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Abstract—Data-driven dictionaries have produced state-of-the-
art results in various classification tasks. However, when the
target data has a different distribution than the source data, the
learned sparse representation may not be optimal. In this paper,
we investigate if it is possible to optimally represent both source
and target by a common dictionary. Specifically, we describe a
technique which jointly learns projections of data in the two
domains, and a latent dictionary which can succinctly repre-

sent both the domains in the projected low-dimensional space.
The algorithm is modified to learn a common discriminative
dictionary, which can be further used for classification. The
algorithm can be use for adaptation across multiple domains and
is extensible to non-linear feature space. The proposed approach
does not require any explicit correspondence between the source
and target domains, and shows good results even when there are
only a few labels available in the target domain. Further, it can
also be used for heterogenous domain adaptation, where different
features are extracted for different domains. Various recognition
experiments show that the method performs on par or better
than competitive state-of-the-art methods.

I. INTRODUCTION

The study of sparse representation of signals and images

has attracted tremendous interest in last few years. Sparse

representations of signals and images require learning an over-

complete set of bases called a dictionary along with linear

decomposition of signals and images as a combination of few

atoms from the learned dictionary. Olshausen and Field [30] in

their seminal work introduced the idea of learning dictionary

from data instead of using off-the-shelf bases. Since then, data-

driven dictionaries have been shown to work well for both

image restoration [11] and classification tasks [46].

The efficiency of dictionaries in these wide range of ap-

plications can be attributed to the robust discriminant rep-

resentations that they provide by adapting to the particular

data samples. However, the learned dictionary may not be

optimal if the target data has different distribution than the

data used for training. These variations are commonplace in

vision problems, and can happen due to changes in image

sensor (web-cams vs SLRs), camera viewpoint, illumination

conditions, etc. It has been shown that such changes can cause
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Fig. 1. Overview of the proposed dictionary learning method.

significant degradation in classifier performance [7]. Adapting

dictionaries to new domains is a challenging task, but has

hardly been explored in the vision literature. Yangqing et al.

[22] considered a special case where corresponding samples

from each domain were available, and learned a dictionary

for each domain. More recently, Qiu et al. [33] proposed a

method for adapting dictionaries for smoothly varying domains

using regression. However, in practical applications, target

domains are scarcely labeled, and domain shifts may result

in abrupt feature changes (e.g., changes in resolution when

comparing web-cams to DSLRs). Moreover, high dimensional

features are often extracted for object recognition. Hence

learning a separate dictionary for each domain will have

a severe space constraint, rendering it unfeasible for many

practical applications. A subspace interpolation based method

was proposed for adapting dictionaries in [29]. However, this

method cannot be used for heterogenous domain adaptation,

where different features are extracted for different domains.

In view of the above challenges, we propose a robust

method for learning a single dictionary to optimally represent

both source and target data. As the features may not be

correlated well in the original space, we project data from both

the domains onto a common low-dimensional space, while

maintaining the manifold structure of data. Simultaneously,

we learn a compact dictionary which represents projected

data from both the domains well. As the final objective is

classification, we learn a class-wise discriminative dictionary.

This joint optimization method offers several advantages in
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terms of generalizability and efficiency of the method. Firstly,

learning separate projection matrix for each domain makes it

easy to handle any changes in feature dimension and type in

different domains. It also makes the algorithm conveniently

extensible to handle multiple domains. Further, learning the

dictionary on a low-dimensional space makes the algorithm

faster, and irrelevant information in original features is dis-

carded. Moreover, joint learning of dictionary and projections

ensures that the common internal structure of data in both the

domains is extracted, which can be represented well by sparse

linear combinations of dictionary atoms.

An additional contribution of the paper is an efficient

optimization technique to solve this problem. Using kernel

methods, the proposed algorithm can be easily made non-

linear, and the resulting optimization problem has a few simple

update steps. Further we extensively evaluate the method for

different recognition scenarios and show that the proposed

method is comparable with other recent algorithms for domain

adaptation. We also demonstrate that the algorithm converges

quickly and is efficient.

A. Paper Organization

The paper is organized in six sections. In Section II,

we describe some of the related works. The algorithm is

formulated in Section III, and the extension to non-linear case

is described in Section IV. The classification scheme for the

learned dictionary is described in Section V. Experimental

results are presented in Section VI, and the final concluding

remarks are made in VII.

II. RELATED WORK

In this section, we survey the recent domain adaptation

works and the related sparse coding literature.

A. Domain Adaptation

The problem of adapting classifiers to new visual domains

has recently gained importance in the vision community.

Several approaches have been proposed for this problem,

which can be broadly categorized into following categories:

1) Feature transform-based approaches: The idea of do-

main adaptation in vision community was introduced by

Saenko et al. [35], which learnt a symmetric transformation

between domains represented by same features. This was

extended to general domain shifts in Kulis et al. [24] by

learning an asymmetric transformation between domains. In

[21], a transformation of source data onto target space is learnt,

such that the joint representation is low-rank. Further, Baktash-

motlagh et al. [2] proposed learning feature transformation

for kernel mean matching between domains for adaptation. A

subspace alignment-based method was also explored in [12].

2) Manifold interpolation-based approaches: Gopalan et

al introduced the idea of interpolation between subspaces of

different domains on Grassmann manifold [16]. This was ex-

tended to learning a kernel distance between domains in [15].

A class-wise adaptation scheme based on parallel transport on

manifold was introduced in [42].

3) Classifier transform-based approaches: Many methods

have been proposed to adapt classifiers between domains for

adaptation. A method for adapting SVMs across domains was

proposed for concept detection in [48]. Similar methods based

on transforming SVMs have been proposed in [9], [10]. A

multiple kernel learning-based approach for domain adaptation

was proposed in [8]. Recently, a method for adaptation by

reconstructing target classifiers using source classifiers was

explored in [51].

4) Other approaches: A feature augmentation method was

proposed in [25]. Gong et al. [14] described a method of

choosing landmarks in the target domain for adaptation. An

information theortic clustering-based adaptation approach was

proposed in [41]. Recently, deep learning has also been used

for domain adaptation [6], [5].

