7] , the
only difference being our bounding box regressor is trained
on the norm5 features.

3. Experimental Results
We evaluated the proposed deep pyramid DPM face de-

tection method on four challenging face detection datasets
- Annotated Face in-the-Wild (AFW) [38], Face Detection
Dataset and Benchmark (FDDB) [11], Multi-Attribute La-
belled Faces (MALF) [35] and the IARPA Janus Bench-
mark A (IJB-A) [16], [2] dataset. We train our detec-
tor on the FDDB images using Caffe [13] for both 1-
component (DP2MFD-1c) and 2-components (DP2MFD-
2c) DPM. The FDDB dataset was evaluated using the 10-
fold cross-validation approach. For evaluating the AFW
and the MALF datasets, images from all the 10 splits of
the FDDB dataset were used as training samples.

3.1. AFW Dataset Results

The AFW dataset [38] contains 205 images with 468
faces collected from Flickr. Images in this dataset con-
tain cluttered backgrounds with large variations in both face
viewpoint and appearance.
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Figure 3. Performance evaluation on the AFW dataset.

The precision-recall curves 1 of different academic as
well as commercial methods on the AFW dataset are shown
in Figure 3. Some of the academic face detection meth-
ods compared in Figure 3 include OpenCV implementa-
tions of the 2-view Viola-Jones algorithm, DPM [6], mix-
ture of trees (Zhu et al.) [38], boosted multi-view face de-
tector (Kalal et al.) [14], boosted exemplar [20] and the
joint cascade methods [1]. As can be seen from this fig-
ure, our method outperforms most of the academic detec-
tors and performs comparably to a recently introduced joint

1The results of the methods other than our DP2MFD methods com-
pared in Figure 3 were provided by the authors of [38], [1] and [20].

cascade-based method [1] and the best commercial face de-
tector Google Picassa. Note that the joint cascade-based
method [1] uses face alignment to make the detection better
and trains the model on 20,000 images. In contrast, we do
not use any alignment procedure in our detection algorithm
and train on only 2,500 images.

3.2. FDDB Dataset Results

The FDDB dataset [11] is the most widely used bench-
mark for unconstrained face detection. It consists of 2,845
images containing a total of 5,171 faces collected from news
articles on the Yahoo website. All images were manu-
ally localized for generating the ground truth. The FDDB
dataset has two evaluation protocols - discrete and continu-
ous which essentially correspond to coarse match and pre-
cise match between the detection and the ground truth, re-
spectively.

Figure 4 compares the performance of different aca-
demic and commercial detectors using the Receiver Oper-
ating Characteristic (ROC) curves on this dataset. The aca-
demic algorithms compared in Figure 4(a)-(b) include Yan
et al. [33], boosted exemplar [20], SURF frontal and multi-
view [22], PEP adapt [19], XZJY [29], Zhu et al. [38],
Segui et al. [27], Koestinger et al. [18], Li et al. [21], Jain
et al. [12], Subburaman et al. [30], Viola-Jones [32], Miko-
lajczyk et al. [26], Kienzle et al. [15] and the commercial
algorithms compared in Figure 4(c)-(d) include Face++, the
Olaworks face detector, the IlluxTech frontal face detector
and the Shenzhen University face detector 2.

As can be seen from this figure, our method significantly
outperforms all previous academic and commercial detec-
tors under the discrete protocol and performs comparably
to the previous state-of-the-art detectors under the continu-
ous protocol. A decrease in performance for the continuous
case is mainly because of low IOU score obtained in match-
ing our detectors’ rectangular bounding box with elliptical
ground truth mask for the FDDB dataset.

We also implemented an R-CNN method for face detec-
tion and evaluated it on the FDDB dataset. The R-CNN
method basically selects face independent candidate regions
from the input image and computes a 4096 dimensional fc7
feature vector for each of them. An SVM trained on fc7
features classifies each region as face or non-face based on
the detection score. The method represented by “RCNN-
face” performs better than most of the academic face detec-
tors [38, 22, 19]. This shows the dominance of deep CNN
features over HOG, SURF. However, RCNN-Face’s perfor-
mance is inferior to the DP2MFD method as the region se-
lection process might miss a face from the image.

2http://vis-www.cs.umass.edu/fddb/results.html
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Figure 4. Performance evaluation on the FDDB dataset. (a) and (b) compare our method with previously published methods under the
discrete and continuous protocols, respectively. Similarly, (c) and (d) compare our method with commercial systems under the discrete and
continuous protocols, respectively.

