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Abstract

When designing classifiers for classification tasks,

one is often confronted with situations where data dis-

tributions in the source domain are different from those

present in the target domain. This problem of domain

adaptation is an important problem that has received

a lot of attention in recent years. In this paper, we

study the challenging problem of unsupervised domain

adaptation, where no labels are available in the target

domain. In contrast to earlier works, which assume a

single domain shift between the source and target do-

mains, we allow for multiple domain shifts. Towards

this, we develop a novel framework based on the parallel

transport of union of the source subspaces on the Grass-

mann manifold. Various recognition experiments show

that this way of modeling data with union of subspaces

instead of a single subspace improves the recognition

performance.

1. Introduction

Many machine learning problems learn a classifica-
tion model with labeled training data, and using this
model, predict the label of an unknown test sample.
The fundamental assumption here is that the test data
comes from the same distribution as the training data.
However, in many practical cases, this does not hold.
For instance, training data might be frontal faces cap-
tured under controlled illumination, while the test data
consists of face images from the Internet, which can be
different due to variations in sensor type, object pose,
scene lighting, camera viewpoint, etc. Furthermore,
as labeling the data requires significant human effort,
there may not be enough labeled samples in the test
domain. The problem of learning a good classifier for
the test domain in such a scenario, is referred to as
domain adaptation or domain transfer learning. Do-

(a) (b) (c) (d)
Figure 1. Example images of two classes (keyboard and
backpack) from four datasets: (a) Amazon, (b) Caltech,
(c) DSLR (d) Webcam.

main adaptation approach this problem by leveraging
labeled data in a related domain, known as ‘source’
domain, when learning a classifier for unseen data in a
‘target domain’. Although some special kinds of do-
main adaptation problems have been studied under
different names such as covariate shift [27], class im-
balance [16], and sample selection bias [15, 32], it has
started gaining significant interest in computer vision
only recently.

In this work, we focus on the challenging problem
of unsupervised domain adaptation where the target
domain does not have any labels. Various unsuper-
vised domain adaptation methods have been proposed
in the literature [3, 13, 12, 11, 21, 6]. However, a com-
mon assumption made in these approaches has been
that the domain shift is global, irrespective of classes.
This is, however, not true in many practical scenarios,
as shown in Figures 1 and 2. Figure 1 shows exam-
ples of keyboard and backpack images in different do-
mains. While backpack images show changes in shape
and texture, keyboard images have variations in view-
points, but not in texture. In Figure 2, we adapt a
dataset of hand-written digits to computer generated
digits such that their data distributions become closer
to each other. It can be seen that the change in writ-
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(a) Source domain. (b) Target domain.
Figure 2. Examples of (a) hand-written (source domain) digits, and (b) computer-typed (target domain) digits.

ing style is unique to each digit, and clearly, assuming
a global domain shift is not optimal.

In our approach we assume that the data lies in
a union of subspaces in both source as well as tar-
get domains. For the source domain, we assume that
each class lies on a separate subspace which can be
computed using Principal Component Analysis (PCA).
However, for the unlabeled target domain, discovering
the clusters corresponding to different classes is chal-
lenging. Several semi-supervised learning methods are
available [5], which can be used to determine the tar-
get labels. But due to change in data distribution, such
methods may not be desirable. Gong et al. [11] in their
recent work describe a method to choose landmarks or
source samples close to target samples for adaptation.
Chen et al. [6] employed feature selection to choose fea-
tures similar to both source and target. However, these
approach are not effective for large domain shifts (e.g.
frontal face to profile face adaptation). Hence, this is
a chicken-and-egg problem, where one needs to match
the source and the target distribution, and simultane-
ously update the target clusters. To this end, we pro-
pose an approach based on the parallel transport on
Grassmann manifold to incrementally move the source
subspaces towards target domain. The moved source
subspaces are then used to improve the clustering in
the target domain, and the steps are iterated. Hav-
ing moved all the data and subspaces, a classification
model is learned based on the representation of the la-
beled source samples on the moved subspaces. Given
a novel test sample, its representation is similarly ob-
tained, and the label is assigned using a linear support
vector machine (SVM).

