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ABSTRACT
Quantitative imaging of brain plays an important role in
preterm neonates with a very low birth weight due to the
increased risk of developing intraventricular hemorrhage
(IVH). In this work, we propose a fully automated method
for segmentation of ventricles from two-dimensional (2D)
ultrasound (US) scans. The proposed method is based on
a Convolutional Neural Network (CNN) that combines the
advantages of U-Net and SegNet architectures for ventricles
segmentation. Extensive experiments on a dataset consisting
of 687 US scans show that the proposed method achieves
significant improvements over the state-of-the-art medical
image segmentation methods.

Index Terms— Segmentation, ultrasound images, ventri-
cles segmentation.

1. INTRODUCTION

Very low birth weight (< 1, 500g) premature babies account
for 1.4 percent of all births in the United States. Of those,
more than 16,000 babies each year will develop intraventric-
ular hemorrhage (IVH) [1]. These hemorrhages result in ven-
tricle dilation, which can lead to serious brain damage if not
properly treated. Monitoring of ventricle volume change in
neonates is clinically important in order to determine the cor-
rect intervention. Two-dimensional (2D) ultrasound (US) is
currently the main imaging modality used in the diagnosis and
monitoring of IVH. However, irregular shape deformation of
ventricles, high levels of noise and various imaging artifacts
present in the acquired ultrasound data results in the inabil-
ity to localize the site and extent of brain injury, or to pre-
dict neurologic outcomes in identifying IVH from US data.
Due to these difficulties, quantitative assessment of anatomi-
cal information is mostly performed manually or using semi-
automated methods [2]. In [3], a fully automated atlas-based
segmentation pipeline was developed for segmenting 3D vol-
umetric US data. Validation results performed on 30 3D US
scans achieved a mean Dice similarity coefficient (DSC) and
maximum absolute distance of 76.5% and 1 mm, respectively.

The reported computation time for segmenting a single 3D
volume was 54 mins [3].

In recent years, deep learning-based methods have shown
to produce state-of-the-art results in many computer vision
and medical image analysis tasks [4], [5], [6]. Inspired by
[7], various CNN-based encoder-decoder networks have been
proposed for different computer vision tasks in the literature.
A typical encoder-decoder structure starts with an encoder
network which decreases spatial resolution while learning
a high-dimensional representation, followed by a decoder
that recovers the original input resolution and outputs low-
dimensional predictions. In particular for biomedical image
segmentation, one such network, called SegNet was recently
proposed in [8] and has been widely used for medical image
segmentation. A conditional generative adversarial network-
based method called pix2pix was proposed in [9]. U-Net is
another popular network that has been widely used in the
medical imaging community for segmentation [10]. The
advantage of U-net structure comes from the symmetric con-
tracting and expanding path which is capable of leveraging
contextual information of different scales.

In this paper, we propose a new CNN encoder-decoder
structure that combines the advantages of both SegNet and
U-Net. The proposed method features an encoder that ex-
tracts deep features and a decoder that leverages multi-scale
information contained in the extracted deep features. We val-
idate our proposed network against state-of-the-art segmen-
tation methods. Figure 1 gives an overview of the proposed
brain ventricles segmentation network.

2. PROPOSED METHOD

In this section, we provide details of the proposed US image
segmentation method in which we aim to learn a mapping
function between input US scans and the manual segmen-
tation result using a specially designed CNN. The proposed
method consists of two main components: deep feature ex-
tractor (i.e. encoder) and multi-scale decoder.

For extracting features, we can use one of the many pre-



Fig. 1: An overview of the proposed CNN architecture for brain ventricles segmentation from ultrasound images.

trained CNNs proposed in the literature. These CNNs often
consist of either deep or shallow networks. However, increas-
ing the depth of a network often results in an optimization
difficulty. This problem has been partially solved by ResNets
[11] and Highway Networks [12] with skip-connections. Re-
cently, in [13], a novel deep neural network called DenseNet
which connects each layer to every other layer in a feed-
forward fashion is proposed and shown to outperform both
ResNets and Highway Networks in image classification. In
the proposed method, we use a pretrained DenseNet as the
encoder to take the advantage of very deep neural network.

