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Abstract—Complex visual data contain discriminative struc-
tures that are difficult to be fully captured by any single feature
descriptor. While recent work on domain adaptation focuses
on adapting a single hand-crafted feature, it is important to
perform adaptation on a hierarchy of features to exploit the
richness of visual data. We propose a novel framework for
domain adaptation using a sparse and hierarchical network
(DASH-N). Our method jointly learns a hierarchy of features
together with transformations that rectify the mismatch between
different domains. The building block of DASH-N is the latent
sparse representation. It employs a dimensionality reduction step
that can prevent the data dimension from increasing too fast as
one traverses deeper into the hierarchy. Experimental results
show that our method compares favorably with competing state-
of-the-art methods. In addition, it is shown that a multi-layer
DASH-N performs better than a single-layer DASH-N.

Index Terms—Domain adaptation, hierarchical sparse repre-
sentation, dictionary learning, object recognition.

I. INTRODUCTION

In many practical computer vision applications, we are often
confronted with the situation where the data that we use to
train classification/regression algorithm has a different distri-
bution or representation with that presented during testing. The
ubiquity of this problem is well-known to machine learning
and computer vision researchers. This challenge is commonly
referred to as covariate shift [1], or class imbalance [2].
For instance, indoor images are quite different from outdoor
images, just as videos captured with a high definition camera
are from those collected using a webcam. This detrimental
effect is often a dominant factor contributing to the poor
performances of many computer vision algorithms. As an
example of the effect of distribution mismatch, Ben-David et
al. [3] show that, under certain assumption, the bound on the
test error linearly increases with the `1 divergence between
training and testing distributions. Even worse, data from the
test domain are often scarce and expensive to obtain. This
makes it impractical to re-train an algorithm from scratch
since a learning algorithm would generalize poorly when an
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insufficient amount of data is presented [4]. Regardless of the
cause, any distributional change that may occur after training
can degrade the performance of the system when it comes
to testing. Domain adaptation also known as domain-transfer
learning attempts to minimize this degradation.

The problems caused by domain changes have received
substantial attention in recent years. The problem can be
informally stated as follows. Given a source domain whose
representation or distribution can be different from that of the
target domain, how to effectively utilize the model trained
on the source data to achieve a good performance on the
target data. It is also often assumed that the source domain
has sufficient labelled training samples while there are only
a few (both labelled and unlabelled) samples available in the
target domain. It has been shown in [5]–[9] that domain adap-
tation techniques can significantly improve the performance
of computer vision tasks such as visual object detection and
recognition.

Most of the algorithms for adapting a recognition system to
a new visual domain share a common architecture containing
two main stages. First, features are extracted separately for
source and target using hand-crafted feature descriptors, fol-
lowed by the second stage where transformations are learned
in order to rectify the discrepancy between the two domains.
This architecture has several drawbacks. Without any knowl-
edge about the target domain, the feature extraction performed
on the source data can ignore information important to the
target data. In addition, the process of designing features, such
as SIFT [10] or SURF [11], is tedious and time-consuming. It
requires a deep understanding and a careful examination of the
underlying physics that governs the generation of data. Such
requirements might be impractical given that the data from the
target domain are often very scarce.

Another issue is that discriminative information can be
embedded in multiple levels of the features hierarchy. High-
level features are sometimes more useful than low-level ones.
In fact, this is one of the main motivations behind the
development of hierarchical networks (e.g. [12], [13]) so that
more complex abstraction from a visual object can be captured.
The traditional framework of domain adaptation employs a
shallow architecture containing a single layer. This ignores
the possibility of transferring at multiple levels of the feature
hierarchy. In this paper, we show that jointly learning a
hierarchy of features could significantly improve the accuracy
of cross-domain classification. We compare and contrast our
approach with recent work on using deep networks in domain
adaptation. Our method uses the latent sparse representation.
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The network incorporates a dimensionality reduction stage to
prevent the feature dimension from increasing too fast as one
traverses deeper into the hierarchy. The contributions of our
paper is summarized below.

Contributions: In order to address the limitations of ex-
isting approaches, we propose a novel approach for domain
adaptation that possesses the following advantages:
• Adaptation is performed on multiple levels of the feature

hierarchy in order to maximize the knowledge transfer.
The hierarchical structure allows the transfer of useful
information that might not be well captured by existing
domain adaptation techniques.

• Adaptation is done jointly with feature learning. Our
method learns a hierarchy of sparse codes and uses them
to describe a visual object instead of relying on any low-
level feature.

• Unlike existing hierarchical networks, our network is
more computationally efficient with a mechanism to
prevent the data dimension from increasing too fast as
the number of layer increases.

We provide extensive experiments to show that our approach
performs better than many current state-of-the-art domain
adaptation methods. This is interesting since in our method,
training is entirely generative followed by a linear support vec-
tor machine while several other methods employ discrimina-
tive training together with non-linear kernels. Furthermore, we
introduce a new set of data for benchmarking the performance
of our algorithm. The new dataset has two domains containing
half-toned and edge images, respectively. In order to facilitate
future research in the area, a Matlab implementation of our
method will be made available.

A. Organization of the paper

This paper is organized as follows. Related works on
domain adaptation are discussed in Section II. The main
formulation of DASH-N is given in Section III, followed by
the optimization procedure in Section V. Experimental results
on domain adaptation for object recognition are presented in
Section VI. Finally, Section VII concludes the paper with a
brief summary and discussion.

II. RELATED WORKS

In this section, we review some related works on domain
adaptation and hierarchical feature learning.