1.1. Organization of the paper

The paper is organized as follows. In Section 2, we
review some recent domain adaptation methods. Var-
ious terms and notations are defined in Section 3. De-
tails of the proposed method are given in Section 4.
Computation of domain invariant features is then dis-
cussed in Section 5. Experimental results are presented
in Section 6 and Section 7 concludes the paper with a
brief summary and discussion.

2. Related work

Domain adaptation methods can be broadly divided
into three main categories: supervised, unsupervised
and semi-supervised. Since, our approach is unsuper-
vised, in this section, we mainly review some of the
recent related unsupervised domain adaptation meth-
ods.

Unsupervised adaptation was first proposed for nat-
ural language processing by Blitzer et al. [3] which
introduced structural correspondence learning to auto-
matically induce correspondences among features from
different domains. The problem of domain adaptation
was introduced for visual recognition by Saenko et al.

[25, 19] in a semi-supervised setting. They learn a lin-
ear transformation that minimizes domain induced ef-
fects when data from both the domains are projected
on it. Gopalan et al. [13] extended it to the unsu-
pervised setting, using manifold-based interpolation to
compute a domain-invariant feature. The idea of inter-
polation has been further explored in [12, 11, 21]. A
co-training based adaptation method was presented in
[6].

There are also some closely related but not equiva-
lent machine learning problems that have been studied
extensively, including transfer learning or multi-task
learning [4], semi-supervised learning [5] and multiview
analysis [26]. A review of domain adaptation methods
from machine learning and the natural language pro-
cessing communities can be found in [17]. A survey on
the related field of transfer learning can be found in
[22].

3. Background

In order to discuss our algorithm in detail, we need
to first establish some terms and notations for the
Grassmann manifold Gn,d which is a quotient space of
special orthogonal group (of dimension n), denoted by
SO(n). Note that a matrix Q ∈ SO(n) is an orthogo-
nal matrix, i.e. QTQ = In, with determinant equal to
+1, where In is n × n identity matrix. For a detailed
discussion of these topics please refer to [7, 30, 8] and
references therein.



3.1. Tangent Space

Tangent space at a point p on a manifold is a tan-
gent plane, of the same dimension as that of the mani-
fold, with origin at p. Let the subspace spanned by an
orthonormal matrix S be denoted by [S] ∈ Gn,d, and
orthogonal completion of S by QS , i.e., QS ∈ SO(n)
such that

S = QT
S

[

Id
0n−d×d

]

,

where Id is the identity matrix in R
d×d. Note that

QS , [S S⊥],

where ST
⊥
S⊥ = I(n−d) and

ST
⊥
S = 0(n−d)×d.

Here, (.)T denotes the matrix transpose operator. The
tangent space of [S] is given by,

T[S](Gn,d) := {S⊥B | B ∈ R
(n−d)×d}. (1)

3.2. Exponential Map

Exponential map is a tool to map a point in the
tangent plane to the manifold. Let S⊥A ∈ T[S](Gn,d)
be a point in tangent plane at point [S] ∈ Gn,d, then
the exponential map,

exp[S] : T[S](Gn,d) → Gn,d,

is defined as

exp[S](A) = ΨA(1),

where ΨA(t) is a constant speed geodesic that starts
at point [S], i.e., ΨA(0) = [S], with initial velocity A

and reaches ΨA(1) in unit time. For the Grassmann
manifold, this geodesic is given by,

ΨA(t) = QS exp

(

t

[

0 AT

−A 0

]

)

J, (2)

where, QS = [S S⊥], S⊥A ∈ T[S](Gn,d), and

J =

[

Id
0n−d×d

]

∈ R
n×d.