3.3. MALF Dataset Results

The MALF dataset [35] consists of 5,250 high-resolution
images containing a total of 11,931 faces. The images were
collected from Flickr and image search service provided
by Baidu Inc. The average image size in this dataset is
573×638. On average, each image contains 2.27 faces with
46.97% of the images contain one face, 43.41% contain 2
to 4 faces, 8.30% contain 5 to 9 faces and 1.31% images
contain more than 10 faces. Since this dataset comes with
multiple annotated facial attributes, evaluations on attribute-
specific subsets are proposed. Different subsets are defined
corresponding to different combinations of attribute labels.
In particular, ‘easy’ subset contains faces without any large
pose, occluded or exaggerated expression variations and are
larger than 60× 60 in size and ‘hard’ subset contains faces
that are larger than 60 × 60 in size with one of extreme
pose or expression or occlusion variations. Furthermore,
scale-specific evaluations are also proposed in which algo-
rithms are evaluated on two subsets - ‘small’ and ‘large’.
The ‘small’ subset contains images that have size smaller
than 60 × 60 and the ‘’large’ subset contains images that
have size larger than 90× 90.

The performance of different algorithms, both from
academia and industry, are compared in Figure 5 by plot-
ting the True Positive Rate vs. False Positive Per Images
curves 3. Some of the academic methods compared in Fig-
ure 5 include ACF [34], DPM [25], Exemplar method [20],
Headhunter [25], TSM [38], Pico [24], NPD [23] and W.
S. Boost [14]. From Figure 5(a), we see that overall the
performance of our DP2MFD method is the best among the
academic algorithms and is comparable to the best commer-
cial algorithms FacePP-v2 and Picasa.

In the ‘small’ subset, denoted by < 30 height in Fig-
ure 5(b), the performance of all algorithms drop a little
but our DP2MFD method still performs the best among the
other academic methods. On the ’large’, ’easy, and ’hard’
subsets, the DPM method [25] performs the best and our

3The results of the methods other than our DP2MFD methods com-
pared in Figure 5 were provided by the authors of [35].

DP2MFD method performs the second best as shown in
Figure 5(c), (d) and (e), respectively. The DPM and Head-
hunter [25] are better as they train multiple models to fully
capture faces in all orientations, apart from training on more
than 20,000 samples.

We provide the results of our method for the IOU of 0.35
as well as 0.5 in Figure 5. Since the non-maximum suppres-
sion ensures that no two detections can have IOU> 0.3, the
decrease in performance for IOU of 0.5 is mainly due to im-
proper bounding box localization. One of the contributing
factors might be the localization limitation of CNNs due to
high amount of sub-sampling. In future, we plan to analyze
this issue in detail.

3.4. IJB-A Dataset Results

The IJB-A dataset contains images and videos from 500
subjects collected from online media [16], [2]. In total,
there are 67,183 faces of which 13,741 are from images and
the remaining are from videos. The locations of all faces in
the IJB-A dataset were manually ground truthed by human
annotators. The subjects were captured so that the dataset
contains wide geographic distribution. All face bounding
boxes are about 36 pixels or larger.

Nine different face detection algorithms were evaluated
on this dataset in [2]. Some of the algorithms compared
in [2] include one commercial off the shelf (COTS) algo-
rithm, three government off the shelf (GOTS) algorithms,
two open source face detection algorithms (OpenCV’s Vi-
ola Jones and the detector provided in the Dlib library), and
PittPat ver 4 and 5. In Figure 6 (a) and (b) we show the pre-
vision vs. recall curves and the ROC curves, respectively
corresponding to our method and one of the best reported
methods in [2]. As can be seen from this figure, our method
outperforms the best performing method reported in [2] by
a large margin.

3.5. Discussion

Its clear from these results that our DP2MFD-2c method
performs slightly better than the DP2MFD-1c method. This
can be attributed to the fact that the aspect ratio of face
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Figure 5. Fine-grained performance evaluation on the MALF dataset. (a) on the whole test set, (b) on the small faces sub-set, (c) on the
large faces sub-set, (d) on the ‘easy’ faces sub-set and (e) on the ‘hard’ faces sub-set.
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Figure 6. Performance evaluation on the IJB-A dataset. (a) Precision vs. recall curves. (b) ROC curves.

doesn’t change much with pose. Figure 7 shows several de-
tection results on the four datasets. It can be seen from this
figure, that our method is able to detect profile faces as well
as different size faces in images with cluttered background.

3.6. Runtime

Our face detector was tested on a machine with 4 cores,
12GB RAM, and 1.6GHz processing speed. No GPU was
used for processing. The model DP2MFD-1c took about
24.5s on average to evaluate a face, whereas DP2MFD-2c
took about 26s. The deep pyramid feature evaluation took
around 23s. It can certainly be reduced to 0.5s [8] by using

Tesla K20 GPU for feature extraction.

4. Conclusions
In this paper, we presented a method for unconstrained

face detection which essentially trains DPM for faces on
deep feature pyramid. One of the interesting features of our
algorithm is that we add a normalization layer to the deep
CNN which reduces the bias in face sizes. Extensive exper-
iments on four publicly available unconstrained face detec-
tion datasets demonstrate the effectiveness of our proposed
approach.

Our future work will include a GPU implementation of



our method for reducing the computing time. We will also
evaluate the performance of our method on other object de-
tection datasets.
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