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ABSTRACT

Fourier descriptors (FDs) are shape-based features for the recogni-
tion of two-dimensional connected shapes. We propose a method
that can extract FDs of an object directly from compressive mea-
surements without reconstructing the image. Our method entails es-
timating the edges via discrete horizontal and vertical image gradi-
ents from compressive measurements. Fourier descriptors are then
extracted from the thresholded edges. One of the main advantages of
the proposed method is that it requires fewer number of compressive
measurements to estimate FDs than required to estimate the origi-
nal image. Various numerical experiments on synthetic and real data
demonstrate the effectiveness of the proposed method.

Index Terms— Fourier descriptors, compressive sampling,
compressed sensing, feature extraction.

1. INTRODUCTION

Compressive sampling (CS) (also known as compressed sensing) is a
concept in signal processing where one measures a small number of
non-adaptive linear combinations of the signal. These measurements
are usually much smaller than the number of samples that define the
signal. From these small number of measurements, the signal is then
reconstructed by a non-linear procedure [1], [2].

Since the introduction of CS in the mid 2000’s, many imaging
modalities have been developed that make use of CS theory for imag-
ing. Some examples include single pixel camera [3], magnetic res-
onance imaging [4], synthetic aperture radar [5], ground penetrating
radar [6], and millimeter wave imaging [7]. While the main objective
of some of these imaging modalities is to reduce the number of sam-
ples required for imaging, in many applications, we are not interested
in obtaining an exact reconstruction of the scene from compressive
measurements. For instance, in the case of object recognition, one
is interested in recognizing the identity of the object present in the
image rather than obtaining a precise reconstruction of the object.

Many methods have been developed that explore the possibil-
ity of performing classification, detection or tracking of objects di-
rectly from the compressed measurements without reconstructing
the image. In [8], a classification algorithm called the smashed filter
was proposed that can classify objects directly from the compressive
measurements. In [9], it was shown that compressive measurements
can be effective for a variety of detection, classification, estima-
tion, and filtering problems. In particular, [10] presented a technique
via which background subtraction can be performed on compressive
measurements of a scene. Recently [11] proposed a modification to
this technique which adaptively adjusts the number of compressive
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Fig. 1: An overview of the proposed method.

measurements collected to the dynamic foreground sparsity typical
to surveillance data. A more general problem regarding signal track-
ing using compressive observations was considered in [12]. In [13],
it was shown that CS can be used to find parameterized shapes in im-
ages, by exploiting sparseness in the Hough transform domain. [14]
developed a non-parametric shape estimation algorithm for inverse
problems using compressed sensing.

Despite the significant advances in statistical signal processing
from compressive measurements, extraction of geometric and shape-
based features directly from compressed measurements has not been
studied extensively in the literature. In this paper, we propose an
algorithm that can extract the Fourier descriptor (FD) of an object
directly from compressive measurements without reconstructing the
image. The FD is a robust shape descriptor that can be used to de-
scribe the boundary of a shape in 2-dimensional space using the
Fourier methods [15]. The FD is very efficient to compute and is
invariant to translation, rotation and scale, which makes it a very at-
tractive descriptor to use in many practical image retrieval and object
recognition tasks [16].

Figure 1 gives an overview of the proposed method. Given com-
pressive measurements, we first extract the horizontal and vertical
differences of the desired shape by reformulating the original CS re-
construction problem as the problem of reconstructing two discrete
gradients. The edge of the shape is then estimated from the recovered
gradients. The standard FDs are then extracted from the recovered
edges. One of the main advantages of the proposed method is that
it requires fewer number of compressive measurements to estimate
FDs than required to estimate the original image. This is mainly due
to the fact that discrete gradients are much sparser than the origi-
nal image. Furthermore, unlike some of the previously proposed CS
detection and recognition methods that work only when the com-
pressive measurements correspond to partial Fourier measurements
[17], our method can work with any CS measurement matrix such as



Gaussian, Hadamard or Fourier.
The rest of the paper is organized as follows. In Section 2, we

give a brief background on CS and FD. Details of the proposed com-
pressive FD algorithm are given in Section 3. Experimental results
on synthetic and real data are given in Section 4. Finally, Section 5
concludes the paper with a brief summary and discussion.