B. Sparse Coding

Here, we review some of the related works in sparse coding

literature. Han et al. [20] suggested learning a shared embed-

ding for different domains, along with a sparsity constraint on

the representation. However, they assume pre-learned projec-

tions, which may not be optimal. In the dictionary learning lit-

erature, Yang et al. [47] and Wang et al. [44] proposed learning

dictionary pairs for cross-modal synthesis. Similarly, methods

for joint dimensionality reduction and sparse representation

have also been proposed [50], [13], [26], [28]. Additional

methods may be found within these references. A preliminary

version of this paper [39] discussed projection-based approach

for adaptation of sparse dictionaries.

III. PROBLEM FRAMEWORK

The classical dictionary learning approach minimizes the

representation error of the given set of data samples subject to

a sparsity constraint [1]. Let Y = [y1, · · · ,yN ] ∈ R
d×N be

the data matrix. Then, the K-atoms dictionary, D ∈ R
d×K ,

can be trained by solving the following optimization problem

{D∗,X∗} = arg min
D,X

‖Y −DX‖2F s.t. ‖xi‖0 ≤ T0 ∀i

where, X = [x1,x2, ...,xN ] ∈ R
K×N is the sparse repre-

sentation of Y over D, and T0 is the sparsity level. Here,

‖.‖0-norm counts the number of nonzero elements in a vector

and ‖.‖F is the Frobenius norm of a matrix.

Now, consider a special case, where we have data from

two domains, Y1 ∈ R
d1×N1 and Y2 ∈ R

d2×N2 . We wish to

learn a shared K-atoms dictionary, D ∈ R
df×K and mappings

P1 ∈ R
df×d1 , P2 ∈ R

df×d2 onto a common low-dimensional

space, which will minimize the representation error in the

projected space. Formally, we desire to minimize the following

cost function:

C1(D,P1,P2,X1,X2) = ‖P1Y1 −DX1‖
2

F+

‖P2Y2 −DX2‖
2

F (1)

subject to sparsity constraints on X1 and X2. However, min-

imizing C1(D,P1,P2,X1,X2) will result in trivial solution

as Pis can be set to 0. To overcome this, we regularize the

solution space to get meaningful solutions.
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A. Regularization

It will be desirable if the projections, while bringing the data

from two domains to a shared subspace, do not lose too much

information available in the original domains. To facilitate this,

we add a PCA-like regularization term which preserves energy

in the original signal, given as:

C2(P1,P2) = ‖Y1 −PT
1 P1Y1‖

2

F + ‖Y2 −PT
2 P2Y2‖

2

F

s.t. PiP
T
i = I, i = 1, 2 (2)

It is easy to show after some algebraic manipulations that the

costs C1 and C2, after ignoring the constant terms in Y, can

be written as:

C1(D, P̃, X̃) = ‖P̃Ỹ −DX̃‖2F , (3)

C2(P̃) = −trace((P̃Ỹ)(P̃Ỹ)T ) (4)

where,

P̃ = [P1 P2], Ỹ =

(

Y1 0

0 Y2

)

, and X̃ = [X1 X2].

Thus, the form of C2 is similar to trace minimization problem

[23]. Thus, the regularization can be generalized to different

dimensionality reduction techniques. We describe some of the

possible methods below:

1) Manifold preserving regularization: Let W1 ∈
R

N1×N1 and W2 ∈ R
N2×N2 be affinity matrices cal-

culated from Y1 and Y2 using different methods in

literature [36], [3]. The manifold preserving mapping

can then be formulated as:

C2(P̃) = −
2

∑

i=1

trace(PiYi)(I−Wi)(I −WT
i )(PiYi)

T

s.t. PiP
T
i = I, i = 1, 2

Other possible manifold-based regularizations can also

be explored in [23].

2) Discriminative regularization: Let Hi,j =
1ni,j

1T
ni,j

i = 1, 2, j = 1, · · · , C where, C is the

number of classes in data and ni,j is the number of

samples in class j for domain i and 1ni,j
is a column

vector of length ni,j . Define

Hi = diag[Hi,1, · · · ,Hi,C].

Then, discriminative LDA-like regularization can be

formulated as [23]:

C2(P̃) = −

2
∑

i=1

trace(PiYi)(I−Hi)(PiYi)
T

s.t. (PiYi)(PiYi)
T = I, i = 1, 2

In this paper, we focus on the PCA-like regularization (4),

other approaches can be studied as a future direction. Hence,

the overall optimization is given as:

{D∗, P̃∗, X̃∗} = arg min
D,P̃,X̃

C1(D, P̃, X̃) + λC2(P̃)

s.t. PiP
T
i = I, i = 1, 2 and ‖x̃j‖0 ≤ T0, ∀j (5)

where, λ is a positive constant.

B. Multiple domains

The above formulation can be extended so that it can

handle multiple domains. For M domain problem, we simply

construct matrices Ỹ, P̃, X̃ as:

P̃ = [P1, · · · ,PM] , Ỹ =







Y1 · · · 0
...

. . .
...

0 · · · YM






,

and

X̃ = [X1, · · · ,XM].

With these definitions, (5) can be extended to multiple domains

as follows

{D∗, P̃∗, X̃∗} = arg min
D,P̃,X̃

C1(D, P̃, X̃) + λC2(P̃)

s.t. PiP
T
i = I, i = 1, · · · ,M and ‖x̃j‖0 ≤ T0, ∀j (6)

C. Special case of P1 = P2 = · · · = PM

In the special of domain adaptation, where same features are

extracted for all the domains such that d1 = d2 = · · · = dM ,

and the domain shift is not large (e.g. matching frontal faces

to profile faces), same projection matrix can be used for all

the domains.

D. Discriminative Dictionary

The dictionary learned in (5) can reconstruct the two do-

mains well, but it cannot discriminate between the data from

different classes. Recent advances in learning discriminative

dictionaries [34], [49] suggest that learning class-wise, mutu-

ally incoherent dictionaries works better for discrimination. To

incorporate this into our framework, we write the dictionary D

as D = [D1, · · · ,DC], where C is the total number of classes.