Since the exponential map is the geodesic at t = 1, it
is given by,

exp[S](A) = QS exp

(

[

0 AT

−A 0

]

)

J. (3)

3.3. Parallel Transport

Let ∆ , S⊥B ∈ R
n×d be a point on the tangent

plane at the point [S] ∈ Gn,d. Then parallel transport
of ∆, along the geodesic ΨA(t) in direction A, consists
of moving ∆ at a new location such that it stays paral-
lel to itself with respect to the geodesic. In other words,
one can imagine moving ∆ in such a way that every in-
finitesimal step consists of a parallel displacement of ∆
in Euclidean space, followed by removal of the normal
component. See Figure 3(a) for the illustration of this
idea and refer to [8] for a detailed discussion. Parallel
transport of ∆ for Grassmann manifold is given by,

τ∆(t) = QS exp

(

t

[

0 AT

−A 0

]

)

[

0

B

]

, (4)

where B ∈ R
(n−d)×d is the initial direction to reach

from S to the exponential map of ∆, i.e. ∆ = S⊥B.

4. Proposed Framework

Let there be Ns training samples in the source do-
main, denoted by a matrix

Ys = [ys
1, . . . ,y

s
Ns

] ∈ R
n×Ns

with labels {li}
Ns

i=1 ∈ {1, . . . , C}, where n is the feature
dimension and C is the number of classes. We denote
the unlabeled samples at target domain by matrix

Yt = [yt
1, . . . ,y

t
Nt

] ∈ R
n×Nt ,

where Nt is the total number of samples in the target
domain.

Our goal is to learn a classifier using both source
and target data that can classify a novel test data that
may come from any of these domains. Hence, we want
to find a basis in which source as well as target data are
well represented and, for a given class, representation
of the source samples is similar to that of the target
domain. Clearly, using the basis computed from the
source data samples alone will represent the source do-
main data well but not the target domain data. Sim-
ilarly, a basis computed from target data alone, will
not represent the source data well. Hence, the learned
classifier will not perform well when applied on the test
data. Therefore, our approach is to learn source and
target subspaces separately, and incrementally move
the source domain subspaces towards the target do-
main subspaces. Towards achieving this goal, first, we
assume that the source data lies in a union of sub-
spaces. As explained later, we separately cluster the
source and the target data intoM clusters and discover
M subspaces. Let the subspaces in the source and the



target domains be denoted by matrices {Ss
m}Mm=1 and

{St
m}Mm=1, respectively. Denote the dimension of each

subspace by (n, d), i.e., Ss
m,St

m ∈ R
n×d. These sub-

spaces can be computed using PCA on the subset of
samples. For the source domain, each subset belongs to
a class, and for the target domain subsets are computed
using the source subspaces as explained in section 4.2.
Given the subspaces in the source and the target do-
mains, first we compute separate Karcher means [18]
of the source subspaces, denoted by µS and the target
subspaces, denoted by µT . A geodesic direction A is
computed between these two means. Next, all the sub-
spaces are parallelly translated along the geodesic with
the initial directionA. This parallel translation is done
incrementally, and after moving all the subspaces along
the geodesic by a small amount, the Karcher mean µS

is recomputed with the translated subspaces. In what
follows, we describe these steps in detail and provide
a step-by-step algorithm for computing intermediate
subspaces. Figure 3(b) presents an overview of our
method.

4.1. Computation of Subspaces in the Source Do­
main

With the assumption that the data lies on the union
of subspaces, we compute total M subspaces. These
can be computed by, first, clustering the source domain
data into M clusters using any clustering algorithm,
e.g. k-Means, sparse subspace clustering [9] etc. and,
then, performing PCA on each cluster. However, since
the labels are available in the source domain, we divide
the data into C subsets (i.e. set M = C) according
to their labels and perform the PCA for each subset
independently. Thus, we get C different subspaces and
denote them by matrices Ss

c ∈ R
n×d, c = 1, · · · , C.

Note, that if the number of samples in each class is
very small or there are too many classes, it will be
prudent to perform a clustering algorithm to reduce
the number of clusters.

4.2. Clustering of Target Data and Computation of
Subspaces

Since we are not provided the labels in the target
domain, one way to cluster the target domain sam-
ples is to perform a clustering algorithm. However, we
find that clustering the target data using the source
subspaces works better in practice. For each class
c = 1, . . . C, we find a sample yt

i∗ in the target domain
that is the closest to the source subspace corresponding
to the cth class, i.e.,

i∗ = arg min
i=1...,Nt

‖yt
i − Ss

cS
s
c
T
yt
i‖.