2. BACKGROUND

In this section, we give a brief background on CS and FD.

2.1. Compressive Sensing

Let x ∈ RN be lexicographically vectorized image X ∈ RN1×N2 ,
where N = N1N2. Assume that x is k-sparse in a basis Ψ so that
x = Ψx0 with ‖x0‖0 = k � N , where x0‖0 is the `0-norm that
counts the number of nonzero elements in x0. If x is compressible
in Ψ, then it can be well approximated by the best k-term repre-
sentation. Consider a random M × N measurement matrix Φ with
M < N and assume that M measurements, which make up a vec-
tor y, is derived from y = Φx = ΦΨx0 = Θx0. According to
CS theory, one can reconstruct x via x0 by solving the following
`1-minimization problem

x̂0 = argmin
x′
0

‖x′0‖1 subject to y = ΦΨx′0 (1)

provided that certain conditions (i.e. Restricted Isometry Property
(RIP) or incoherence property) are met [18]. Here, ‖x‖1 =

∑
i |xi|

is the `1-norm of x. Various measurement matrices exist in the CS
literature that have been shown to satisfy the RIP property with high
probability [19]. Some of them include random Gaussian matrix,
partial Fourier transform matrix and Bernoulli matrix. In the case
when there are noisy observations, y = Θx0 + η, with ‖η‖ ≤ ε,
the following optimization problem can be solved to approximate x0

x̂0 = argmin
x′
0

‖x′0‖1 subject to ‖y −ΦΨx′0‖ ≤ ε. (2)

2.2. Fourier Descriptors

Let a(n) and b(n) be the coordinates of the nth pixel on the bound-
ary of a given 2D shape containing D pixels. A complex number
z(n) can be formed as z(n) = a(n) + jb(n), n = 0, · · · , D − 1.
Then, the FD of this shape is defined as the discrete Fourier trans-
form (DFT) of z

Z(k) =

D−1∑
n=0

z(n)e−j2πnk/D, k = 0, · · · , D − 1. (3)

3. PROPOSED METHOD

In order to extract the FDs from a given image, one has to first esti-
mate the boundary of the object. This can be done by detecting the
edges in the image. Hence, given the compressed measurements y,
the first step of our FD extraction algorithm involves recovering the
horizontal and vertical discrete gradients of x from y. Note that the
horizontal and vertical gradients of X can be implemented by 2D
convolutions as

Xx = [−0.5, 0, 0.5] ∗X, and Xy = [−0.5, 0, 0.5]T ∗X, (4)

where ∗ denotes 2D convolution andXx andXy denote the horizon-
tal and vertical gradients ofX , respectively. One can reformulate the
above convolutions in matrix forms as

xx = Hxx, xy = Hyx, (5)

where Hx and Hy are the corresponding convolution matrices and
xx and xx are lexicographically vectorized gradients Xx and Xy ,
respectively. Hence, one can rewrite the CS observation model in
terms of the discrete gradients as

y = ΦH−1
x xx = ΦH−1

y xy. (6)

As a result, we can recover the discrete gradients from y by solving
the following two optimization problems

x̂x = argmin
xx

‖xx‖1 subject to y = ΦH−1
x xx (7)

x̂y = argmin
xy

‖xy‖1 subject to y = ΦH−1
y xy. (8)

Note that reconstruction of gradients from compressive measure-
ments will depend on the conditioning of ΦH−1

x and ΦH−1
y . It is

very difficult to prove any general claim that these resulting sensing
matrices satisfy a RIP or a mutual incoherence property. This re-
mains an open problem. We will further investigate this in our future
work.