We modify the cost function similar to [49], which encourages

reconstruction samples of a given class by the dictionary of

the corresponding class, and penalizes reconstruction by out-

of-class dictionaries. The new cost function, C1(D, P̃, X̃) is

given as:

C1(D, P̃, X̃) = ‖P̃Ỹ −DX̃‖2F + µ‖P̃Ỹ −DX̃in‖
2

F+

ν‖DX̃out‖
2

F , (7)

where µ and ν are the weights given to the discriminative

terms, and matrices X̃in and X̃out are given as:

X̃in[i, j] =

{

X̃[i, j], Di, Ỹj ∈ same class

0, otherwise,

X̃out[i, j] =

{

X̃[i, j], Di, Ỹj ∈ different class

0, otherwise.

The cost function is defined only for labeled data in both

domains. Unlabeled data can be handled using semi-supervised

approaches to dictionary learning [32]. However, we do not

explore it further in this paper. Also, note that we do not need

to modify the forms of projection matrices, since they capture

the overall domain shift, and hence are independent of class

variations.
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E. Optimization

The optimization problem (6) is non-convex in the vari-

ables D, P̃, X̃. Hence, we optimize the cost using alternate

minimization strategy, where first P̃ is updated, keeping D,

X̃ fixed followed by updating D and X̃, keeping P̃ fixed.

• Updating P̃: For fixed D, X̃, the optimization can be

written as:

P̃∗ = arg min
P̃

‖P̃Ỹ −DX̃‖2F + µ‖P̃Ỹ −DX̃in‖
2

F

−λtrace((P̃Ỹ)(P̃Ỹ)T ) s.t. PiP
T
i = I, i = 1, · · · ,M

(8)

Howver, this is not a convex problem because of the

orthonormality constraints on Pi. Specifically, it involves

optimization on Stiefel manifold, hence, we solve it using

the manifold optimization technique described in [45].

• Updating D, X̃: For fixed P̃ the optimization problem

can be written as:

{D∗, X̃∗} = arg min
D,X̃

‖P̃Ỹ −DX̃‖2F+

µ‖P̃Ỹ −DX̃in‖
2

F + ν‖DX̃out‖
2

F

s.t. ‖x̃j‖0 ≤ T0, ∀j (9)

This is discriminative dictionary learning problem, and

we use the framework of [49] to update D, X̃. This can

be easily generalized to utilize other dictionary learning

algorithms as well.

The proposed Shared Discriminative Dictionary Learning

(SDDL) algorithm is summarized in Algorithm 1.

Input: Data {Yi}
M
i=1 and corresponding class labels {Ci}

M
i=1

for M domains, sparsity level T0, dictionary size K and
dimension df , parameter values µ, ν
Procedure:
1. Initialize: Initialize P̃ such that PiPi = I ∀ i = 1, · · · ,M .
For this, PCA of the data, Yi can be used to initialize Pi.
2. Update step for P̃: Update P̃ as:

P̃
∗ = arg min

P̃

‖P̃Ỹ −DX̃‖2F + µ‖P̃Ỹ −DX̃in‖
2

F

−λtrace((P̃Ỹ)(P̃Ỹ)T ) s.t. PiP
T

i = I, i = 1, · · · ,M

using Stiefel manifold optimization technique [45].

3. Update step for D, X̃: Learn common dictionary D and

sparse code, X̃ using discriminative dictionary learning
algorithm such as FDDL [49]

{D∗
, X̃

∗} = arg min
D,X̃

‖P̃Ỹ −DX̃‖2F + µ‖P̃Ỹ −DX̃in‖
2

F+

ν‖DX̃out‖
2

F s.t. ‖x̃j‖0 ≤ T0,∀j

Output: Learned dictionary D, projection matrices {Pi}
M
i=1

Algorithm 1: Shared Domain-adapted Dictionary Learn-

ing (SDDL)

IV. NON-LINEAR EXTENSION

In many vision problems, projecting the original features

may not be good enough due to non-linearity in data. This can

be overcome by transforming the data into a high-dimensional

feature space. Let Φ : R
n → H be a mapping to the

reproducing kernel Hilbert space H. The mapping P i to the

reduced space, can be characterized by a compact, linear

operator, P i : H → R
d. As the feature space can be infinite

dimensional, the projection matrix P i cannot be handled in

this form. To make the kernelization of the algorithm possible,

we use the following proposition:

Proposition 1: There exists an optimal solution

P∗
1, · · · ,P

∗
M,D∗ to equation (6), which has the following

form:

P∗
i = (YiAi)

T ∀ i = 1, · · · ,M (10)

D∗ = P̃∗ỸB̃ (11)

where, P̃∗ = [P∗
1, · · · ,P

∗
M], for some Ai ∈ R

Ni×n and some

B̃ ∈ R

∑
Ni×K .

Proof: See Appendix I.

With this proposition, the cost functions can be written as:

C1(Ã, B̃, X̃) = ‖ÃTK̃(I− B̃X̃)‖2F+

µ‖ÃTK̃(I− B̃X̃in)‖
2

F + ν‖ÃTK̃B̃X̃out‖
2

F (12)

C2(Ã) = −trace((ÃTK̃)(ÃTK̃)T ) (13)

where, K̃ = ỸTỸ and ÃT = [AT
1 , · · · ,A

T
M]. The equality

constraints now become:

PiP
T
i = AT

i KiAi = I, ∀i = 1, · · · ,M (14)

where, Ki = YT
i Yi. The optimization problem now becomes:

{Ã∗, B̃∗, X̃∗} = arg min
Ã,B̃,X̃

C1(Ã, B̃, X̃) + λC2(Ã)

s.t. AT
i KiAi = I, i = 1, · · · ,M and ‖x̃j‖1 ≤ T0, ∀j (15)

This formulation allows joint update of D and Pi via Ai.

Let K = 〈Φ(Ỹ),Φ(Ỹ)〉H. Then, it can be shown similar

to proposition 1 that:

P
∗
i = ATΦ(Y)T;D∗ = ÃT

KB̃.