Then, m nearest neighbors of yt
i∗ are used to compute,

using the PCA, the cth class subspace St
c in the target

domain.

4.3. Computation of Karcher Mean in the Source
and the Target Domains

Our goal is to move the source subspaces towards
the target subspaces, hence, we need to compute a di-
rection in which each subspace should be moved. The
most natural choice is to compute the direction be-
tween the means of the source and the target subspaces.
Since each of the subspaces spanned by the matrices Ss

c

and St
c lies on a Grassmann manifold Gn,d, we compute

the Karcher mean [18] that is consistent with the ge-
ometry of this space. The Karcher mean of the source
subspace, µS ∈ R

n×d and that of the target subspaces
µT ∈ R

n×d are computed using an iterative method as
presented in Algorithm 1.

Algorithm 1: Algorithm for computing the Karcher
mean of multiple subspaces on Gn,d [24].

Input: Set of C subspaces {Sc}
C
c=1 ∈ Gn,d,

maximum number of iterations T .
Output: Karcher mean µ.

Algorithm:

Randomly pick one of Sc’s as initial estimate µ0.
for i = 1, . . . T do

1. Compute inverse exponential map

νc = exp−1
µi

(Sc), ∀c = 1, . . . C.

2. Compute average tangent vector

ν̄ =
1

C

C
∑

c=1

νc.

if ‖ν̄‖ is small then
break.

end

3. Move µi in average tangent direction, i.e.,
µj+1 = exp

µj
(ǫν̄), where ǫ ≥ 0 and typically

set to 0.5.
end

return A.

4.4. Computation of the Direction from Source to
Target

Given two subspaces µS and µT , we need to com-
pute the initial direction A at the point µS and, mov-
ing along the geodesic, reaches µT in unit time. This
can be computed using Algorithm 2.



(a) (b)
Figure 3. (a) Computation of parallel transport. (b) Illustration of parallel transport of union of subspace along the geodesic
between the source and the target means.

4.5. Parallel Transport of the Source Subspaces

In order to parallelly transport all the source sub-
spaces Ss

c, along the direction A, first we need to
project these subspaces onto the tangent plane at µS .
This can be done by computing directionsBc, using Al-
gorithm 2, such that a geodesic starting at µS reaches
Ss
c in unit time with initial velocity Bc. Then, the pro-

jection of Ss
c onto the tangent plane at µS is given by

∆s
c = µS⊥Bc, where [µS µS⊥] is the orthogonal com-

pletion of µS . From (4), the parallel transport of ∆s
c

at time t is given by,

τ∆s
c(t) = QµS

exp

(

t

[

0 AT

−A 0

]

)

[

0

Bc

]

= [µS(t) µS⊥(t)]

[

0

Bc

]

= µS⊥(t)Bc, (5)

where µS(t) is the mean at time t after moving µS

towards µT . Note that τ∆s
c(t) is in the tangent plane

at µS(t), and in order to bring it back to the manifold
we need to use exponential map defined in (3), i.e.,

Ss
ct = [µS(t) µS⊥

(t)] exp

(

[

0 BT
c

−Bc 0

]

)

J. (6)

4.6. Overall Algorithm for Computing the Interme­
diate Union of Subspaces

Having described all the steps in the previous sec-
tions, we now summarize our approach. After com-
puting the subspaces in source and target domains,
we compute their respective Karcher means, µS and
µT , on the Grassmann manifold. Next, initial direc-
tion A is computed such that a geodesic starting from
µS reaches µT in unit time. Also, for all c = 1, . . . , C,
we compute initial directions Bc such that a geodesic
from µS reaches Ss

c in unit time. All the directions can
be computed using Algorithm 2. Then, we move µS by
t using the exponential map defined in (3), and paral-
lel transport all the source subspaces using (6). Having

Algorithm 2: Algorithm for computing the direction
between two subspaces on Gn,d [10].

Input: Two subspaces S(1), S(2) ∈ R
n,d.

Output: Initial velocity A, such that

S
(1)
⊥

A ∈ T[S(1)](Gn,d).

