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Abstract— In recent years, sparse representation and dictio-
nary learning methods have produced state-of-the-art results
in many biometric recognition problems such as face, gait and
iris recognition. However, when sparse representation-based
classification methods are confronted with situations where the
training data has different distribution than the test data, their
performance degrades significantly. In this paper, we propose a
general sparse representation-based classification method that
learns projections of data in a space where the sparsity of
data is maintained. We propose an efficient iterative procedure
for solving the proposed optimization problem. One of the key
features of the proposed method is that it is computationally
efficient as the learning is done in the lower-dimensional space.
Various experiments on mobile active authentication datasets
consisting of face and screen touch gestures show that our
method is able to capture the meaningful structure of data
and can perform significantly better than many competitive
domain adaptation algorithms.

I. INTRODUCTION

In biometrics recognition, one is often faced with scenarios
where the training data used to learn a recognition engine has
a different distribution from the test data. Examples of such
cases include: recognizing and detecting faces under poor
lighting conditions and poses while the algorithms are trained
on well-illuminated frontal faces, recognizing low-resolution
face images when recognition algorithms are instead opti-
mized for high-resolution images, recognizing and detecting
human faces on infrared images while algorithms are op-
timized for color images, etc. (see Figure 1). Regardless of
the specific cause, any distributional change that occurs after
learning a classifier can degrade its performance at test time.
Domain adaptation essentially tries to mitigate this dataset
shift problem [1].

Various domain adaptation methods have been proposed
in the computer vision and machine learning literature. One
of the simplest domain adaptation approaches is the feature
augmentation work proposed in [2]. The goal is to make
a domain specific copy of the original features for each
domain. This work was extended for the heterogeneous data
in [3]. The idea of feature augmentation has also been
extended to consider a manifold of intermediate domains [4].
Rather than working with the information conveyed by the
source and target domains alone, [4] proposed an incremental
learning technique based on gradually following the geodesic
path between the source and target domains. Geodesic flows
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Fig. 1: Example of dataset shift in face recognition. Each
row shows face images collected from a mobile device
in a particular ambient condition. Images in each column
correspond to the same individual. It can be seen from this
figure that the images from different ambient conditions show
very different characteristics. If a classifier is trained on
images shown on the first row and tested on the images
in the second or third row, then its performance degrades
significantly (See Section IV).

were used to derive intermediate subspaces that interpolate
between the source and target domains. Recently, the ap-
proach of [4] was kernelized and extended to the infinite
case, defining a new kernel equivalent to integrating over all
common subspaces that lie on the geodesic flow connecting
the source and target subspaces, respectively [5].

Various feature transformation-based approaches have also
been proposed in the literature [6], [7], [8]. The idea behind
this method is to adapt features across general image domains
by learning transformations. Another class of domain adap-
tation algorithms is based on parameter adaptation in which
the Support Vector Machine (SVM) type of algorithms are
proposed for domain adaptation. Algorithms such as adaptive
SVM [9], domain transfer SVM [10], max-margin domain
transfer [11] and domain adaptive multiple kernel learning
[12] fall under this category.

Dictionary learning-based methods have also gained a lot
of attention in recent years for domain adaptation. In [13],



Fig. 2: An overview of the proposed domain adaptive sparse
representation-based classification method.

the idea of sparse domain transfer under the framework of
dictionary learning was proposed for image super-resolution
and photo-sketch synthesis. A technique for jointly learning
transformations of data in the source and target domains,
and a latent discriminative dictionary that can succinctly
represent both domains in the projected low-dimensional
space was proposed in [14]. In [15], a function learning
framework was presented for the task of transforming a
dictionary learned from one visual domain to the other,
while maintaining a domain-invariant representation of a
signal. Another approach [16] proposed using concepts from
dictionary learning to generate intermediate domains that
bridge the domain shift. See [17], [18] and [1] for more
detailed discussion of recent domain adaptation approaches.