Thus, we get the cost functions as:

C1(Ã, B̃, X̃) = ‖ÃT
K(I− B̃X̃‖2F+

µ‖ÃT
K(I− B̃X̃in‖

2

F + ν‖ÃT
KB̃X̃out‖

2

F , (16)

C2(Ã) = −trace((ÃT
K)(ÃT

K)T ) (17)

and the equality constraints as,

AT
i KiAi = I ∀ i = 1, · · · ,M,

where Ki = 〈Φ(Yi),Φ(Yi)〉H.

A. Update step for Ã

Here we assume that (B̃, X̃) are fixed. Then, the optimiza-

tion for Ã can be solved efficiently. We have the following

proposition.

Proposition 2: The optimal solution of equation (40) when

(B̃, X̃) are fixed is:

Ã∗ = VS− 1

2G∗ (18)
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where, V and S come from the eigendecomposition of

K̃ = VSVT, and G∗ ∈ R

∑
Ni×n = [G∗T

1 , · · · ,G∗T
M ]T is

the optimal solution of the following problem:

{G∗} = arg min
G

trace[GTHG]

s.t. GT
i Gi = I ∀ i = 1, · · · ,M (19)

where,

H = S
1

2VT((I− B̃X̃)(I− B̃X̃)T + µ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T − λI)VS
1

2 (20)

Proof: See Appendix I.

Equation (41) is non-convex due to non-linear equality

constraints. Specifically, due to the orthonormality condition

on Gi, it involves optimization on the Stiefel manifold. We

solved this problem using the efficient approach presented in

[45].

B. Update step for B̃, X̃

For a fixed Ã, the problem becomes that of discriminative

dictionary learning, with data as Z = ÃTK̃ and dictionary

D = ÃTK̃B̃. To jointly learn the dictionary, D, and sparse

code, X̃, we use the framework of the discriminative dictionary

learning approach presented in [49]. Once the dictionary, D,

is learned, we can update B̃ as:

B̃ = Z†D, (21)

where Z† is the pseudo-inverse of Z defined as Z† =
(ZTZ)−1ZT .

The proposed, Non-linear Shared Domain-adapted Dictio-

nary Learning (kerSDDL) algorithm is summarized in Algo-

rithm 2.

V. CLASSIFICATION

Given a test sample, yte from domain k, we propose the

following steps for classification, similar to [28].

A. Linear Classification

1) Compute the embedding of the sample in the common

subspace, zte using the projection, P ∗
k.

zte = Pk
∗yte

2) Compute the sparse coefficients, x̂te, of the embedded

sample over dictionary D using the OMP algorithm [31].

x̂te = arg min
x

‖zte −Dx‖2F s.t. ‖x‖0 ≤ T0.

3) Now, the sample can be assigned to class i, if the

reconstruction using the class dictionary, Di and the

sparse code corresponding to the atoms of the dictionary,

x̂i
te is minimum.

Output class = arg min
i=1,··· ,C

‖zte −Dix̂
i
te‖

2
F.

However, the reconstruction error may not be discrimi-

native enough in the reduced space. So, we project the

class-wise reconstruction, Dix̂
i
te into the feature space,

Input: Data {Yi}
M
i=1 and corresponding class labels {Ci}

M
i=1

for M domains, sparsity level T0, dictionary size K and
dimension n, parameter values µ, ν
Procedure:
1. Initialize: Initialize Ã such that AiKiAi = I

∀ i = 1, · · · ,M . For this, find SVD of each kernel matrix,
Ki = ViSiV

T

i . Set Ai as the matrix of eigen-vectors with top
n eigen-values as columns.

2. Update step for B̃: Learn common dictionary D with data

as Z = Ã
T
K, and using discriminative dictionary learning

algorithm as FDDL. Update B̃ as:

B̃ = Z
†
D

3. Update step for Ã: Update Ã as:

{G∗} = arg min
G

trace[GT
HG]

s.t. G
T

i Gi = I ∀ i = 1, · · · ,M

where, Ã∗ = VS
− 1

2 G
∗ and H is:

H = S
1

2V
T((I− B̃X̃)(I− B̃X̃)T + µ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T − λI)VS
1

2

Output: Learned dictionary D, projection matrices {Ai}
M
i=1

Algorithm 2: Non-linear Shared Domain-adapted Dictio-

nary Learning (kerSDDL)

and assign the test sample to the class with the minimum

error in the original feature space:

Output class = arg min
i=1,··· ,C

‖yte −Pk
∗TDix̂

i
te‖

2
F (22)

B. Non-linear classification

Here, we consider the general case of classifying mapping

of the sample into kernel space, Φ(yte).

1) Compute the embedding of the sample in the common

subspace, zte using the projection, P∗
k.

zte = P
∗
kΦ(yte) = AkKte

where, Kte = 〈Φ(Yk),Φ(yte)〉.
2) Compute the sparse coefficients, x̂te, of the embedded

sample over dictionary D using the OMP algorithm [31].

x̂te = arg min
x

‖zte −Dx‖2F s.t. ‖x‖0 ≤ T0.

3) Project the class-wise reconstruction, Dix̂
i
te into the

feature space, and assign the test sample to the class

with the minimum error in the original feature space:

Output class = arg min
i=1,··· ,C

‖Φ(yte)−P
∗T
k Dix̂

i
te‖

2
F

= arg min
i=1,··· ,C

κte − 2KteA
∗
kDi + x̂iT

teD
T
i A

∗
kKkA

∗
kDix̂

i
te,

where κte = 〈Φ(yte),Φ(yte)〉.

VI. EXPERIMENTS

We conducted various experiments to ascertain the ef-

fectiveness of the proposed method. First, we demonstrate
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some synthesis and recognition results on the CMU Multi-

Pie dataset for face recognition across pose and illumination

variations. This also provides insights into our method through

visual examples. Next we show the performance of our method

on domain adaptation databases and compare it with existing

adaptation algorithms.