As for the decoder, the primary goal is to classify each
pixel into one of two classes (ventricle or non-ventricle) given
the extracted deep features. In other words, the decoder trans-
lates the input high-dimensional deep features into binary im-
ages (0: non-ventricle, 1: ventricle). As noted in U-Net [10],
the key part of precise pixel-wise prediction for biomedical
image segmentation task is to make good use of the multi-
scale features. In our method, we accomplish this task by first
pooling the feature maps into four different sizes followed by
a series of transposed convolutions that transform lower di-
mensional feature maps into higher ones in steps.

The detailed architecture of the proposed method is illus-
trated in Figure 1, where conv denotes a sequence of trans-
posed convolution, batch normalization and rectified linear
unit (CONV-BN-ReLU), respectively. Note that the output
of each transposed convolution is concatenated with existing
feature maps of the same size and then fed into the next trans-
posed convolution.

2.1. Network Architecture

As shown in Figure 1, we use pooling to downsample the fea-
ture maps extracted by the DenseNet into four different sizes:
8 × 8, 16 × 16, 32 × 32, and 64 × 64. Each of four pooled
feature map has C channels, where C is number of channels
in the previous original feature map. This pooling process is
similar to the contracting path in U-Net but instead of the max
pooling operation, we use adaptive average pooling which en-
ables arbitrary large input size.

In order to generate the output of the same size as the in-
put from all four different sized feature maps, upsampling is
necessary. Despite many upsampling techniques, we choose
transposed convolution. The decoder network starts with a
transposed convolution (3×3 kernel size, stride 2 and padding
1) on the smallest pooled feature map (C×8×8). As a result
of stride 2, the size of the output feature map is doubled. A
concatenation of the output and the corresponding pooled fea-
ture map of the same size is then fed into next the transposed
convolution that has the same kernel size, stride and padding
as the first one. Same process is repeated for the remaining
pooled feature maps. However, because of concatenation, the
number of feature channels reduce by half except for the first
convolution.

Finally, in the last conv block as shown in right part of
Figure 1, a number of L transposed convolutions transform
the feature map (C×64×64) into the final segmentation map.
Here, L depends on the desired output size. The configuration
of each convolution layer is given in Table 1. Here, conv1
to conv4 denote the sequence of Conv-BN-ReLU layers as
depicted in Figure 1. Note that the desired final output image
size is assumed to be 512 × 512. Hence, three transposed
convolutions (L = 3) is needed for conv4.

Table 1: Network Configuration.

Block Layer Kernel Size # Filters Stride Output Size
DenseNet C ×H ×W

conv1 conv(1) C × 3× 3 C 2 C × 16× 16

conv2 conv(2) 2C × 3× 3 C 2 C × 32× 32

conv3 conv(3) 2C × 3× 3 C 2 C × 64× 64

conv(4) 2C × 3× 3 C 2 C × 128× 128

conv4 conv(5) C × 3× 3 C/2 2 C/2× 256× 256

conv(6) C/2× 3× 3 1 2 1× 512× 512

2.2. Training Details

In this section, we provide the details of training our proposed
network including dataset, loss function and training parame-



ters.
Data collection: After obtaining the approval from the

Rutgers University Institutional Review Board, retrospec-
tive brain US scans were collected from subjects who were
treated at the Robert Wood Johnson Medical Hospital. De-
identification of the data is performed before using them for
further processing. A total of 687 in vivo B-mode US images
are collected. All the ventricles were manually segmented
from the collected scans by an expert. Figure 2 shows a sam-
ple image and the corresponding ground truth image from
this dataset.

(a) US scan (b) Manual Segmentation
Fig. 2: Sample brain US scan and the corresponding manual
ventricles segmentation.

Data augmentation: Since a deep CNN network of-
ten requires a large number of training samples, we perform
data augmentation to generate extra training samples from the
original data. The input data is augmented using horizontal
flip and random crop. We perform horizontal flip to every
samples, therefore the total number of data is doubled. Fur-
thermore, all images in the dataset are first resized to 600 ×
600 and then randomly cropped to the size of 512× 512 dur-
ing training. By applying this data augmentation strategy, we
generate sufficient samples to eliminate as much dataset bias
as possible.