In this paper, we propose a different approach to the
problem of domain adaptation based on sparse represen-
tation. Our method learns projections of data in different
domains in a way that preserves the sparse structure of data
in the low-dimensional space. Note that similar idea has
been explored under the framework of dictionary learning
in [14]. We propose an efficient optimization method based
on Alternating Direction Method of Multipliers (ADMM)
and the Method of Splitting Orthogonality Constraints (SOC)
for solving the proposed problem. One of the advantages
of the proposed method compared to other dictionary-based
domain adaptation methods is that it is very efficient as it
does not require learning a dictionary. Our method can be
viewed as a general version of the Sparse Representation-
based Classification (SRC) [19] that accounts for domain
shift. An overview of the proposed method is shown in
Figure 2.

We demonstrate the effectiveness of the proposed domain
adaptation approach through comparisons with other recently
proposed state-of-the-art domain adaptation methods on a
challenging mobile active authentication dataset consisting
of faces and screen touch gestures.

This paper makes the following contributions:
• A sparse representation-based classification algorithm is

proposed for domain adaptation.
• An efficient iterative method based on the ADMM and

the method of SOC is proposed for solving the proposed
optimization problem.

• The algorithm is evaluated on a new dataset consisting
of face and touch gestures collected from 50 mobile
phone users in different ambient conditions.

The rest of the paper is organized as follows: The proposed
domain adaptive sparse representation-based classification
problem is defined in Section II. Details of the optimization
algorithm are given in Section III. Experimental results are
given in Section IV. Finally, Sections V concludes the paper
with a brief summary and discussion.

II. PROBLEM FORMULATION
Let {(yd1

i , c
d1
i )}N1

i=1, denote the collection of N1 labeled
data from the domain D1. Here, yd1

i ∈ RM1 is referred to
as the ith observation and cd1

i is the corresponding class
label. Labeled data from the domain D2 is denoted by
{(yd2

i , c
d2
i )}N2

i=1 where yd2
i ∈ RM2 . Denote

Y1 = [yd1
1 , · · · ,y

d1

N1
] ∈ RM1×N1

as the matrix of N1 data points from D1. Similarly, denote

Y2 = [yd2
1 , · · · ,y

d2

N2
] ∈ RM2×N2

as the matrix of N2 data from D2. It is assumed that the
data from both domains pertain to C subjects or classes.
We assume that there is always a relatively large amount
of labeled data in the source domain and a small amount
of labeled data in the target domain. As a result, if D1

corresponds to the source domain and D2 corresponds to
the target domain then N1 � N2.

Let P1 ∈ Rm×M1 and P2 ∈ Rm×M2 be mappings
represented as matrices that project the data from D1 and
D2 to a common m-dimensional space, respectively. As a
results, P1Y1 and P2Y2 lie on an m-dimensional space.
Let

Z = [P1Y1,P2Y2] = [z1, · · · , zN1+N2
] ∈ Rm×(N1+N2)

denote the samples in the m-dimensional space. In our
method, we want to take advantage of the self-expressiveness
property of the data in the low-dimensional space [20].
That is, each data zi can be efficiently reconstructed by a
combination of other points in Z. More precisely, zi can be
written as

zi = Zbi, bi,i = 0, (1)

where bi = [bi,1, bi,2, · · · , bi,N1+N2
]T . Here, the constraint

bi,i = 0 eliminates the trivial solution that arises as a
result of representing a point as a linear combination of
itself in the projected m-dimensional space. Assuming that
N1 + N2 � m, (1) has infinitely many solutions. One can
look for the sparsest solution and restrict the set of solutions
by minimizing the following sparse optimization problem

min ‖bi‖1 s.t. zi = Zbi, bi,i = 0, (2)



where ‖bi‖1 =
∑

j |bi,j | is the `1-norm of bi. This problem
can be solved using convex optimization methods. One can
rewrite the sparse optimization problem (2) for all samples
in the m-dimensional space as

min ‖B‖1 s.t. Z = ZB, diag(B) = 0, (3)

where B = [b1,b2, · · · ,bN1+N2
] ∈ R(N1+N2)×(N1+N2)

is the coefficient matrix whose ith column is the sparse
coefficient corresponding to zi, diag(B) is the vector of the
diagonal elements of B and ‖B‖1 =