A. CMU Multi-Pie Dataset

The Multi-pie dataset [19] is a comprehensive face dataset

of 337 subjects, having images taken across 15 poses, 20
illuminations, 6 expressions and 4 different sessions. For the

purpose of our experiment, we used 129 subjects common to

both Session 1 and 2. The experiment was done on 5 poses,

ranging from frontal to 75o. Frontal faces were taken as the

source domain, while different off-frontal poses were taken as

target domains. Dictionaries were trained using illuminations

{1, 4, 7, 12, 17} from the source and the target poses, in Ses-

sion 1 per subject. All the illumination images from Session

2, for the target pose, were taken as probe images. The linear

kernel was used for all the experiments.
1) Pose Alignment: First we consider the problem of pose

alignment using the proposed dictionary learning framework.

Pose alignment is challenging due to the highly non-linear

changes induced by 3-D rotation of face. Images at the extreme

pose of 60o were taken as the target pose. A shared discrim-

inative dictionary was learned using the approach described

in this paper. Given the probe image, it was projected on

the latent subspace and reconstructed using the dictionary.

The reconstruction was back-projected onto the source pose

domain, to give the aligned image. Figure 2(a) shows the

synthesized images for various conditions. We can draw some

useful insights about the method from this figure. Firstly, it

can be seen that there is an optimal dictionary size, K = 5,

where the best alignment is achieved. Further, by learning a

discriminative dictionary, the identity of the subject is retained.

For K = 7, the alignment is not good, as the learned

dictionary is not able to successfully correlate the two domains

when there are more atoms in the dictionary. Dictionary with

K = 3 has higher reconstruction error, hence the result is

not optimal. We chose K = 5 for additional experiments

with noisy images. It can be seen that from rows 2 and 3
that the proposed method is robust even at high levels of

noise and missing pixels. Moreover, de-noised and in-painted

synthesized images are produced as shown in rows 2 and 3
of Figure 2(a), respectively. This shows the effectiveness of

our method. Moreover, the learned projection matrices (Figure

2(b)) show that our method can learn the internal structure

of the two domains. As a result, it is able to learn a robust

common dictionary.
2) Recognition: We also conducted recognition experiment

using the set-up described above. Table I shows that our

method compares favorably with some of the recently pro-

posed multi-view recognition algorithms [38], and gives the

best performance on average. The linear kernel was found

to be giving better performance, hence, we do not report the

results for kerSDDL. The dictionary learning algorithm, FDDL

[49] is not optimal here as it is not able to efficiently represent

the non-linear changes introduced by the pose variation.

(a)

(b)

Fig. 2. (a) Examples of pose-aligned images using the proposed
method. Synthesis in various conditions demonstrate the robustness
of the method. (b) First few components of the learned projection
matrices for the two poses.

Method
Probe pose

Average
15o 30o 45o 60o 75o

PCA 15.3 5.3 6.5 3.6 2.6 6.7

PLS [37] 39.3 40.5 41.6 41.1 38.7 40.2

LDA 98.0 94.2 91.7 84.9 79.0 89.5

CCA [37] 92.1 89.7 88.0 86.1 83.0 83.5

GMLDA [38] 99.7 99.2 98.6 94.9 95.4 97.6

FDDL [49] 96.8 90.6 94.4 91.4 90.5 92.7

SDDL 98.4 98.2 98.9 99.1 98.8 98.7

TABLE I
COMPARISON OF THE PROPOSED METHOD WITH OTHER

ALGORITHMS FOR FACE RECOGNITION ACROSS POSE.

B. Object Recognition

We now evaluate our method for object recognition. The

experiments use the dataset which was introduced in [35].

The dataset consists of images from 3 sources: Amazon

(consumer images from online merchant sites), DSLR (images

by DSLR camera) and Webcam (low quality images from

webcams). In addition, we also tested on the Caltech-256

dataset [18], taking it as the fourth domain. Figure 3 shows

sample images from these datasets, and clearly highlights the

differences between the domains. We follow 2 set-ups for

testing the algorithm. In the first set-up, 10 common classes:

BACKPACK, TOURING-BIKE, CALCULATOR, HEADPHONES,

COMPUTER- KEYBOARD, LAPTOP-101, COMPUTER- MONI-

TOR, COMPUTER-MOUSE, COFFEE- MUG, AND VIDEO- PRO-

JECTOR, common to all the four datasets are used. In this
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Fig. 3. Example images from KEYBOARD and BACK-PACK
categories in Caltech-256, Amazon, Webcam and DSLR. Caltech-
256 and Amazon datasets have diverse images, Webcam and DSLR
are similar datasets with mostly images from offices.

case, there are a total of 2533 images. Each category has 8 to

151 images in a dataset. In the second set-up, we evaluate the

methods for adaptation using multiple domains. In this case,

we restrict to the first dataset, and test on all the 31 classes in

it. For both the cases, we use 20 training samples per class for

Amazon/Caltech, and 8 samples per class for DSLR/Webcam

when used as source, and 3 training samples for all of them

when used for target domain. Rest of the data in the target

domain is used for testing. The experiment is run 20 times for

random train/test splits and the result is averaged over all the

runs.

We demonstrate the effectiveness of the proposed method

for two cases: 1. same features extracted for all the domains,

2. different features extracted for different domains.

1) Adaptation with same features: First, we test the

proposed algorithms for the case when the same feature is

extracted for all the domains.

Feature Extraction: We used the 800-bin SURF features

provided by [35] for the Amazon, DSLR and Webcam

datasets. For the Caltech images, first SURF features were

extracted from the images of the Caltech data and a random

subset of the Amazon dataset. The features obtained from

the Amazon dataset were grouped into 800 clusters using the

k-means algorithm. The cluster centers were then used to

quantize the SURF features obtained from the Caltech data

to form 800-bin histograms. The histograms were normalized

and then used for classification.

Parameter Settings: We set µ = 4 and ν = 30. Dictionary

size, K = 4 atoms per class and final dimension, n = 60
for the first set-up, for both SDDL and kerSDDL algorithms.