A. Domain Adaptation

While domain adaptation was first investigated in speech
and natural language processing [14]–[16], it has been studied
extensively in other areas such as machine learning [3], [17]
and computer vision, especially in the context of visual object
recognition [5]–[9], [18]. Domain adaptation for visual recog-
nition was introduced by Saenko et al. [5] in a semi-supervised
setting. They employed metric learning to learn the domain
shift using partially labeled data from the target domain. This
work was extended by Kulis et al. [6] to handle asymmetric

domain transformations. Gopalan et al. [7] addressed the
problem of unsupervised domain adaptation, where samples
from the target domain are unlabeled, by using an incremental
approach based on Grassmann manifolds. By formulating a
geodesic flow kernel, Gong et al. [8] and Zheng et al. [19]
independently extended the idea of interpolation to integrate
an infinite number of subspaces on the geodesic flow from the
source domain to the target domain. Chen et al. [20] presented
a co-training based method that slowly adapted a training set
from the source to the target domain. An information-theoretic
method for unsupervised domain adaptation was proposed by
Shi and Sha [21] that attempted to find a common feature
space, where the source and target data distributions are similar
and the misclassification error is minimized.

Sparse representation and dictionary-based methods for do-
main adaptation [22]–[24] are also gaining a lot of traction. In
particular, [22] modeled dictionaries across different domains
with a parametric mapping function, while [24] enforced
different domains to have a common sparse representation on
some latent domain. Another class of techniques [25], [26]
performed domain adaptation by directly learning a target
classifier using classifiers trained on the source domain(s).

A major drawback of some of the existing approaches is
that the domain shifting transformation is considered only
at a single layer and may not capture adequately the shift
between the source and target domain. It is worth noting that
although [27] also named their method hierarchical domain
adaptation, the paper is not related to ours. They made use
of hierarchical Bayesian prior, while we employ a multi-layer
network of sparse representation.

There are also some closely related machine learning prob-
lems that have been studied extensively, including transfer
learning or multi-task learning [28], self-taught learning [29],
semi-supervised learning [30] and multiview analysis [31]. A
review of domain adaptation methods from machine learning
and the natural language processing communities can be found
in [32]. A survey on the related field of transfer learning can
be found in [33].

B. Hierarchical Feature Learning

Designing features for visual objects is a time-consuming
and challenging task that requires a deep understanding of do-
main knowledge. It is also non-trivial to adapt these manually
designed features to new types of data such as hyperspectral or
range-scan images. For this reason, learning features from the
raw data has become increasingly popular with demonstrated
competitive performances on practical computer vision tasks
[12], [13], [34]. In order to capture the richness of data, a
multi-layer or hierarchical network is employed to learn a
spectrum of features, layer by layer.

The design of multi-layer networks has been an active
research topic in computer vision. One of the early works
includes [35], which used a multistage system to extract salient
features in the image at different spatial scales. By learning
higher-level feature representations from unlabelled data, deep
belief networks (DBN) [12] and its variants, such as convo-
lutional DBNs [13] and deep autoencoders [36], have been
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shown to be effective when applied to classification problems.
Motivated by recent works on deep learning, multi-layer sparse
coding networks [34], [37], [38] have been proposed to build
feature hierarchies layer by layer using sparse codes and
spatial pooling. Each layer in these networks contains a coding
step and a pooling step. A dictionary is learned at each coding
step which then serves as a codebook for obtaining sparse
codes from image patches or pooled features. Spatial pooling
schemes, most notably max-pooling, group the sparse codes
from adjacent blocks into common entities. This operation
makes the resulting features more invariant to certain changes
caused by translation and rotation. The pooled sparse codes
from one layer serve as the input to the next layer.

Although the high dimension of the feature vectors obtained
from a hierarchical network may provide some improvements
in classification tasks [12], [13], [34], it may also lead to high
redundancy and thus, reduce the efficiency of these algorithms.
As a result, it is desirable to have a built-in mechanism in
the hierarchy to reduce the dimension of the feature vectors
while keeping their discriminative power. Hierarchical feature
learning has also been used in domain adaptation such as in
[39], [40].

Deep learning has recently made significant improvement
to cross-domain classification [39]–[43]. One of the early
works [39] uses stacked auto-encoder (SDA) to learn high-
level features in an unsupervised manner. They show that
deep features improve sentiment classification accuracy on
a dataset of 22 different domains. A fast variant of auto-
encoder [40] was developed to make SDA training two orders
of magnitudes faster than that of the traditional counterpart.
Another architecture [44] was based on CNN to learn generic
features from a large dataset containing millions of images of
over 1000 classes. This work was able to bring down the state-
of-the-art error on ImageNet dataset from 26.1% to 15.3%. In
addition, the learned features have been shown to generalize
well across different domains [41], [42], making them suit-
able for domain adaptation. The effectiveness of the learned
features can be attributed to the large number of training
images which probably contains significant information from
all interested domains. Another work [43] also makes use of
CNN to learn features but with an interesting twist inspired by
the work of [7]. In particular, they creates a path of interpolated
representations by slowly varying the sampling proportion of
source and target data. Each representation along the path is
generated by applying CNN on the resulting dataset.

Additional data greatly benefit the performance of domain
adaptation algorithm. For example, [42] showed that the cross-
domain classification accuracies on several popular datasets
[5], [45] can be improved by employing a large number of
training images from other sources. The improvement can be
attributed to the high-capacity learning framework of deep
network like CNN. It might also be because the learner has
seen sufficient information for different domains from the large
number of additional training images. It is understandable that
this approach requires a lot of data to perform well. However,
data collection is difficult in many practical applications.
For instance, medical data are rarely available in abundance
like RGB images. For this reason, our paper will focus on

comparing with those methods that do not use additional data
from external sources.

III. BACKGROUND

Since our formulation is based on sparse coding and dic-
tionary learning, in this section, we briefly give a background
on these topics.