∑
i,j |Bi,j | is the `1-

norm of B.
In our approach, we desire to learn projections P1 and P2

along with the sparse coefficient matrix B simultaneously by
minimizing the following cost function

(P̂, B̂) = min
P,B
C1(P,Y,B) + βC2(P,Y) + µ‖PY‖2F

+ λ‖B‖1 s.t. P1P
T
1 = P2P

T
2 = I, diag(B) = 0, (4)

where

P = [P1 P2] ∈ Rm×(M1+M2), B ∈ R(N1+N2)×(N1+N2),

Y =

[
Y1 0
0 Y2

]
∈ R(M1+M2)×(N1+N2),

C1(P,Y,B) = ‖PY −PYB‖2F ,

and

C2(P,Y) = ‖Y1 −PT
1 P1Y1‖2F + ‖Y2 −PT

2 P2Y2‖2F .

Here, β, µ and λ are the regularization parameters. After
ignoring the constant terms in Y, C2 can be rewritten as

C2(P,Y) = −tr((PY)(PY)T ).

The first part of the cost function C1 with the constraint
that diag(B) = 0 essentially exploits the self-expressiveness
property of the data in the sense that each data point can be
efficiently reconstructed by a combination of other points in
the database. Similar ideas have been explored for subspace
clustering using sparse representation in [20]. The second
term C2 is a PCA-like regularization term, ensures that the
projection does not loose too much information available in
the original domain. Finally, ‖PY‖2F is added to ensure the
convexity of the cost function.

A. Multiple Domains

The above formulation can be extended from two domains
to multiple domains. For K domain problem, we have data
Y1, · · · ,YK from K different domains D1, · · · ,DK and
one can simply construct P and Y as

P = [P1 · · ·PK ], Y =

 Y1 · · · 0
...

. . .
...

0 · · · YK

 .
With these definitions, (4) can be extended to multiple
domains. Note that we do not require the dimensions from
different domains to be the same. As a result, our method
can be viewed as a heterogeneous domain adaptation method
[1].

III. OPTIMIZATION
We solve the optimization problem (4) by optimizing over

P and B iteratively. Note that the optimization problem
is non-convex. However, numerical simulations have shown
that the algorithm usually converges to a local minimum in
a few iterations.

A. Update step for B

In this step, we assume that P is fixed. As a result, the
following problem needs to be solved

min
B
C1(P,Y,B) + λ‖B‖1 s.t. diag(B) = 0. (5)

This problem is similar to the Sparse Subspace Clustering
(SSC) problem [20] which can be efficiently solved using
the ADMM method [21].

B. Update step for P

For a fixed B, we have to solve the following problem to
obtain P

min
P
C1(P,Y,B) + βC2(P,Y) + µ‖PY‖2F

s.t. P1P
T
1 = P2P

T
2 = I. (6)

The cost in (6) can be rewritten as

C1(P,Y,B) + βC2(P,Y) + µ‖PY‖2F
= ‖PY −PYB‖2F + (µ− β)tr((PY)(PY)T )

= tr[(PY −PYB)T (PY −PYB) + (µ− β)(PY)(PY)T ]

= tr[P(Y(I− 2B+BBT + (µ− β)I)YT )PT ].

Let H = Y(I−2B+BBT+(µ−β)I)YT be
∑

iMi×
∑

iMi

matrix. Then, the optimization problem (6) can be rewritten
as

min
P

tr[PHPT ] s.t. P1P
T
1 = P2P

T
2 = I. (7)

This optimization problem involves trace minimization with
multiple orthogonality constraints. The cost function is con-
vex when H is positive semi-definite; however multiple
orthogonality constraints make the problem not convex and
we cannot directly solve it as a classical eigen problem. In
what follows, we present the method of SOC for solving this
problem [22].