Loss function: Given an image and segmented map pair
(Y,X), where Y is the input US image and X is the corre-
sponding segmentation ground truth, the per-pixel L1 loss is
defined as

L(φ) =
1

WH

W∑
w=1

H∑
h=1

‖φ(Y w,h)−Xw,h‖1, (1)

where φ is the learned network (parameters) andX and Y are
assumed to have the same size of W ×H . By using this loss
function, the network is trained to minimize the L1 distance
between the output and the ground truth on the training set.

Training parameters: Among many different configu-
rations of DenseNet, we choose the pretrained DenseNet121
as our encoder and re-train it along with the decoder. Since
both the input and output images are of size 512 × 512,
the number of transposed convolutions with stride 2 in the
last conv block should be set to 3. The entire network is
trained using the ADAM optimization method [14], with
mini-batches of size 12 and learning rate of 0.0002.

3. EXPERIMENTAL RESULTS

For evaluations, we randomly select 50 samples from the
whole dataset of 687 samples as the test set. The remaining
637 samples are used as the training set. The network was
trained for 100 epochs to ensure the convergence of the loss
function. After the network was trained, we evaluate it on the
test set. We compare the performance of our method with that
of the following three recent methods: SegNet [8], U-net [10]
and pix2pix [9] . For all the compared methods, parameters
are set as suggested in their corresponding papers and trained
using the same training dataset as used to train our network.

Experiments are carried out three times. The Dice coeffi-
cient, Intersection over Union (IoU) and pixel-wise accuracy
(Pixel Acc.) are used to measure the segmentation perfor-
mance of different methods. Average results corresponding to
three randomized tests are shown in Table 2. As can be seen
from this table, in all three metrics, our method provides the
best performance compared to the other methods. This exper-
iment clearly shows the significance of the proposed multi-
scale decoder for image segementation.

Table 2: Comparison of the proposed method with SegNet
[8], U-Net [10] and pix2pix [9].

Method DICE Mean IoU(%) Pixel Acc.(%)
SegNet [8] 0.876±0.111 80.35±0.178 87.64±0.138
U-Net [10] 0.889±0.080 82.33±0.120 89.52±0.133
pix2pix [9] 0.869±0.103 79.89±0.137 88.64±0.130

Our 0.908±0.053 84.84±0.078 92.14±0.063

Apart from the quantitative comparison, we also compare
our method with others qualitatively by visual inspection. The
segmentation results corresponding to different methods on
two input US scans are shown in Figure 3. The second to the
fifth columns of Figure 3 show the segmentation maps corre-
sponding to SegNet, U-Net, pix2pix and our method, respec-
tively. The ground truth segmentation maps are shown in the
last column of this figure. It can be observed that quantitative
results are consistent with the visual results. No artifacts ex-
ist in our method while SegNet and pix2pix suffer from some
noticeable artifacts for the first sample. It is also evident from
the second row of Figure 3 that our method is capable of seg-
menting both small and large ventricles reasonably well com-
pared with the other methods. This clearly demonstrates the
effectiveness of the proposed multi-scale decoder for US im-
age segmentation.

Experiments were carried out with an Intel Xeon CPU at
3.00GHz and an Nvidia Titan-X GPU with 8GB of memory.
On average our method takes about 22ms to segment an US
image of size 512× 512, which is sufficient for real-time ap-
plications.



Fig. 3: From left to right: B-mode US scans, SegNet [8], U-Net [10], pix2pix [9], our, manual segmentation.

4. CONCLUSION

The achieved results are promising for further investigation.
The proposed CNN architecture achieves improved quali-
tative and quantitative results over previous state-of-the-art.
The reported real-time computational time makes the method
suitable for bedside investigation purposes. To the best of
our knowledge, this work reports the first study on fully auto-
matic real-time segmentation of ventricles from 2D US data.
Future work will involve validation of the proposed methods
on more clinical scans and extension to 3D for processing
volumetric US data.
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