A. Dictionary Learning

Given a set of training samples Y = [y1, . . . ,yn] ∈ Rd×n,
the problem of learning a dictionary together with the sparse
codes is typically posed as the minimization of the following
cost function over (D, X):

‖Y −DX‖2F +βΨ(X) s.t. ‖di‖2= 1,∀i ∈ [1,K] (1)

where ‖Y‖F denotes the Frobenius norm defined as ‖Y‖F =√∑
i,j |Yi,j |2, D = [d1, . . . ,dK ] ∈ Rd×K is the sought

dictionary, X = [x1, . . . ,xn] ∈ RK×n is the horizontal
concatenation of sparse codes, β is a non-negative constant
and Ψ promotes sparsity. Various methods have been proposed
in the literature for solving such optimization problem. In the
case when `0 norm is enforced, the K-SVD [46] algorithm can
be used to train a dictionary. One can also promote sparsity
by enforcing the `1 norm on X. In this case, one can use the
algorithm proposed in [47] to solve the above problem. See
[46] and [47] for more details.

B. Latent Sparse Representation

From the observation that signals often lie on a low-
dimensional manifold, several authors have proposed to
perform dictionary learning and sparse coding in a latent
space [48]–[50]. We call it latent sparse representation to
distinguish from the formulation in (1). This is done by
minimizing the following cost function over (P, D, X):

L(Y,P,D,X, α, β) =

‖PY −DX‖2F +α‖Y −PTPY‖2F +β‖X‖1
s.t. PPT = I and ‖di‖2= 1, ∀i ∈ [1,K], (2)

where P ∈ Rp×d is a linear transformation that brings the
data to a low-dimensional feature space (p < d). Note that the
dictionary is now in the low-dimensional space D ∈ Rp×K .
The first term of the cost function promotes sparsity of signals
in the reduced space. The second term is the amount of energy
discarded by the transformation P, or the difference between
low-dimensional approximations and the original signals. The
minimization of the second term encourages the learned trans-
formation to preserve the useful information present in the
original signals. Besides the computational advantage, [49]
shows that this optimization can recover the underlying sparse
representation better than the traditional dictionary learning
methods. This formulation is attractive since it allows the
transformation of the data into another domain to better
handle different sources of variation such as illumination and
geometric articulation.
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Fig. 1: An illustration of DASH-N algorithm. The source domain is RGB images and the target domain is halftone images. First,
images are divided into small overlapping patches. These patches are vectorized while maintaining their spatial arrangements.
(a) Performing contrast-normalization and dimensionality reduction using PS for source images and PT for target images.
The circular feedbacks between PS and PT indicate that these two transformations are learned jointly. (b) Otaining sparse
codes using the common dictionary D1. (c) Performing max pooling. The process then repeats for layer 2 (d & e), except that
the input is the sparse codes from layer 1 instead of pixel intensities. At the final stage, spatial pyramid with max pooling are
used to create image descriptors. Classification is done using linear support vector machine.

IV. HIERARCHICAL DOMAIN ADAPTATION

We propose a method to perform hierarchical domain
adaptation jointly with feature learning. Figure 1 shows an
overview of the proposed method. The network contains multi-
ple layers, each of which contains 3 sub-layers as illustrated in
Figure 1. The first sub-layer performs contrast-normalization
and dimensionality reduction on the input data. Sparse coding
is carried out in the second sub-layer. In the final sub-layer,
adjacent features are max-pooled together to produce a new
features. Output from one layer becomes the input to the next
layer. We note that the hierarchical sparse coding technique
was used to extract powerful features for object classification
[34]. However, the work in [34] is essentially different from
our work in terms of network architecture, learning algorithm,
and application. For the simplicity of notation, we consider a
single source domain. The extension of DASH-N to multiple
source domains is straight forward and is discussed in the
Appendix.

Let YS ∈ RdS×nS and YT ∈ RdT×nT be the input data at
each layer from source domain and target domain, respectively.
Note that there are nS , dS-dimensional samples in the source
domain and nT , dT -dimensional samples in the target domain.
Given YS and YT , in each layer of DASH-N, we learn a joint
latent sparse representation by minimizing the following cost
function with respect to (PS ,PT ,D,XS ,XT ):

L(YS ,PS ,D,XS , α, β) + λL(YT ,PT ,D,XT , α, β) (3)

s.t. PSPT
S = PTPT

T = I, ‖di‖2= 1, ∀i ∈ [1,K], (4)

where (α, β, λ) are the non-negative constants, D ∈ Rp×K

is the common dictionary, PS ∈ Rp×dS and PT ∈ Rp×dT

are the transformations to the latent domain, XS ∈ RK×nS

and XT ∈ RK×nT are the sparse codes of the source and
the target domains, respectively. As can be seen from the
above formulation, two domains are forced to share a common
dictionary in the latent domain. Together with the sparsity

constraint, the common D provides a coupling effect that
promotes the discovery of common structure between the two
domains. For simplicity, in what follows, we provide a detailed
discussion on a two-layer DASH-N network. Extension of
DASH-N to multiple layers is straight forward.

A. Layer 1

We perform dense sampling on each training image to get
a set of overlapping patches. These patches are then contrast-
normalized. If f is a vector corresponding to a patch, then the
contrast-normalization can be performed as in [38]

f̂ =
f√
‖f‖2+ε

, (5)

where ε is some parameter. We set the value of ε equal to 0.1
as it is found to work well in our experiments. In order to
make the computation more efficient, only a random subset
of patches from each image is used for learning the latent
sparse representation. We found that setting this number to
150 for images of maximum size of 150×150 provides a good
trade-off between accuracy and computational efficiency. After
learning the dictionary D1 and the transformations (P1

S ,P
1
T ),

the sparse codes (X1
S ,X

1
T ) are computed for all sampled

patches by solving the following optimization problem

min
X1

∗

‖P1
∗Y

1
∗ −D1X

1
∗‖22+β1‖X1

∗‖1, (6)

where ∗ indicates that the above problem can either correspond
to source data or target data. Each column of Y1

∗ is the
vectorized pixel values inside a patch. A fast implementation
of the LARS algorithm is used for solving this optimization
problem [47].