1) Optimization for (7): Let O = PT . Then, the trace
minimization problem (7) with K orthogonality constants
can be rewritten as

min
O

g(O1, · · · ,OK ;H) s.t. OT
i Oi = I ∀i = 1, · · · ,K,

(8)
where Oi ∈ RMi×m, m ≤ min{M1,M2, · · · ,MK},

H =

 H11 H12 · · · H1K

H21 H22 · · · H2K

HK1 HK2 · · · HKK

 ∈ R
∑

i Mi×
∑

i Mi ,

Hij ∈ RMi×Mj and

g(O1, · · · ,OK ;H) = tr[OTHO].

The SOC method solves the orthogonality constrained
problems by iteratively optimizing the unconstrained and



quadratic problems with analytic solutions using the com-
bination of variable splitting and Bregman iteration [23]. It
consists of three main steps.
Update Oi : For updating Oi one at a time, we need to solve
the following sub optimization problem

Ot
i = argmin

Oi

g(Ot−1
1 , · · · ,Ot−1

K )+
γ

2
‖Oi−Qt−1

i +Rt−1
i ‖2F .

Where γ is a positive parameter that can be tuned. By taking
the first derivative and setting it equal to zero, we get

Ot
i =

(γ
2
I+Hii

)−1 γ2 (Qt−1
i −Rt−1

i )−
K∑
j=1
j 6=i

HijO
t−1
j

 .
Update Qi : In order to update Qi, we need to solve the
following optimization problem

Qt
i = argmin

Q

γ

2
‖Qi−(Ot

i−Rt−1
i )‖2F s.t QT

i Qi = I (9)

whose closed form solution is obtained as

Qt
i = UiIMi×mVT

i ,

where UiDiV
T
i is the Singular Value Decomposition (SVD)

of (Ot
i −Rt−1

i ) and Ui ∈ RMi×Mi ,Di ∈ RMi×m, Vi ∈
Rm×m.
Update Ri : Finally, having updated Qi and Oi, Ri is
updated as follows

Rt
i = Rt−1

i +
(
Ot

i −Qt
i

)
.

The entire procedure for solving (8) using the method of
SOC is summarized in Algorithm 1.

Algorithm 1: The method of SOC for solving (8).
Input: O,H, γ
Initialization:R0,O0,Q0

While not converge do
1. Update Oi:

Ot
i =

(γ
2
I+Hii

)−1

γ2 (Qt−1
i −Rt−1

i )−
K∑

j=1
j 6=i

HijO
t−1
j


2. Update Qi:

Qt
i = UiIMi×mVT

i

3. Update Ri:
Rt

i = Rt−1
i +

(
Ot

i −Qt
i

)
Output: Ô = [Ot

1, · · · ,Ot
K ]

The training part of the Domain Adaptive Sparse
Representation-based Classification (DASRC) algorithm is
summarized in Algorithm 2.

C. Classification

Given a test sample yt from domain k, we propose the
following steps for classification.

1) Compute the embeddings of all the training sam-
ples from different domains in the common m-
dimensional subspace using the corresponding projec-
tions as PiYi ∈ m×Ni,∀i.

Algorithm 2: Training part of the Domain Adaptive Sparse
Representation-based Classification (DASRC) algorithm.

Input: Data Y1, · · · ,YK and corresponding class labels, β, µ, λ
Initialization: P
While not converge do
1. Update B: Solve the following `1 minimization problem using the
ADMM procedure described in [20]

min
B
C1(P,Y,B) + λ‖B‖1 s.t. diag(B) = 0

2. Update P: Solve the following optimization problem using the
method of SOC as summarized in Algorithm 1.

min
P

tr[PHPT ] s.t. P1P
T
1 = P2P

T
2 = I

Output: B̂ and P̂ = [P̂1, P̂2, · · · , P̂K ]

2) Using the label information, form a training matrix in
the low-dimensional subspace as follows

Z = [Z1,Z2, · · · ,ZC ] ∈ Rm×
∑

i Ni ,

where Zi is the matrix corresponding to the training
samples from class i in the m-dimensional space.