Algorithm:

1. Compute orthogonal completion Q of S(1),

i.e. Q = [S(1) S
(1)
⊥

].
2. Compute thin CS decomposition of QTS(2),

given by

QTS(2) =

[

X

Y

]

=

[

V1 0

0 V2

] [

Γ
Σ

]

VT .

3. Compute {θi} = arccos(γi) = arcsin(σi),
where γi, and σi are the diagonal elements of Γ
and Σ, respectively.
4. Form a diagonal matrix Θ with θi’s in

diagonal. Set A = V2ΘVT
1 .

return A.

moved the subspaces closer to the target domain, we
re-compute the source mean using transported source
subspaces. This process of moving the source sub-
spaces and computing their mean is repeated until K
intermediate subspaces Ss

c(k), k = 1, . . . ,K are com-
puted. These steps are summarized in Algorithm 3.
Furthermore, we compute K1 (set less than 5 in our ex-
periments) more intermediate subspaces between each
pair of the translated source subspace Ss

c(K) and tar-
get subspaces St

c. This is done by first computing the
initial direction between Ss

c(K) and St
c (Algorithm 2)

and then sampling the geodesic at K1 equally spaced
intermediate points using (2).

5. Computation of Features Invariant to

Domain Shifts

We want to represent each sample on the interme-
diate union of subspaces. Since a sample is likely to



Algorithm 3: Algorithm for computing intermediate
union of subspaces.

Input: Source domain data Ys, labels l, and
unlabeled target domain data Yt, number
of intermediate subspaces K, parameter t,
subspace dimension d.

Output: Intermediate source subspaces
Ss
c(k), k = 1, . . . ,K.

Algorithm:

Compute subspaces, Ss
c and St

c, ∀c (Section 4.1).
Compute the Karcher means µS and µT (Section
4.3).
for k = 1, . . . ,K do

1. Compute the direction A between µS and
µT (Algorithm 2).
2. Compute the direction Bc between µS

and Ss
c (Algorithm 2).

3. Compute µS(t) by moving µS along
geodesic with initial direction A using (2).
4. Compute Ss

ct, ∀c = 1, . . . , C, i.e. parallel
transport of all the subspaces using (6).
5. Set Ss

c(k) = Ss
ct, and Ss

c = Ss
ct.

6. Compute the Karcher mean µS using
transported source subspaces Ss

c(k).
end

return Ss
c(k).

belong to one of the subspaces, we first concatenate all
the subspaces Ss

c(k), ∀c = 1, . . . , C at the kth interme-
diate position and form a dictionary

Dk , [Ss
1(k), . . . ,S

s
C(k)].

Now, if a sample y belongs to class c then it can be
well represented by the elements of the subspace Ss

c(k).
However, instead of enforcing a sample to belong to
only one subspace, we relax this constraint and allow
it to be represented by sparse linear combination of
the elements of Dk. In other words, if y belongs to cth

class and we write y as a linear combinations of sam-
ples from Dk then most of the coefficients correspond-
ing to the Ss

c(k) will be non zero and the coefficients
corresponding to the other subspaces are likely to be
close to zero. One can find the sparse coefficients cor-
responding to ys

i over the dictionary Dk by solving the
following optimization problem,

xs
ki = argmin

z
‖ys

i−Dkz‖, subject to ‖z‖0 ≤ T0, (7)

where ‖.‖0 is ℓ0 norm which counts the number of non-
zero elements in a vector and T0 is the sparsity param-
eter which is set close to the dimension d of each sub-

space. This problem can be solved using a greedy al-
gorithm like orthogonal matching pursuit (OMP) [23].
Once the sparse coefficients corresponding to all Dk’s
are found, they are concatenated to compute the do-
main invariant sparse representation of a source data
sample. Having computed the domain shift invariant
representations of the labeled source data, we use the
linear SVM to learn a classification model. Given a
novel test sample, similar to the source samples, we
compute the concatenated sparse representation on the
intermediate dictionariesDk’s and predict the label us-
ing the learned SVM model.

6. Experiments

In order to evaluate the proposed method, we first
analyze it on the digit dataset where we can visualize
the intermediate subspaces. Furthermore, to get more
quantitative comparisons, we perform experiments for
object recognition tasks considering different datasets
as different domains.