Spatial max pooling is used to aggregate the sparse codes
over each 4 × 4 neighborhood as this pooling method is
particularly well-suited for the separation of sparse features
[51].
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B. Layer 2

In this layer, we perform similar computations except that
the input is the sparse codes from layer 1 instead of image
pixels. The features obtained from the previous layer are
aggregated by concatenation over each 4 × 4 neighborhood
and contrast-normalized. This results in a new representation
that is more robust to occlusion and illumination. Similar to
layer 1, we also randomly sample 150 normalized feature
vectors f̂ from each image for training. `1 optimization is
again employed to compute the sparse codes of the normalized
features f̂ .

At the end of layer 2, the sparse codes are then aggre-
gated using max pooling in a multi-level patch decomposition
(i.e. spatial pyramid max pooling). At level 0 of the spatial
pyramid, a single feature vector is obtained by performing
max pooling over the whole image. At level 1, the image is
divided into four quadrants and max pooling is applied to each
quadrant, yielding 4 feature vectors. Similarly, for level 2, we
obtain 9 feature vectors, and so on. In this paper, max pooling
using a three level spatial pyramid is used. As a result, the final
feature vector returned by the second layer for each image is
a result of concatenating 14 feature vectors from the spatial
pyramid.

V. OPTIMIZATION PROCEDURE

In this section, we describe how the cost function in (3) is
minimized. First, let us define

KS = YT
S YS , KT = YT

T YT , K =

(
KS 0

0
√
λKT

)
(7)

to be the Gram matrix of source, target, and their block
diagonal concatenation, respectively. It can be shown that (see
the Appendix) the optimal solution of (3) takes the following
form

D = [AT
SKS ,

√
λAT

TKT ]B (8)

PS = (YSAS)T , PT = (YTAT )T , (9)

for some AS ∈ RnS×p, AT ∈ RnT×p and B ∈ R(nS+nT )×K .
Notice that rows of each transformation live in the column
subspace of the data from its own domain. In contrast, columns
of the dictionary are jointly created by the data of both source
and target.

A. Solving for (AS ,AT )

The orthogonal constraint in (4) can be re-written using (9)
as

AT
SKSAS = I, AT

TKTAT = I. (10)

By substituting (9), (8) into (3) and making use of the
orthogonal constraint in (10), the formulation can be simplified
as follows (see derivation in the Appendix)

min
G

tr(GTHG) s.t. GT
SGS = GT

TGT
T = I, (11)

where H is defined as

H = Λ
1
2 VTK((I−BX)(I−BX)T − αI)KVΛ

1
2 , (12)

V =

(
VS 0
0 VT

)
, Λ =

(
ΛS 0

0
√
λΛT

)
, (13)

KS = VSΛSVT
S , KT = VTΛTVT

T . (14)

Here (14) is given by the eigen-decompositions of the Gram
matrices. Finally, G is defined as

G = [GS ,
√
λGT ], (15)

GS = Λ
1
2

SVT
SAS , GT = Λ

1
2

TVT
T AT . (16)

The optimization in (11) is non-convex due to the orthogonal-
ity constraints. However, G can be learned efficiently using
the algorithm proposed by [52]. Given G, the solution of
(AS ,AT ) is simply given by

AS = VSΛ
− 1

2

S GS , AT = VTΛ
− 1

2

T GT . (17)

We note that the optimization step involves the eigen-
decompositions of large Gram matrices whose dimensions
equal to the number of training samples (≈ 105 in our
experiments). This is computationally infeasible. We propose a
remedy for this. The source is taken for the illustration purpose
and the computation for the target is similar. First, we compute
the eigen-decomposition of the following matrix

CS = YSYT
S = USΛ′SUT

S ∈ RdS×dS . (18)

Then, the dS dominant eigenvectors of KS can be recovered
as

VS = YT
S USΛ′S

− 1
2 . (19)

The relationship in (19) between VS and US can be easily
verified using an SVD-decomposition of YS .

The signal dimension dS is much smaller than the number
of training samples nS in our experiments (e.g. 103 versus
105). The eigen-decomposition of CS is therefore much more
efficient than that of KS . Finally, non-zero eigenvalues in ΛS

are given by the diagonal coefficients of Λ′S .

B. Solving for (B,X)

If we fix (AS ,AT ), then learning (B,XS ,XT ) can be done
using any dictionary learning algorithm. In order to see this,
let us define

Z = [ASKS ,
√
λATKT ], (20)

X = [XS ,
√
λXT ]. (21)

The cost function can be re-written in a familiar form as
follows

‖Z−DX‖2F +β(‖XS‖1+λ‖XT ‖1). (22)

We use the LASSO to solve for the sparse codes X and the
efficient online dictionary learning algorithm [47] to solve for
D. The solution of B can be recovered, using the relationship
in (8), simply by

B = Z†D,
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TABLE I: Recognition rates of different approaches on four domains (C: Caltech, A: Amazon, D: DSLR, W: Webcam). 10
common classes are used. Red color denotes the best recognition rates. Blue color denotes the second best recognition rates.