3) Compute the embedding of the test sample yt in the
common m-dimensional subspace using the projection
Pk as

zt = Pkyt.

4) Compute the sparse coefficient α̂t of the embedded
sample zt over dictionary Z by solving the following
optimization problem

α̂t = min
α
‖αt‖0 s.t. ‖zt − Zαt‖2F ≤ η, (10)

where η is the noise level and ‖x‖0 is the `0-norm
of x which counts the number of non-zero elements
in x. We use the Orthogonal Matching Pursuit (OMP)
algorithm [24] to solve (10).

5) The sample can be assigned to class i if the recon-
struction using the samples corresponding to class i is
minimum

Output class = î = argmin
i
‖zt − Zδi(α̂t)‖2F ,

where δi(·) is the characteristic function that selects
the coefficients associated with the ith class.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed algorithm on

a face and touch gesture dataset collected by the authors’
group using a mobile device for active authentication in
different ambient conditions. We compare our method with
several recent domain adaptation algorithms including a
metric learning-based method [6], a manifold-based method
[4], and dictionary learning-based methods [16], [14]. We
also use the SRC method [19] as a baseline comparison. For
SRC, data from different domains are used without domain
adaptation. This method essentially shows the performance
of a sparsity-based method when training and test samples
come from different domains. Comparison of our DASRC
method with SRC will validate the effectiveness of the
proposed domain adaptation approach.



A. Face and Screen Touch Gesture Dataset

Most mobile devices use passwords, pin numbers, or secret
patterns for authenticating users. As long as the device
remains active, there is no mechanism to verify that the
user originally authenticated is still the user in control
of the device. As a result, unauthorized individuals may
improperly gain access to personal information of the user if
the password is compromised. Active Authentication systems
deal with this issue by continuously monitoring the user
identity after the initial access has been granted. Examples of
such systems include screen touch gesture-based recognition
[25] and gait-based recognition [26].

Faces have shown to be very promising physiological bio-
metric. In order to study the effectiveness of both faces and
touch gestures for active authentication, we collected data
from 50 iPhone 5s users in an application environment. The
users were asked to perform difference tasks such as scrolling
a document, viewing pictures, reading a long article etc.
While users performed these tasks, their touch data sensed
by the screen and face images acquired by the front-facing
camera were simultaneously captured. The users were asked
to perform these tasks in different sessions with different
ambient conditions, namely in a well-lit room, in a dim-
lit room, and in a room with natural daytime illumination.
During data collection, users were free to use the phone in
either orientation mode and hold the phone in any position of
their choice. The goal was to simulate real-world scenarios
to study how ambient changes can influence users’ face data
captured by the frontal camera and touch gestures on the
screen. Data collection from 50 users over 3 sessions resulted
in 750 videos consisting of facial data with each video lasting
between 0.5 minute to 2 minutes and 15490 touch gestures.
It is a very challenging dataset. Since facial video data were
collected in an unconstrained manner, many faces exhibit
different poses, blur and illuminations. In particular, partial
faces are common in this dataset. Figures 1 shows sample
face images from this dataset. Each row shows images from
a particular ambient condition. Samples of touch data from
this dataset are shown in Figure 3.

B. Preprocessing and Feature Extraction

Since this dataset consists of two modalities, we perform
preprocessing and feature extraction for face and screen
touch data separately.

1) Faces: For the face data, we first detect the landmarks
of the face images frame by frame from the videos using the
tree-based landmarks detector [27]. We then crop and align
the faces using the methods described in [28] based on the
landmarks’ locations. The face images are then rescaled to
dimension 192 × 168 × 3. Some examples of detected and
aligned faces are shown in Figure 4.