Once the discrete gradients are estimated, the next step is to es-
timate edges from the recovered gradients. Gradient-based edge de-
tection has been the foundation of image processing for decades and
there are various edge detection operators existing in the literature
such as Canny, Sobel and Prewitt [20]. One can easily adapt any of
these gradient-based edge detectors to our proposed method by ac-
cordingly modifying Hx and Hy . While sophisticated edge detec-
tion methods can be applied to general grayscale images for better
edge detection, in the case of binary images finding edges is rather
simple since the gradient magnitude is also binary. Hence, for binary
images we obtain the boundary (i.e. edges) of x as the thresholded
gradient magnitude

e = threshold(
√

x̂2
x + x̂2

y). (9)

Gradient magnitude thresholding results in binary image gradients
which essentially are the boundary of an object in the image. Let
a(n) and b(n) be the coordinates of the nth non-zero pixel on the
boundary e containingD pixels. Then the FD of the boundary e can
be found as

Z(k) =

D−1∑
n=0

z(n)e−j2πnk/D, k = 0, · · · , D − 1, (10)

where z(n) = a(n)+jb(n). The proposed compressive FD (CSFD)
extraction algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

In this section, we present results of our proposed CSFD method on
synthetic and real data. We compare the performance of our method
with that of a naive method (see Figure 2) in which the image is first
reconstructed by solving the following L1TV algorithm [21]

x̂ = argmin
x0

w1‖x0‖TV + w2‖x0‖1 subject to y = Φx0, (11)



Algorithm 1: The CSFD algorithm.

1 Input: y,H−1
x ,H−1

y ,Φ
2 Estimate xx and xy by solving (7) and (8), respectively.
3 Obtain the boundary:

1) binary image: e = threshold(
√

x̂2
x + x̂2

y).
2) grayscale image: e = edge(x̂x, x̂y).

4 Let z(n) = a(n) + jb(n), where a(n) and b(n) are the
coordinates of the nth pixel on e.

5 Z(k) = DFT (z(n))
6 Output: Fourier descriptors: Z(k), k = 0, · · · , D − 1.

where w1 and w2 are the regularization parameters. Then the FDs
are extracted from the estimated image. Once the FDs are estimated,
relative error is used to measure the performance of different meth-
ods. The relative error is defined as

Relative Error =
‖Z − Ẑ‖2
‖Z‖2

, (12)

where Z are the magnitudes of true FDs and Ẑ are the magnitudes
of estimated FDs. It is possible to use any CS reconstruction algo-
rithm in our approaches, however, in our experiments with the syn-
thetic data, we employed a highly efficient algorithm that is suitable
for large-scale applications known as the spectral projected gradient
(SPGL1) algorithm [22][23] for solving (7) and (8). Note that due
to space limitations, we only present the results comparing the qual-
ity of the extracted FDs in this paper. Object recognition using the
estimated FDs will be presented elsewhere.
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Fig. 2: A naive method for estimating FDs from compressive mea-
surements.

4.1. Synthetic Data

In the first set of experiments, we reconstructed a 64× 64 grayscale
image shown in Figure 3 (a) from only 40% of its Gaussian mea-
surements. In this case, the CS matrix Φ corresponds to an M ×N
Gaussian matrix. Figure 3 (b) shows the edges reconstructed by our
method. One can clearly see that our method is able to fully recover
the boundary of the image from only 40% of the measurements. Fig-
ure 3 (c) shows the reconstructed image using the L1TV method and
the corresponding edges are shown in Figure 3 (d). In contrast to
our method, the L1TV method fails in extracting the edges. This
makes sense because the edges are much sparser than the image. To
illustrate this further, in Figure 4, we plot the sorted absolute values
of Xx, Xy and X corresponding to the original image. One can see
from this figure that the discrete gradients decay much faster than
the original pixel intensities. This means that our method can take
advantage of this and be able to estimate the edges with far fewer
measurements than required by the L1TV method. This in turn will

result in better estimation of FDs when our method is used compared
to L1TV.

(a) Original image (b) CSFD edges

(c) L1TV reconstruction (d) L1TV edges

Fig. 3: Reconstruction results with 40% of Gaussian measurements.
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Fig. 4: Magnitude of image X , horizontal gradient Xx, and vertical
gradient Xy coefficients in decreasing order for the 64 × 64 gumby
image.