Method C → A C → D A → C A → W W → C W → A D → A D → W
Metric [5] 33.7± 0.8 35.0± 1.1 27.3± 0.7 36.0± 1.0 21.7± 0.5 32.3± 0.8 30.3± 0.8 55.6± 0.7
SGF [7] 40.2± 0.7 36.6± 0.8 37.7± 0.5 37.9± 0.7 29.2± 0.7 38.2± 0.6 39.2± 0.7 69.5± 0.9

GFK (PLS+PCA) [8] 46.1± 0.6 55.0± 0.9 39.6± 0.4 56.9± 1.0 32.8± 0.1 46.2± 0.6 46.2± 0.6 80.2± 0.4
SDDL [24] 49.5± 2.6 76.7± 3.9 27.4± 2.4 72.0± 4.8 29.7± 1.9 49.4± 2.1 48.9± 3.8 72.6± 2.1
HMP [34] 67.7± 2.3 70.2± 5.1 51.7± 4.3 70.0± 4.2 46.8± 2.1 61.5± 3.8 64.7± 2.0 76.0± 4.0

DASH-N (1st layer) 60.3± 2.7 79.6± 3.1 52.2± 2.1 74.1± 4.6 45.31± 3.7 68.7± 2.9 65.9± 2.1 76.3± 2.3
DASH-N (1st+2nd layers) 71.6± 2.2 81.4± 3.5 54.9± 1.8 75.5± 4.2 50.2± 3.3 70.4± 3.2 68.9± 2.9 77.1± 2.8

(a) Amazon (b) Caltech (c) DSLR (d) Webcam

Fig. 2: Example images from the LAPTOP-101 class in
different domains. First row: original images, second row:
halftone images, third row: edge images.

where † denotes the MoorePenrose pseudo-inverse.
It is straight forward to extend the above formulation

to handle the case of multiple source domains. Details of
derivation for this case are included in the Appendix.

VI. EXPERIMENTS

The proposed algorithm is evaluated in the context of
object recognition using a recent domain adaptation dataset
[5], containing 31 classes, with the addition of images
from the Caltech-256 dataset [45]. There are 10 common
classes between the two datasets (BACKPACK, TOURING-
BIKE, CALCULATOR, HEADPHONES, COMPUTER-
KEYBOARD, LAPTOP-101, COMPUTER-MONITOR,
COMPUTER-MOUSE, COFFEE-MUG, and VIDEO-
PROJECTOR) which contain a total of 2533 images. Domain
shifts are caused by variations in factors such as pose, lighting,
resolution, etc., between images in different domains. Figure
2 shows example images from the LAPTOP-101 class with
respect to different domains. We compare our method with
state-of-the-art adaptation algorithms such as [5], [7], [8],
[24]. Baseline results obtained using the hierarchical feature
learning in [34] by learning the dictionaries separately for
the source and target domains without performing domain
adaptation are also included. Furthermore, in order to better
assess the ability to adapt to a wide range of domains,
experimental results are also reported on new images
obtained by performing halftoning [53] and edge detection
[54] algorithms on images from the datasets in [5], [45].

A. Experiment Setup

We follow the experimental set-ups of [8]. The results using
10 as well as 31 common classes are reported. In both cases,
experiments are performed in 20 random trials for each pair of
source and target domains. If the source domain is Amazon
or Caltech, 20 samples are used in the training. Otherwise,
only 8 training samples are used for DLSR and Webcam. The
number of target training samples is always set equal to 3.
The remaining images from the target domain in each split
are used for testing.

B. Parameter Settings

In our experiments, all images are resized to be no larger
than 150×150 with preserved ratio and converted to grayscale.
The patch size is set equal to 5 × 5. The parameter λ is set
equal to 4 in order to account for less training samples from
the target than that from the source, and α is set equal to
1.5 for all experiments. We also found that using βtrain =
0.3 for training and βtest = 0.15 for testing yields the best
performance. The same values for these parameters are used
for both the first and second layer. A smaller sparsity constant
often makes the decoding more stable, thus, leads to more
consistent sparse codes. This is similar to the finding in [34].
The number of dictionary atoms is set equal to 200 and 1500
in the first and second layer, respectively. The dimension of
the latent domain is set equal to 20 and 750 in the first and
second layer, respectively. It is worth noting that the input
feature to layer 2 has the dimension of 3200. This results from
aggregating sparse codes obtained from the first layer over a
4×4 spatial cell (4×4×200). By projecting them onto a latent
domain of dimension of 750, the computations become more
tractable. A three level spatial pyramid, partitioned into 1×1,
2×2, and 3×3, is used to perform the max pooling in the final
layer. Linear SVM [55] with the regularization parameter of
10 is employed for classification. It is worth noting that we do
not use any part of the testing data in tuning the algorithmic
parameters. The sparsity constants such as α, βtrain and βtest
are set to the standard values used by many popular sparse
learning softwares such as SPAMS [47] and ScSPM [56]. For
parameters such as patch size, dictionary size, latent space
dimensions and the linear SVM regularization parameter, the
findings in [34], [46], [49] are employed to create a small
subset of values and cross-validation on the training data is
performed to obtain the optimal settings.
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Fig. 3: Dictionary responses of training (left) and testing (right) data for the BACKPACK class for the pair DSLR-Webcam
domains in the first layer.

C. Computation Time

It takes an average of 35 minutes to perform the dictionary
learning and feature extraction of all training samples using
our Matlab implementation on a computer with a 3.8 GHz
Intel i7 processor. It takes less than 2 seconds to compute the
feature for a test image of size 150 × 150 using both layers
of the hierarchy.