After aligning the face images we transformed them into
grayscale images and applied the illumination normalization
step described in [29]. Finally, we down sampled the images
to 16 by 14 and used the whole image as a feature vector of
dimension 224.
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Fig. 3: Trajectory of touch data samples from our dataset.

(a) (b) (c)

Fig. 4: One subject’s face images after alignment. (a), (b)
and (c) show face images from different sessions (domains),
respectively. As can be seen, the face images of the same
person from different sessions vary significantly.

2) Touch Gestures: Every touch swipe S was encoded as
a sequence of vectors

si = (xi, yi, ti, Ai, o
ph
i ),

i ∈ {1, · · · , Nc} where xi, yi are the location points, ti is
the time stamp, Ai is the area occluded by the finger and ophi
is the orientation of the phone (e.g. landscape or portrait).
Given these touch data, we extracted a 27 dimensional
feature vector for every single swipe in the dataset using the
method described in [25]. These features are summarized in
Table III.

C. Experimental Setup

The new dataset is a relative large dataset. In order to eval-
uate the proposed domain adaptation methods, we sampled
a small subset from this dataset. For the face component,
for each user, we selected 30 faces from each session. As
a result, in total we selected 4500 face images for 50 users
across 3 different domains. For the touch signature, we also



Methods 1 → 2 1 → 3 2 → 3 2 → 1 3 → 1 3 → 2 Average
SRC [19] 73.52 ±1.49 85.12 ± 1.04 83.98± 0.91 80.83 ±1.08 80.73 ±1.35 72.57 ±1.13 79.46

Metric [6] 73.19 ±1.95 84.54 ± 1.27 80.36 ± 2.92 78.83 ±4.06 85.45 ±1.15 73.61 ±2.18 79.33
SGF [4] 56.57 ±1.22 62.58 ± 1.13 60.90 ± 1.05 54.94 ±2.19 65.66 ±1.75 62.69 ±1.33 60.56

SDDL [14] 55.48 ±4.40 71.67 ± 4.14 75.67 ± 3.72 71.71 ±4.46 77.74 ±4.15 66.74 ±2.91 69.84
Dict [16] 66.13 ±1.40 78.61 ± 1.42 76.26 ± 0.63 72.30 ±1.24 78.18 ±1.50 71.15 ±1.24 73.77
DASRC 81.39± 1.66 89.06± 1.31 89.70± 1.05 87.36± 0.82 86.92± 0.99 82.16± 0.69 86.10

TABLE I: Recognition accuracy on target domain with semi-supervised adaptation for the face component.

Methods 1 → 2 1 → 3 2 → 3 2 → 1 3 → 1 3 → 2 Average
SRC [19] 35.48 ±1.49 37.50 ± 0.86 40.18± 1.27 36.99 ±1.10 37.57 ±1.23 38.50 ±0.73 37.70

Metric [6] 24.58 ±1.75 25.71 ± 0.92 29.58 ± 2.22 22.45 ±2.07 24.25 ±1.90 28.59 ±1.47 25.86
SGF [4] 37.88 ±1.18 35.47 ± 1.25 37.00 ± 0.97 37.08 ±1.28 36.10 ±1.20 41.54 ±1.22 37.51

SDDL [14] 39.49 ±2.73 41.86 ± 2.36 42.28± 2.38 38.71±3.65 39.66 ±2.90 38.98 ±3.26 40.16
Dict [16] 30.31 ±1.39 31.00 ± 0.74 34.74 ± 1.05 30.58 ±0.94 32.55 ±0.73 36.21 ±0.82 32.57
DASRC 41.54± 1.89 44.34± 1.66 44.77± 1.17 41.58± 1.35 41.82± 1.61 42.30± 1.50 42.74

TABLE II: Recognition accuracy on target domain with semi-supervised adaptation for the touch component.