For the second set-up, K = 6 atoms per class and n = 90
for SDDL and kerSDDL. For FDDL, the parameters, µ and

ν are the same as SDDL, and we learn K = 8 atoms per

class for the first set-up and K = 10 atoms per class for

the second. The SDDL algorithm was trained using same

projection matrix for all the domains as discussed in Section

III-C. We initialized the matrices as PCA of source, target data

or both data taken together, and report the best performance

among them. For kerSDDL method, we used the simple non-

parametric histogram intersection kernel for reporting all the

values. The projection matrix for kerSDDL was initialized as

described in Algorithm 2. The FDDL dictionary was trained

using both the source and the target domain features, as it was

found to give the best results. Original histogram features were

used for both the algorithms. Performance of the proposed

SDDL method is compared to FDDL [49], and some recently

proposed domain-adaptation algorithms [35], [16], [17], [15],

[21], [25], [29].

1) Results using single source: Table II(a) shows a com-

parison of the results of different methods on 8 source-

target pairs. The proposed algorithms give the best

performance for 6 domain pairs, and is the second best

for 2 pairs. For Caltech-DSLR and Amazon-Webcam

domain pairs, there is more than 15% improvement over

the GFK [15] and SID [29] algorithms. Furthermore,

a comparison with the FDDL algorithm shows that

the learning framework of [49] is inefficient, when the

test data comes from a different distribution than the

data used for training. Both the SDDL and kerSDDL

algorithms perform better than FDDL on all the pairs.

2) Results using multiple sources: As our proposed

framework can also handle multiple domains, we also

experimented with multiple source adaptation. Table

II (b) shows the results for 3 possible combinations.

The proposed methods outperforms the original SGF

method [16] on two settings, and other methods for all

the settings. However, [17] reports higher numbers on

webcam and amazon as targets, using boosted classifiers.

Similarly techniques can be explored for improving the

proposed method as a future direction.

3) Ease of adaptation: A rank of domain (ROD) metric

was introduced in [15] to measure the adaptability of

different domains. It was shown that ROD correlates

with the performance of adaptation algorithm. For ex-

ample, Amazon-Webcam pair has higher ROD than

DSLR-Webcam pair, hence, GFK performs worse on

the former. However, for our case, we find that the

recognition rates for these cases are 72.0 % and 72.6
%, respectively. This is the case because by learning

projections along-with the common dictionary, we can

achieve a better alignment of the datasets.

4) Parameter Variations: We also conducted experiments

studying recognition performance under different input

parameters. Figure 4 shows the result of different set-

tings. The implications are briefly discussed below:

a) Number of source images: Here, we choose

Amazon/Webcam domain pair, as it is "difficult" to

adapt. We increased the number of source images

and studied the performance of SDDL and kerS-

DDL and compared it with FDDL. It can be seen

that while FDDL’s performance decreases sharply

with more source images, SDDL and kerSDDL



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, MONTH 20XX 8

(a) Performance comparison on single source four domains benchmark (C: caltech, A: amazon, D: dslr, W: webcam)

Methods C → A C → D A → C A → W W → C W → A D → A D → W

Metric[35] 33.7± 0.8 35.0 ± 1.1 27.3± 0.7 36.0 ± 1.0 21.7± 0.5 32.3 ± 0.8 30.3± 0.8 55.6 ± 0.7

SGF[16] 40.2± 0.7 36.6 ± 0.8 37.7± 0.5 37.9 ± 0.7 29.2± 0.7 38.2 ± 0.6 39.2± 0.7 69.5 ± 0.9

GFK[15] 46.1± 0.6 55.0 ± 0.9 39.6± 0.4 56.9 ± 1.0 32.8± 0.1 46.2 ± 0.6 46.2± 0.6 80.2 ± 0.4

HFA [25] 45.5± 0.9 51.9 ± 1.1 31.1± 0.6 58.6 ± 1.0 31.1± 0.6 45.9 ± 0.7 45.8± 0.9 62.1 ± 0.7

SID [29] 50 ± 0.5 57.1 ± 0.4 41.5± 0.8 57.8 ± 0.5 40.6± 0.4 51.5± 0.6 50.3± 0.2 87.8± 1.0

FDDL[49] 39.3± 2.9 55.0 ± 2.8 24.3± 2.2 50.4 ± 3.5 22.9± 2.6 41.1 ± 2.6 36.7± 2.5 65.9 ± 4.9

SDDL 54.4± 2.2 67.7 ± 4.0 41.8± 2.2 67.1 ± 3.2 41.5± 2.1 48.2 ± 2.3 50.6± 2.1 86.4 ± 2.8

kerSDDL 49.5± 2.6 76.7± 3.9 27.4± 2.4 72.0± 4.8 29.7± 1.9 49.4 ± 2.1 48.9± 3.8 72.6 ± 2.1

(b) Performance comparison on multiple sources three domains benchmark

Source Target SGF* [17] SGF [16] RDALR[21] FDDL[49] SDDL kerSDDL

dslr, amazon webcam 64.5± 0.3 52± 2.5 36.9± 1.1 41.0 ± 2.4 53.6± 1.2 57.8± 2.4

amazon, webcam dslr 51.3 ± 0.7 39± 1.1 31.2± 1.3 38.4 ± 3.4 55.8± 2.0 56.7± 2.3

webcam, dslr amazon 38.4± 1.0 28± 0.8 20.9± 0.9 19.0 ± 1.2 23.8± 1.2 24.1± 1.6

TABLE II
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHOD ON THE AMAZON, WEBCAM, DSLR AND CALTECH DATASETS.

methods show increase in the performance. Hence,

by adapting the source to the target domain, our

method can use the source information to increase

the accuracy of target recognition, even when their

distributions are very different.

b) Dictionary size: We varied the dictionary size

for kerSDDL algorithm for different source-target

pairs. All the domain pairs show an initial sharp

increase in the performance, and then become

almost flat after the dictionary size of 3 or 4. The

flat region indicates that alignment of the source

and the target data is limited by the number of

available target samples. But also, on a positive

note, it can be seen that even a smaller dictionary

can give the optimal performance.

c) Common subspace dimension: Similar to the

previous case, we get an initial sharp increase

followed by a flat recognition curve. This shows

that the method is effective even when the data is

projected onto a low-dimensional space.