D. Object Recognition

1) 10 Common Classes: The recognition results of different
algorithms on 8 pairs of source-target domains are shown in
Table I. It can be seen that DASH-N outperforms all compared
methods in 7 out of 8 pairs of source-target domains. For
pairs such as Caltech-Amazon, Webcam-Amazon, or DSLR-
Amazon, we achieve more than 20% improvements over
the next best algorithm without feature learning used in the
comparison (from 49.5% to 71.6%, 49.4% to 70.4%, and
48.9% to 68.9%, respectively). It is worth noting that while
we employ a generative approach for learning the feature, our
method consistently achieves better performance than [24],
which uses discriminative training together with non-linear
kernels. It is also clear from the table that the multi-layer
DASH-N outperforms the single-layer DASH-N. In the case
of adapting from Caltech to Amazon, the performance gain
by using a combination of features obtained from both layers
rather than just features from the first layer is more than 10%
(from 60.3% to 71.6%).

The results obtained by using Hierarchical Matching Pursuit
(HMP) [34], without performing domain adaptation, are also
included in the comparison in order to better evaluate the
improvements provided by the proposed approach. In order to
extract features using HMP, a dictionary is learned separately
per the source and target domains in each layer. Sparse codes
for data from the source and target domains are then computed
using the corresponding dictionary. Similar to our approach,
the classification is performed using the concatenated features
obtained a two-layer network. HMP parameters are selected

using cross-validation on the training data. It can be seen from
Table I that, although HMP does not perform as well as the
proposed method, it achieves reasonably good performance on
the dataset. In many cases, it even outperforms other domain
adaptation methods used in the comparison. This demonstrates
the effectiveness of learning feature representation. However,
it is also clear from the table that by learning a common
representation at each layer of the hierarchy, our algorithm
is able to capture the domain shift better. As a result, it
consistently achieves better classification rates compare to
HMP in all scenarios.

In order to illustrate the encoding of features using the
learned dictionary in the first layer, Figure 3 shows the
responses of the training and testing data for the BACKPACK
class with respect to each atom of the dictionary in the first
layer for the pair DSLR-Webcam domains. The sparse codes
for all the patches of the training and testing images belong to
the class are computed. The absolutes of these sparse vectors
are summed together and normalized to unit length. Small
components of the normalized sparse codes are thresholded
to better show the correspondences between the training and
testing data. It can be seen from the figure that the sparse codes
for the training and testing data for the BACKPACK class both
have high responses in four different dictionary atoms (43,
103, 136 and 160).

2) 31 Classes and Multiple Sources: We also compare the
recognition results for all 31 classes between our approach
and other methods in both cases of single (Table II) and
multiple source domains (Table III). It can be seen from
Tables II and III that our results, even using only features
extracted from the first layer, are consistently better than that
of other algorithms in all the domain settings, except the results
obtained by using features extracted from deep networks [42],
[43]. This proves the effectiveness of the feature learning
process using latent sparse representation. It is worth noting
that the deep convolutional network used in [42] is trained
in a fully supervised fashion for more than a week using
a very large external dataset, called ImageNet [59], which
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Fig. 4: Recognition rates with respect to different dimensions of the latent domain in the first and second layer.

(a) Source: Amazon original images (b) Target: Amazon edge images

Fig. 5: The reconstructed dictionaries at layer 1.

TABLE II: Single-source recognition rates on all 31 classes.

Method A → W D → W W → D
Metric [5] 44 31 27

RDALR [9] 50.7± 0.8 36.9± 19.9 32.9± 1.2
SGF [7] 57± 3.5 36± 1.1 37± 2.3

GFK (PLS+PCA) [8] 46.4± 0.5 61.3± 0.4 66.3± 0.4
SDDL [24] 50.1± 2.5 51.2± 2.1 50.6± 2.6
HMP [34] 55.7± 2.5 50.5± 2.7 56.8± 2.6

SVM + DeCAF7 [42] 79.1± 2.1 - 92.9± 2.0
DILD (DL-S2-FT) [43] 44.87 75.21 84.94

DASH-N
(1st layer) 59.9± 2.7 65.8± 1.3 69.6± 2.1

DASH-N
(1st+2nd layers) 60.6± 3.5 67.9± 1.1 71.1± 1.7

has millions of images and thousands of classes. In contrast
to [42], our method is only trained using a limited number
of samples for less than half an hour. While the observation
in [42] is interesting, it is also important to deal with the
scenarios where there is no abundance of external data like in
medical domain. Our experimental results indicate that DASH-
N provides the best performances among the approaches not
using external data. The extension of DASH-N for using

TABLE III: Multiple-source recognition rates on all 31 classes

Method {D, A} → W {A, W} → D {W, D} → A
A-SVM [57] 30.4± 0.6 25.3± 1.1 17.3± 0.9
RDALR [9] 36.9± 1.1 31.2± 1.3 20.9± 0.9

SGF [7] 52± 2.5 39± 1.1 28± 0.8
FDDL [58] 41.0± 2.4 38.4± 3.4 19.30± 1.2
SDDL [24] 57.8± 2.4 56.7± 2.3 24.1± 1.6
HMP [34] 47.2± 1.9 51.3± 1.4 37.3± 1.4

DASH-N
(1st layer) 61.7± 2.5 64.1± 3.5 39.6± 1.3

DASH-N
(1st+2nd layers) 64.5± 2.3 68.6± 3.7 41.8± 1.1

external dataset is under investigation.
The performance of our algorithm further increases when

combining features learned from both layers of the hierarchy.
Especially in the case of adapting from Webcam and DSLR
to Amazon, we achieve an improvement of more than 15%
compared to the result of SDDL [24] (from 24.1% to 41.8%).
We also want to point to a recent work on domain adaptation
using CNN to learn a set of interpolated representations from
one domain to another [43]. Their results confirm our findings
that hierarchical features make adaptation easier. Our method
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achieves a better performance on {A → W} pair (60.6%
versus 44.87%) while performing worse on {D →W} (67.9%
versus 75.21%) and {W → D} (71.1% versus 84.94%) [43].