FeatureID Description
feature 1 inter-stroke time
feature 2 stroke duration
feature 3 start x
feature 4 start y
feature 5 stop x
feature 6 stop y
feature 7 direct end-to-end distance
feature 8 mean resultant length
feature 9 up/down/left/right flag
feature 10 direction of end-to-end line
feature 11 20%-perc. pairwise velocity
feature 12 50%-perc. pairwise velocity
feature 13 80%-perc. pairwise velocity
feature 14 20%-perc. pairwise acceleration
feature 15 50%-perc. pairwise acceleration
feature 16 80%-perc. pairwise acceleration
feature 17 median velocity at last 3 points
feature 18 largest deviation from end-to-end line
feature 19 20%-perc. dev. from end-to-end line
feature 20 50%-perc. dev. from end-to-end line
feature 21 80%-perc. dev. from end-to-end line
feature 22 average direction
feature 23 length of trajectory
feature 24 ratio end-to-end dist and length of trajectory
feature 25 average velocity
feature 26 median acceleration at first 5 points
feature 27 mid-stroke area covered

TABLE III: Description of the 27 dimensional feature vector.

selected 4500 touch swipes of 50 users across 3 domains.
All the experiment done will be based on these selected
4500 face images and 4500 touch swipes. This part of the
data and the Matlab implementation of our DASRC method
will be made available for research purposes. Because the
underlying characteristics of the data collected in different
sessions with different ambient conditions is very different,
data in different sessions can be viewed as data from different
domains. Therefore, it is necessary to apply domain adapta-
tion methods to design classifiers that are robust to different
sessions (domains). For the proposed DASRC algorithm, we
choose µ−β = 4.5, λ = 50 and γ = 60 which are the tuned
results from the cross validation experiments. Parameters
for the other domain adaptation methods were optimized
according to the discussion provided in the corresponding

papers.

D. Single-source Domain Adaptation Experiments

Following the standard domain adaptation protocol, we
selected 20 samples for each user from one session as the
source domain and 5 samples for each user from another
session as the target domain to form the training data. The
remaining data from the target domain were used for testing.
We randomly split the training and testing datasets, and
repeated each experiment 10 times and report the mean and
the standard deviation of the classification accuracy. Since
we have 3 sessions, there are 6 different combinations of
source and target domains. The performance of our proposed
method is compared with the other domain adaptation meth-
ods for the face and the touch data in Table I and Table II,
respectively.

As can be seen from these tables, the proposed DASRC
method outperforms the other methods on all 6 domain
pairs. In some cases the improvement is over 10% compared
to the other methods. Furthermore, comparison with the
SRC method shows that the sparse coding framework is
insufficient when the test data has different characteristics
than the data used for training. Also, the performance on
faces is better than the performance on touch gestures.

E. Multi-source Domain Adaptation Experiments

For multi-source domain adaptation experiments, we se-
lected 20 samples for each user from source domains and
5 samples for each user from the target domain to form
the training data. The remaining data from the target do-
main were used for testing. Like before, we repeated each
experiment 10 times and report the mean and the standard
deviation of the classification accuracy. Since we have 3
sessions, there are 3 different combinations of the source
and the target domains. The experimental results comparing
our proposed method with the other multi-source domain
adaptation methods on the face data and the touch data are
shown in Table IV and Table V, respectively.

Again, our DASRC method performs better than the
other methods on all possible combinations. An interesting



observation is that increasing the number of domains can be
helpful, especially when compared to a single source and
single target cases. This can be seen by comparing Tables I
and II with tables IV and V. The gain is more apparent for
faces.

F. Visualization of the Projection Matrices

To further gain insights regarding our method, we investi-
gated the projection matrices Pi ∈ Rm×Mi ,∀i = 1, · · · ,K
learned by our method in the case of multi-source domain
adaptation using faces. For better visualization, we used
grayscale face images rescaled to 128×128 from the original
preprocessed face images of size 192×168×3. We followed
the multi-source domain adaptation experiment setup as
described above. We chose session 1 and 2 to be the source
domains and session 3 to be the target domain. We first
randomly selected 20 images per subject in each source
domain, and 5 images per subject in the target domain, and
then fed these images to our proposed algorithm to learn the
projection matrices P1, P2 and P3. Figure 5 shows the first 6
rows of the learned projection matrices reshaped as images.
As can be seen from this figures, the projection matrices
learn the internal structure of the different domains and can
capture the shape, illumination and pose information. As a
result, we are able to find better sparse representation in the
projected m-dimensional space.