5) Convergence: Figure 4(d) shows the cost function with

iteration for SDDL and kerSDDL algorithms. It can be

seen that both the algorithms converge quickly in 5-6

iterations.

2) Adaptation with different features: The proposed

methods can be generalized for cases when features of

different types (like dimension) are extracted for different

domains. Note that the original FDDL algorithm [49] cannot

be used for such cases. Also some of the adaptation algorithms

compared above cannot be generalized for such cases [15],

[17], [29], [21]. We compare the proposed methods with

recent heterogeneous adaptation methods [25], [24], [43],

[40] and demonstrate their effectiveness.

Experiment Set-up: We restrict the evaluation to Amazon,

DSLR and Webcam datasets, using all the 31 classes for eval-

uation. The train-test split was done as described in Section

VI-B1. The evaluation was done using 3 different experimental

set-ups described as follows:

1) DSLR-600 dataset: We extracted 600-dimensional

Fig. 5. Example images from half-tone and sketch datasets.

SURF features for DSLR dataset as described in

[24]. We demonstrate results for adaptation from 800-

dimensional SURF features extracted in Section VI-B1

to the new features.

2) Halftone and Sketch datasets: To test the proposed

algorithms across different domain shifts, we created

two new datasets by half-toning and edge detection from

the original dataset. Figure 5 shows some of the images

from these datasets. Half-toning images, which imitate

the effect of jet-printing technology in the past, were

generated using the dithering algorithm in [27]. Edge

images are obtained by applying the Canny edge detector

[4] with the threshold set to 0.07. We extracted 800-bin

SURF features for both the datasets, following the same

approach as for the original dataset.

Parameter Setting: We set µ = 4 and ν = 30. Dictionary

size, K = 4 atoms per class and final dimension, n = 90
for all the set-ups, for both SDDL and kerSDDL algorithms.

For kerSDDL method, we used the non-parametric histogram

intersection kernel for all the experiments. The projection

matrix for kerSDDL was initialized as described in Algorithm

2. For SDDL, we initialized separate projection matrix for

each domain as described in Algorithm 1.
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Fig. 4. Recognition performance under different: (a) number of source images, (b) dictionary size, (c) common subspace dimension. (d) Convergence of the
proposed algorithms. Naming of domains is done as source/target.

1) DSLR-600 adaptation Table II(a) shows the compar-

ison of the proposed methods for adaptation of 800-

dimensinal SURF features to 600-dimensional SURF

features from DSLR data. It can be seen that kerSDDL

gives better performance than the recent state-of-art

heterogenous adaptation methods. SDDL algorithm also

performs on par with other algorithms.

2) Half-tone and Sketch dataset adaptation Tables II(b),

II(c) show results for adaptation from original images

to half-tone and sketch image datasets respectively. The

proposed algorithms are compared with [24] and nearest

neighbor classification method. It can be seen that the

kerSDDL algorithm performs better than [24] for all the

source-target pairs.

VII. CONCLUSION

We have proposed a novel framework for adapting dictio-

naries to testing domains under arbitrary domain shifts. An

efficient optimization method is presented. Furthermore, the

method is kernelized so that it is robust and can deal with

the non-linearity present in the data. The learned dictionary

is compact and low-dimensional. To gain intuition into the

working of the method, we demonstrate applications like

pose alignment and pose-robust face recognition. We evalu-

ate the proposed algorithms for different object recognition

adaptations. Specifically, we show that the methods can be

used for cases like heteregenous domain adapation, where

original dictionary learning framework cannot be applied. The

proposed methods were compared with the recent domain

adaptation algorithms, and the proposed methods were found

to be better or comparable to the previous methods. Future

works will include studying the effect of using unlabeled data

while training, and other relevant problems like large-scale and

online adaptation of dictionaries.
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IX. APPENDIX

The optimization problem (6) is given as:

{D∗, P̃∗, X̃∗} = arg min
D,P̃,X̃

C1(D, P̃, X̃) + λC2(P̃)

s.t. PiP
T
i = I, i = 1, · · · ,M and ‖x̃j‖1 ≤ T0, ∀j (23)

where,

C1(D, P̃, X̃) = ‖P̃Ỹ −DX̃‖2F + µ‖P̃Ỹ −DX̃in‖
2

F+

ν‖DX̃out‖
2

F , (24)

C2(P̃) = −trace((P̃Ỹ)(P̃Ỹ)T ). (25)

A. Proposition 1:

There exists an optimal solution P∗
1, · · · ,P

∗
M,D∗ to equa-

tion (6), which has the following form:

P∗
i = (YiAi)

T ∀ i = 1, · · · ,M (26)

D∗ = P̃∗ỸB̃ (27)

Proof:

Form for D∗: First we will show the form for D∗. We can

decompose D∗ into two orthogonal components as follows:

D∗ = D‖ +D⊥ (28)

where, D‖ = (P̃Ỹ)B̃, DT
⊥(P̃Ỹ) = 0 (29)
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(a) Performance comparison on recognition across different features

Source Target Metric-asymm [24] HeMap [40] DAMA [43] HFA [25] SDDL kerSDDL

amazon dslr-600 53.1 ± 2.4 42.8± 2.4 53.3± 2.4 55.4± 2.8 50.4 ± 2.5 61.5± 3.6

webcam dslr-600 53.0 ± 3.2 42.2± 2.6 53.2± 3.2 54.3± 3.7 49.4 ± 2.9 58.3± 2.6

(b) Performance comparison for adaptation to half-tone images

Methods W → D-half D → W-half A → D-half A → W-half

kNN 25.2± 2.6 35.2± 2.2 25.0± 2.0 34.0± 1.4

Metric[35] 38.8± 2.4 40.2± 2.0 33.8± 3.8 39.0± 2.2

SDDL 32.3± 1.7 36.4± 1.9 30.1± 2.0 34.7± 1.7

kerSDDL 42.0± 2.6 43.0± 2.3 46.4± 3.1 51.0± 2

(c) Performance comparison for adaptation to sketch images

Methods W → D-sketch D → W-sketch A → D-sketch A → W-sketch

kNN 31.4± 2.7 31.3± 1.7 32.1± 2.4 33.6± 2.7

Metric[35] 39.1± 2.7 35.0± 2.2 38.0± 2.8 37.3± 2.5

SDDL 35.8± 2.1 32.1± 1.8 33.8± 2.1 34.0± 1.8

kerSDDL 41.5± 2.6 38.0± 2.6 42.1± 2.4 42.5± 2.3

TABLE III
COMPARISON OF THE PERFORMANCE OF THE PROPOSED METHODS FOR PERFORMANCE ON ADAPTATION FOR DSLR-600, HALF-TONE AND SKETCH