6.1. Domain Adaptation Between Hand­Written
and Computer­Typed Digits

In order to visualize the intermediate subspaces, we
evaluate our algorithm on three class digit data con-
taining digits 1, 2 and 3. For the source domain, we
use the USPS digit dataset [1] and, for the target do-
main we use the computer generated digits of different
fonts, as shown in Figure 2. For each digit in the target
domain, we use 18 different fonts of normal, italic and
boldface types, resulting in 54 samples per digit. Size
of each digit image is 16×16 and we use 10-dimensional
subspace for each class to represent them. Hence, the
dimension of Grassmann manifold is (256, 10). To vi-
sualize the intermediate subspaces, we reconstruct one
digit from each class on the intermediate subspaces and
compare our results with [13] in Figure 4(a) and 4(b).
It clearly demonstrates that parallel transport of sub-
spaces, can represent the data better than having a
single subspace in the source and the target domain.

6.2. Object Recognition Across Datasets

For a quantitative evaluation of our method, we use
four image datasets: Caltech, Amazon, DSLR, and
Webcam. Each dataset can be thought of as a do-
main and it is generally true that classifiers trained
on one dataset do not perform well when the test
image is from a different dataset [25]. The Caltech
dataset (also known as Caltech-256 [14]) has images
of 256 object categories downloaded from Google im-
ages. The Amazon dataset contains images from online
merchants (www.amazon.com) which are taken with
studio light settings. The third domain, Digital SLR



(a) Single Subspace (b) Union of Subspaces
Figure 4. Reconstruction of a digit from each class on intermediate subspaces using (a) Single subspace model in source
and target domain [13], and (b) the proposed union of subspaces model. First row shows the reconstruction of a randomly
chosen digit 1 on the intermediate subspaces. Similarly, second and third row are the reconstruction results for digits 2 and
3, respectively.

(DSLR), has been prepared by capturing images with
a high resolution (4288× 2848) camera in realistic en-
vironment with natural lighting. Finally, the Webcam
domain consists of images captured using a simple low
resolution (640 × 480) webcam. The last three do-
mains have been prepared by [25] and recently used
by many visual domain adaptation papers [13, 12, 21]
for evaluating their algorithms. Following the standard
setting, we use 10 categories common across four do-
mains. The example images from these categories are
shown in Figure 5. Following settings in [21], we re-
port our performance on eight different pairs of source
and target domain combinations. For the webcam and
the DSLR, 8 samples per category are used, while for
the Amazon and the Caltech source domains number
of samples per class is set to 20. For each image, 64
dimensional SURF features are computed at interest
points found using the SURF detector. Next, using k-
means clustering, a codebook of size 800 was generated
using features of randomly chosen subset of Amazon
dataset. Each image is represented using 800 dimen-
sional histogram on this codebook. Based on this rep-
resentation, we compare the proposed method with two
single subspace-based methods proposed by Gopalan et

al. [13] and Gong et al. [12], and a recently proposed
dictionary learning-based method in [21]. As shown in
Table 1, our method outperforms these methods. The
subspace dimension for each class was empirically cho-
sen between 5 and 15 and the number of intermediate
subspaces were between 6 and 12 for all the source and
target pairs. We believe that the main reason for the
improved performance of our method is due to the mul-
tiple intermediate union of subspaces and sparse repre-
sentation of the data. Constructing separate subspace
for each class followed by sparse approximation of a test
sample on the concatenation of all the subspaces is a
popular idea in dictionary learning literature and has
demonstrated a significant performance improvement
in many computer vision tasks [31, 28, 20, 29].

7. Conclusion

We have proposed an unsupervised domain adap-
tation method based on the parallel transport of the
source subspace for each class on the Grasmann man-
ifold. The underlying assumption of our method what
that the data lies in a union of subspaces in both source
as well as target domains. Extensive experiments on
the real datasets demonstrate the effectiveness of our
approach on object recognition.
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Figure 5. Example images each of the 10 classes from four different domains. Each column corresponds to a class. From
top to bottom the rows Amazon, Caltech, DSLR and webcam datasets, respectively.

Source
Domain

Target
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