(a)

(b)

(c)

Fig. 5: First 6 components of the learned projection matrices
for the multi-source domain adaptation experiment. (a) Com-
ponents from P1, (b) Components from P2. (c) Components
from P3.

G. Runtime Analysis and Computational Issue

In this section, we study the convergence properties of
the proposed method and briefly discuss the computational
timing compared to the dictionary-based domain adaptation
algorithms [16], [14].

As discussed earlier, our method is non-convex and often
converges to a local minima in a few iterations. To empiri-
cally show the convergence of our method, in Fig 6(a)-(c), we
show the objective function vs iteration plots for the ADMM
method for solving (5), the method of SOC for solving

the trace minimization problem with multiple orthogonality
constraints (6) and our proposed problem (4), respectively.
As can be seen from this figure, both sub optimization
problems as well as our overall algorithm do converge in
a few iterations. Furthermore, compared to the previously
proposed dictionary-based domain adaptation methods, our
method is very efficient. On average, the proposed method
takes about 6.5ms to recognize a test image of size 24× 21
compared to 26ms and 11ms for [16] and [14], respectively.
Experiments were done in 64bit Matlab R2013a environment
on a laptop with 2.9GHz Intel Core i7-3520M CPU and 8GB
Memory.
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Fig. 6: Objective function versus number of iterations of the
proposed optimization problems. (a) The ADMM method
for solving (5). (b) The method of SOC for solving the
trace minimization problem with multiple orthogonality con-
straints (6). (c) The proposed problem (4).

V. CONCLUSION

In this paper, we proposed a sparsity-based framework
for solving the domain adaption problems. The proposed
DASRC algorithm is applicable to single-source domain,
multi-source and heterogeneous domain adaptation problems.
We proposed an iterative algorithm consisting of the ADMM
method and the SOC method for solving the optimization
problem. Extensive experiments on a mobile dataset consist-
ing of faces and touch gestures showed that our method can
perform better than many state-of-the-art domain adaptation
methods.

Our future work will investigate learning discriminative
and manifold preserving projections for better classification.
Furthermore, we will perform a theoretical analysis of the
proposed work. We will also evaluate the performance of our
method on other cross-domain object recognition dataset.



Methods 1 2 → 3 1 3 → 2 2 3 → 1 Average
SRC [19] 89.68 ±0.83 81.14 ± 0.86 88.20 ± 0.76 86.34
SGF [4] 69.57 ±1.35 64.05 ± 1.21 62.21 ± 2.12 65.28

SDDL [14] 75.08 ±3.82 55.34 ± 2.34 72.86 ± 3.27 67.76
LMSDA [30] 82.48 ±1.04 70.17 ± 0.66 77.18 ± 1.18 76.61
DASRC 90.94± 0.86 83.03± 0.74 88.44± 0.68 87.47

TABLE IV: Multi-source domain adaptation on face data.

Methods 1 2 → 3 1 3 → 2 2 3 → 1 Average
SRC [19] 39.88 ±1.10 38.26 ± 0.63 36.68 ± 1.28 38.27
SGF [4] 39.04 ±0.99 39.13 ± 1.11 35.96 ± 0.94 38.04

SDDL [14] 34.66 ±1.50 31.21 ± 2.98 31.26 ± 2.56 32.38
LMSDA [30] 40.86 ±1.21 39.20 ± 0.79 37.42 ± 1.22 39.16
DASRC 43.62± 1.75 42.17± 1.14 42.40± 0.83 42.73

TABLE V: Multi-source domain adaptation on touch data.
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