3) Dimensions of Latent Domains: Dimensions of latent
domains are some of the important parameters affecting the
performance of DASH-N. Figure 4a shows the recognition
rates with respect to different dimensions of the latent domain
in the first layer for three pairs of source-target domains
(Amazon-DSLR, Caltech-Amazon and Webcam-DSLR), while
keeping the dimension of latent domain in the second layer to
750. As the patch size is set at 5× 5, we vary the dimension
of the first layer dictionary from 5 to 25. It can be seen from
the figure that if the latent domain dimension is too low, the
accuracy decreases. The optimal dimension is achieved at 20.

Similarly, the recognition rates with respect to different
dimensions of the second layer latent domain are shown in
Figure 4b while the first layer latent dimension is kept at 20.
It can be seen from Figure 4b that the curves for all three
pairs of source-target domains peak at the dimension 750.
Once again, we observe that the performance decreases if the
dimension of the latent domain is too low. More interestingly,
as we can observe for the pair Caltech-Webcam and Webcam-
DSLR, setting the dimension of the latent domain too high is
as detrimental as setting it too low. In all of our experiments,
we set the dimension of the latent domain using the cross
validation technique.

E. Halftoned and Edge Images
In order to evaluate the ability of DASH-N in adapting to

a wide range of domains, we also perform experiments on
object recognition from the original image domain to two new
domains generated by applying half-toning and edge extraction
algorithms to the original images. Half-toning images, which
imitate the effect of jet-printing technology in the past, are
generated using the dithering algorithm in [53]. Edge images
are obtained by applying the Canny edge detector [54] with
the threshold set to 0.07.

Figure 5 is the visualization of the reconstructed dictionaries
atoms at layer 1 when adapting the original images (source) to
edge images (target). Reconstructed dictionaries are obtained
by D̂1

∗ = (P1
∗)
†D1, where † denotes the MoorePenrose

pseudo-inverse. We observe that the dictionary atoms of orig-
inal images contain rather fat and smooth regions. In contrast,
dictionary atoms of edge images have many thin and highly
varying patterns that are more suitable for capturing edges.
Table IV shows the performance of different algorithms when
adapting to these new domains. It can be seen from the
table that DASH-N outperforms other methods used in the
comparison in both cases of half-toning and edge images.
This proves the ability of our approach to adapt well to new
domains. As discussed in previous sections, although even
the first layer of DASH-N already achieves very good results
on different settings, the performance consistently improves
with the addition of the second layer. In many cases, the
improvement in the recognition rates can be significant such
as in the case of C → A in Table I or A→W and D →W
in Table IV which is more than 10%. Both the source code
and two new datasets will be released for research purposes.

F. Complexity Analysis

Let w and h be the width and height of an input image,
respectively. Recall that d is the dimension of input sample.
K(`) is the dictionary size at `-layer. q is the number of pixels
considered in the pooling operation. p(`) is the dimension
of the reduced space after the projection at `-layer. The
computation needed for evaluating an input image is given
as follows

O(w×h×d×p(1) + w×h×p(1)×K(1)×T (1)

+
w×h
q
×K(1)×p(2) +

w×h
q
×p(2)×K(2)×T (2)

+
w×h
q2
×K(2)×p(3) +

w×h
q2
×p(3)×K(3)×T (3))

= O(

3∑
`=1

w×h×p(`)

q(`−1)
(K(`−1) +K(`)×T (`))),

where we use the convention that K(0) is the equal to the
dimension of the input patch d. We also assume that the sparse
coding for each sample could be performed with d×K×T
computation using OMP method or fast variants of Lasso.

VII. CONCLUSION

We have presented a hierarchical method for performing
domain adaptation using multi-layer representations of images.
In the proposed approach, the features and domain shifts are
learned jointly in each layer of the hierarchy in order to
obtain a better representation of data from different domains.
Unlike other hierarchical approaches, our method prevents the
dimension of feature vectors from increasing too fast as the
number of layers increase. Experimental results show that
the proposed approach significantly outperforms other domain
adaptation algorithms considered in the comparison.

Several future directions of inquiry are possible considering
our new approach to domain adaptation and feature learning.
It would also be of interest to incorporate non-linear learning
frameworks to DASH-N.
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APPENDIX

In this section, we provide the derivations for the forms of
D in (8) and Pi in (9) as well as extend the optimization to
the case of multiple source domains.

A. Form of D

We consider a general case where there are m different
domains. Let {Yi,Pi,Xi, ni}mi=1 be the training data, the
transformation, the sparse coefficients, and the number of
samples for the i-th domain, respectively. Let D denote
the common dictionary in the latent domain. The objective
function that we want to minimize is

m∑
i=1

λiL(Yi,Pi,D,Xi, α, β)

=
∑
i

λi

(
‖PiYi −DXi‖2F +α‖Yi −PT

i PiYi‖2F

+ β‖Xi‖1
)
.

(23)

For the convenience of notation, we first define

Z = [
√
λ1P1Y1, . . . ,

√
λmPmYm]. (24)

One can write D in the following form

D = D|| + D⊥, where D|| = ZB and DT
⊥Z = 0, (25)

for some B ∈ R(
∑

i ni)×K . In other words, columns of D||
and D⊥ are in and orthogonal to the column subspace of
Z, respectively. Let S ∈ RK×K be a diagonal matrix with
non-negative coefficients such that columns of D̂|| = D||S
have unit-norm. Since the columns of D have unit-norm and
D = D|| + D⊥, the columns of D|| must have norms of no
larger than 1. Therefore, in order for the columns of D̂|| to
have norm 1, the diagonal coefficients in S must be no less
than 1. This gives us the following corollary

‖Xi‖1= ‖SS−1Xi‖1= ‖SX̂i‖1≥ ‖X̂i‖1, (26)

where X̂i = S−1Xi. In addition, we also have

‖PiYi −DXi‖2F = ‖PiYi −D||Xi‖2F +‖D⊥Xi‖2F
≥ ‖PiYi −D||Xi‖2F
= ‖PiYi − (D||S)(S−1Xi)‖2F
= ‖PiYi − D̂||X̂i‖2F . (27)

Using the two inequalities in (26) and (27), we can show that
m∑
i=1

λiL(Yi,Pi,D,Xi, α, β)

≥
∑
i

λi

(
‖PiYi − D̂||X̂i‖2F +α‖Yi −PT

i PiYi‖2F

+ β‖X̂i‖1
)

=

m∑
i=1

λiL(Yi,Pi, D̂||, X̂i, α, β).