DATASETS.

for some B ∈ R

∑M
i=1

Ni×K . Substituting the value of D∗ into

the value of C1(D, P̃, X̃), we get for the three terms of C1,

ignoring the multiplicative constants µ, ν:

First Term = trace((P̃Ỹ −DX̃)T (P̃Ỹ −DX̃))

= trace(ỸTP̃TP̃Ỹ + ỸTP̃TD‖X̃+ X̃TDT
‖ D‖X̃+

X̃TDT
⊥D⊥X̃)

≥ trace(ỸTP̃TP̃Ỹ + ỸTP̃TD‖X̃+ X̃TDT
‖ D‖X̃). (30)

Second Term = trace((P̃Ỹ −DX̃in)
T (P̃Ỹ −DX̃in))

= trace(ỸTP̃TP̃Ỹ + ỸTP̃TD‖X̃in + X̃T
inD

T
‖ D‖X̃in+

X̃T
inD

T
⊥D⊥X̃in)

≥ trace(ỸTP̃TP̃Ỹ + ỸTP̃TD‖X̃in + X̃T
inD

T
‖ D‖X̃in).

(31)

Third Term = trace(DX̃out)
T(DX̃out))

= trace(X̃T
outD

T
‖ D‖X̃out + X̃T

outD
T
⊥D⊥X̃out).

≥ trace(X̃T
outD

T
‖ D‖X̃out) (32)

The equality is reached when D⊥ = 0. Hence, the form of

D∗ is:

D∗ = P̃ỸB̃.

Form for P∗
i : For each i = 1, · · · ,M , P∗

i can be

decomposed as:

P∗
i = P‖,i +P⊥,i (33)

where, P‖,i = (YiAi)
T,P⊥,iYi = 0. (34)

Let P̃‖ = [P‖,1, · · · ,P‖,M] and P̃⊥ = [P⊥,1, · · · ,P⊥,M].
Substituting the value for D∗ into cost terms, we can write

the terms of C1 as:

First Term = ‖P̃∗Ỹ(I− B̃X̃)‖2F

= ‖(P̃‖ + P̃⊥)Ỹ(I− B̃X̃)‖2F

= ‖P̃‖Ỹ(I− B̃X̃)‖2F

= trace(P̃‖Ỹ(I− B̃X̃)(I− B̃X̃)TỸTP̃T
‖ ). (35)

Second Term = ‖P̃∗Ỹ(I− B̃X̃in)‖
2

F

= ‖(P̃‖ + P̃⊥)Ỹ(I− B̃X̃in)‖
2

F

= ‖P̃‖Ỹ(I− B̃X̃in)‖
2

F

= trace(P̃‖Ỹ(I− B̃X̃in)(I− B̃X̃in)
TỸTP̃T

‖ ). (36)

Third Term = ‖P̃∗Ỹ(B̃X̃out)‖
2

F

= ‖(P̃‖ + P̃⊥)Ỹ(B̃X̃out)‖
2

F

= ‖P̃‖Ỹ(B̃X̃out)‖
2

F

= trace(P̃‖Ỹ(B̃X̃out)(B̃X̃out)
TỸTP̃T

‖ ). (37)

The cost term, C2 can be written as:

C2(P̃) = −trace((P̃Ỹ)(P̃Ỹ)T )

= −trace(((P̃‖ + P̃⊥)Ỹ)((P̃‖ + P̃⊥)Ỹ)T )

= −trace((P̃‖Ỹ)(P̃‖Ỹ)T ). (38)

Putting all the terms together, the overall objective function

becomes:

trace(P̃‖Ỹ((I− B̃X̃)(I− B̃X̃)T + µ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T−λI)ỸTP̃T
‖ )

= trace(ÃTK̃((I− B̃X̃)(I− B̃X̃)T + µ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T−λI)K̃Ã). (39)

It can be seen that from equation (39), that the cost function

is independent of P⊥,i, hence it can be safely set to be 0.

Hence,

P∗
i = (YiAi)

T.
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1) Updating Ã: Using Proposition 1, optimization problem

equation (6) becomes:

{Ã∗, B̃∗,X∗} = arg min
Ã,B̃,X̃

C1(Ã, B̃, X̃) + λC2(Ã)

s.t. AT
i KiAi = I, i = 1, · · · ,M and ‖x̃j‖1 ≤ T0, ∀j. (40)

Here, we assume that (B̃, X̃) are fixed. Then, the optimiza-

tion for Ã can be solved efficiently. We have the following

proposition.

2) Proposition 2:: The optimal solution of equation (40)

when (B̃, X̃) are fixed is:

{G∗} = arg min
G

trace[GTHG]

s.t. GT
i Gi = I ∀ i = 1, · · · ,M (41)

where,

H = S
1

2VT((I− B̃X̃)(I− B̃X̃)T + µ(I− B̃X̃in)

(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T − λI)VS
1

2 (42)

Proof:

Let,

K̃ = VSVT,

H̃ = S
1

2VT((I− B̃X̃)(I− B̃X̃)T+

µ(I− B̃X̃in)(I− B̃X̃in)
T + ν(B̃X̃out)(B̃X̃out)

T

−λI)VS
1

2 ,

and

G = S
1

2VTÃ.

Substituting into equation (39), we get the required form of

the optimization.
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