In the second set of tests, we study the performance of differ-
ent methods in extracting FDs as we vary the number of compres-
sive measurements. We use partial Fourier, Gaussian and partial
Hadamard matrices to conduct experiments. These three classes of
measurement matrices are extensively used in many CS applications
[24]. The proportion of measurements known was varied from 0.1
to 0.9 in the increments of 0.1 and for each proportion of measure-
ments the algorithms were applied 5 times. Figure 5 shows the av-
erage relative error corresponding to different methods and different
sensing matrices. In particular, Figure 5 (a) - (c) show the results
corresponding to Fourier, Gaussian and Hadamard measurements ,
respectively. As can be seen from these figures, the proposed CSFD
method is able to extract FDs better than the naive method. In partic-
ular, our method achieves very low relative errors when the number
of measurements are around 50%. In contrast, the L1TV method
does not produce good relative errors since it requires more number
of measurements to reconstruct the image. Furthermore, the per-
formance of our method with respect to different sensing matrices



in Figure 5 (d) shows that our method performs comparably in all
three cases. This experiment clearly shows that one can extract FDs
from compressive measurements directly without reconstructing the
image.
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(b) Gaussian measurements
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(c) Hadamard measurements
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(d) Overall comparison

Fig. 5: Fourier descriptor reconstruction relative errors of CSFD
and L1TV when Fourier, Gaussian and Hadamard measurements are
used.

The next experiment is very similar to the last experiment ex-
cept that, this time, a significant amount of additive white Gaussian
noise was added to the compressive measurements. This time, the
proportion of measurements was fixed to 60%. The noise standard
variation starts from σ = 0.01 and increases to σ = 0.1 in incre-
ments of 0.01. The resulting average FD relative errors are shown in
Figure 6. As can be seen from these figures that our method is able
to extract FDs from noisy compressive measurements better than the
L1TV method. This experiment shows the robustness of our method
in the presence of additive noise.

4.2. Real Data

In the final set of tests, we conduct experiments using the real data
collected by the single pixel camera (SPC) [3]. We used the 64× 64
image of a black-and-white ‘R’ as the test image (See Figure 7 (a)).
According to the specific implementation details of the SPC de-
scribed in [3], the digital micromirror device (DMD) is equivalent to
a Bernoulli measurement matrix Φ that takes 0/1 values with equal
probability. In this experiment, rather than using the SPGL1 algo-
rithm, we use the CVX optimization toolbox [25][26] to reconstruct
the gradients from compressive measurements. Results are shown
in Figure 7 (b). As can be seen from this figure, our method per-
forms much better than the L1TV method and even with only 30%
of measurements, CSFD produces an average relative error as low as
0.0183 compared to the average relative error of 0.4546 correspond-
ing to the L1TV method. This experiment shows that our method
can be used in practical CS applications to extract FDs directly from
compressive measurements without reconstructing the image. As
a result, our approach saves computational time and resources by
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(a) Fourier measurements
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(b) Gaussian measurements
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Fig. 6: Fourier descriptor reconstruction relative errors of CSFD
and L1TV when Fourier, Gaussian and Hadamard measurements are
used.

avoiding the operations related to reconstruction. This has signifi-
cant implications in robotics and computer vision applications when
CS methods are used for imaging.
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Fig. 7: Experiments with the real data. (a) Original image. (b)
Fourier descriptor reconstruction relative errors of CSFD and L1TV
on real SPC data.

5. CONCLUSION

We presented a compressive feature extraction method based on
FDs. Our method entails extracting FDs from the estimated edges
via discrete horizontal and vertical image gradients. Various experi-
ments have shown a great improvement in quality of reconstruction
as well as a robustness to noise over a naive method in which FDs
are extracted after reconstructing the image from compressive mea-
surements. In the future, we will investigate the object recognition
performance of the proposed CSFD method. We will also study the
conditioning of the sensing matrices in our method.
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