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Deblurring is an inverse problem which has traditionally been studied from a signal processing perspective.

In this paper we consider the role of extra information in the form of prior knowledge of the object class

to solve this problem. Specifically, we incorporate unlabeled image data of the object class, say natural

images, in the form of a patch-manifold prior for the object class. The manifold is implicitly estimated from

the given unlabeled data. We show how the patch manifold prior effectively exploits the availability of the

sample class data for regularizing the deblurring problem. c© 2010 Optical Society of America

OCIS codes: 100.1830, 100.3190

1. Introduction

Given a degraded image that is a convolution of an image with a linear time-invariant Point Spread Function (PSF) and then

corrupted by additive noise, deconvolution aims to obtain an optimal estimate of the input image [2–4]. Examples of image

degradation include blurring introduced by camera motion, defocusing as well as the noise introduced from the electronics of the

system. The process of deconvolution is known to be an ill-posed problem [1,6,11,14]. As a result, regularization is often used.

The simplest and most common approach is to use quadratic functions of the unknown quantities, which leads to Tikhonov

regularization [6]. These methods lead to computationally straightforward optimization problems, but they suppress useful

features in the resulting image, such as edges. Recently, considerable effort has been spent in designing alternative, sparsity

constraints which preserve such features. Methods based on these sparsity constraints have been successfully used for image

deconvolution (c.f. [5, 7–10]).

In this paper, we consider the problem of exploiting extra information in the form of prior knowledge of the object class to

regularize the inverse problem. Specifically, we use image data of the object class as the available information. This approach

can broadly be termed as example-based image-enhancement [16]. We impose a patch-manifold prior for the object class [12],

where the manifold is implicitly estimated from the given unlabeled data. We show how the patch manifold prior effectively

exploits the availability of the example data for regularizing the deblurring problem. In what follows, we first define the problem

of deconvolution. Then, a method based on a manifold prior is described. Finally, some numerical simulations are presented.

2. The Image Deblurring Problem

Since a digitally recorded image is on a finite discrete grid, an image deconvolution problem is formulated as a matrix inversion

problem. Without loss of generality, assume the recorded arrays are of size N × N . Let γ denote an N × N array of samples

from a zero mean additive white Gaussian noise (AWGN) with variance σ2. Given the N ×N arrays y and x, representing the

observed image and the image to be estimated, respectively, the matrix deconvolution problem can be described as

y = Hx+ γ, (1)

where y, x, and γ are N2 × 1 column vectors representing the arrays y, x, and γ lexicographically ordered, and H is the

N2 × N2 matrix that models the blur operator. In the case when H is a block-circulant-circulant-block matrix, the problem

can be described as

y(n1, n2) = (x ⊛ h)(n1, n2) + γ(n1, n2), (2)

where 0 ≤ n1, n2 ≤ N − 1, ⊛ denotes circular convolution, and h denotes the point spread function (PSF) of a linear space-

invariant system.

3. Regularization with Manifold Model

We use the manifold prior model of [12] for regularizing the deblurring problem. Briefly, the prior states that given a class of

images - say faces, or natural images – the set of all patches (e.g. 3× 3) from the image live on a manifold. Let us denote the

patch extracted from the image x, at location q ∈ [0, 1]2 of width τ > 0 by pq(x)(t) = x(i + t)∀t ∈ [−τ/2, τ/2]2. The image
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x ∈ L2[0, 1]2, i.e. the set of 2-dimensional finite energy signals. The object dependent signal ensemble is then Θ ⊂ L2[0, 1]2.

The patch manifold associated with this ensemble is M = {pq(x)|x ∈ Θ} ⊂ L2[−τ/2, τ/2]2. Given an image, one needs a way

to compute the closest point on the manifold prior. This is done in two stages. First, patches from an image are projected onto

the patch manifold. This step is denoted by c(q) = ProjM(pq(x)), which assigns closest patches from the manifold prior to

the given image patches. From these projected patches, one reconstructs the global image by means of patch averaging. This

operation is denoted by Aver(c) which essentially averages out overlapping patches. Details of this procedure can be found

in [12]. These two operations in conjunction are used to regularize the inverse problem as follows. The optimization problem

for deblurring is now recast as finding an optimal x∗, given an observation y and the manifold prior as

(x∗, c∗) = argmax
x,c

‖y −Hx‖2 + λ

∫

[0,1]2
‖pq(x)− c(q)‖2dq (3)

A stationary point is obtained by means of an iterative procedure that alternates between solving for x∗ and c∗. Given the

current estimate x(k), c(k) is obtained as c(k+1) = ProjM(p(x(k))). Given c(k+1), we solve for x(k+1) = (HTH+λId)−1(HT y+

λAver(c(k+1)). This procedure is repeated till convergence.

Implementation Details: In actual implementation, we do not have an analytical characterization of the patch manifold.

We instead learn the manifold using training examples of faces or natural images etc. The Proj operation then amounts to

searching for the closest patch to a given patch in the training database. This is efficiently implemented using locality sensitive

hashing [13]. Further, the matrix inversions involved in the optimization steps above are all implemented implicitly using the

properties of the PSF matrix H [14].

4. Experimental Results

In this section, we present preliminary results of our proposed algorithm and compare them with a deconvolution method

based on sparsity prior in a wavelet domain [15] and a Tikhonov method [14]. In the first experiment, a Cameraman image

is blurred by a Gaussian blur with standard deviation 2.0. A comparison of different methods in terms of the improvement in

signal-to-noise-ratio (ISNR) is shown in Fig. 2 (a)-(e). The ISNR is defined as ISNR = 10 log10

(

‖x−y‖2
2

‖x−x̂‖2
2

)

.

The manifold-based method yields a value 5.48 dB which is better than the values obtained by any of the other methods. For

this experiment, we had neglected the noise term γ in (1). Fig. 1 shows some of the images used to learn the patch manifold.

In the second experiment, we compare the results of different methods on the same image in the presence of additive white

Gaussian noise with standard deviation 0.01. We plot the ISNR values of different methods as a function of increase in the

standard deviation of Gaussian blur kernel. Again, the manifold-based deconvolution algorithm outperforms the other methods

in terms of ISNR.

Fig. 1. Some of the natural images used to learn the patch manifold of natural images.
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Fig. 2. An image deconvolution experiment with a Cameraman image. (a) Original image, (b)

Noisy blurred image, (c) Tikhonov [14] estimate (ISNR 2.44 dB), (d) GPSR (Gradient projection

for sparse reconstruction) [15] estimate (ISNR 3.77 dB), (e) Manifold based estimate (ISNR 5.48

dB), (f) ISNR performance of different methods as a function of increase in the standard deviation

of Gaussian blur kernel [14, 15].
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