(28)

This means that given any feasible solution (D,Xi), we
can find another feasible solution (D̂||, X̂i), whose dictionary
atoms normalized to unit-norm, that does not increase the cost
function. Therefore, an optimal solution for D must be in form
of D̂||, which can be generally written as

D = ZB = [
√
λ1P1Y1, . . . ,

√
λmPmYm]B. (29)

B. Form of Pi

We perform the orthogonal decomposition of Pi as follows
[60]

Pi = Pi⊥ + Pi||, where Pi⊥Yi = 0 and Pi|| = (YiAi)
T .

(30)

In other words, rows of Pi|| and Pi⊥ are in and orthogonal
to the column subspace of Yi, respectively. For convenience
of notation, let us define

P =

 P1 . . . 0
...

. . .
...

0 . . . Pm

 (31)

Y =


√
λ1Y1

...√
λmYm

 (32)

X = (
√
λ1X1, . . . ,

√
λmXm). (33)

After simple algebraic manipulations, the cost function can be
re-written as
m∑
i=1

λiL(Yi,Pi,D,Xi, α, β)

=
∑
i

λi

(
‖PiYi− | DXi‖2F +α‖Yi −PT

i PiYi‖2F +β‖Xi‖1
)

=
(
‖P||Y(I−BX)‖2F +αtr(YTY −P||YYTPT

|| )

+ β

m∑
i=1

λi‖Xi‖1
)
.

(34)
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Removing all the terms independent of P, we have

tr
(
P||Y((I−BX)(I−BX)T − αI)YTPT

||

)
.

The objective function is independent of P⊥. Moreover, an
optimal solution of P|| is given by the eigenvectors of

Y((I−BX)(I−BX)T − αI)YT .

This means P||P
T
|| = I. However, P||P

T
|| = I − P⊥PT

⊥,
therefore, P⊥ = 0. We conclude that an optimal solution of
Pi must have the following form

Pi = (YiAi)
T , ∀i ∈ [1,m]. (35)

C. Optimization for Multiple Source Domains

The first term of (23) is∑
i

λi‖PiYi −DXi‖2F = ‖Z(I−BX)‖2F , (36)

where X = [
√
λ1X1, . . . ,

√
λmXm]. The second term of (23)

can be written as

α
∑
i

λi‖Yi −PT
i PiYi‖2F = α

∑
i

tr
(
Ki −YT

i PT
i PiYi

)
= α tr

(∑
i

(Ki)− ZTZ
)
.

(37)

After discarding all constant terms, the objective function in
(23) is equivalent to

‖Z(I−BX)‖2F−α tr(ZTZ) + β
∑
i

λi‖Xi‖1. (38)

Solving for Ai: First, we perform the eigen-decomposition
Ki = ViΛiV

T
i . Then the eigen-decomposition of K is given

by

K = VΛVT , (39)

where,

V =

 V1 . . . 0
...

. . .
...

0 . . . Vm

 (40)

Λ =


√
λ1Λ1 . . . 0

...
. . .

...
0 . . .

√
λmΛm

 . (41)

Moreover, let us define Gi = Λ
1
2
i VT

i Ai. Then, the constraints
become

PiP
T
i = AT

i KiAi = GT
i Gi = I.

In order to solve for Ai, we assume that (B,Xi) are fixed.
After removing all the terms independent of Ai, and using

(24) together with (39), the objective in (38) is equivalent to

‖Z(I−BX)‖2F−α tr(ZTZ)

= tr
(
Z((I−BX)(I−BX)T − αI)ZT

)
= tr

(
ATK((I−BX)(I−BX)T − αI)KA

)
= tr

(
(ATVΛ

1
2 )(Λ

1
2 VT ((I−BX)(I−BX)T − αI)VΛ

1
2 )

(Λ
1
2 VTA)

)
= tr(GTHG),

(42)

where,

G = Λ
1
2 VTA

=

 V1 . . . 0
...

. . .
...

0 . . . Vm



√
λ1Λ

T
1 . . . 0

...
. . .

...
0 . . .

√
λmΛT

m


 A1

...
Am


= [
√
λ1G1, . . . ,

√
λmGm].

(43)

Then the solution of Ai can be obtained by first minimizing

min
G

tr(GTHG) s.t. GT
i Gi = I. (44)

This can be solved efficiently in the same way as for the case
of two domains using the algorithm proposed by [52]. The
solution for Ai of each domain is recovered simply by

Ai = ViΛ
− 1

2
i Gi. (45)

Solving for (B,Xi): We now assume that Ai are fixed.
After discarding the terms independent of (B,Xi) in (38),
the objective function is re-written as

‖Z−DX‖2F +β
∑
i

λi‖Xi‖1. (46)

This is in the familiar form of dictionary learning problem. We
use the online dictionary learning algorithm proposed by [47]
to learn (D,Xi). The sparse coding is done using the LASSO
algorithm. After obtaining D, the solution of B is obtained
by

B = Z†D. (47)
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