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Abstract. Various imaging artifacts, low signal-to-noise ratio, and bone
surfaces appearing several millimeters in thickness have hindered the
success of ultrasound (US) guided computer assisted orthopedic surgery
procedures. In this work, a multi-feature guided convolutional neural
network (CNN) architecture is proposed for simultaneous enhancement,
segmentation, and classification of bone surfaces from US data. The pro-
posed CNN consists of two main parts: a pre-enhancing net, that takes
the concatenation of B-mode US scan and three filtered image features
for the enhancement of bone surfaces, and a modified U-net with a clas-
sification layer. The proposed method was validated on 650 in vivo US
scans collected using two US machines, by scanning knee, femur, distal
radius and tibia bones. Validation, against expert annotation, achieved
statistically significant improvements in segmentation of bone surfaces
compared to state-of-the-art.

1 Introduction

In order to provide a radiation-free, real-time, cost effective imaging alternative,
for intra-operative fluoroscopy, special attention has been given to incorporate
ultrasound (US) into computer assisted orthopedic surgery (CAOS) procedures
[1]. However, problems such as high levels of noise, imaging artifacts, limited field
of view and bone boundaries appearing several millimeters (mm) in thickness
have hindered the wide spread adaptability of US-guided CAOS systems. This
has resulted in the development of automated bone segmentation and enhance-
ment methods [1]. Accurate and robust segmentation is important for improved
guidance in US-based CAOS procedures.

In discussing state-of-the-art we will limit ourselves to approaches that fit di-
rectly within the context of the proposed deep learning-based method. A detailed
review of image processing methods based on the extraction of image intensity
and phase information can be found in [1]. In [2], U-net architecture, originally
proposed in [3], was investigated for processing in vivo femur, tibia and pelvis
bone surfaces. Bone localization accuracy was not assessed but 0.87 precision
and recall rates were reported. In [4], a modified version of the CNN proposed in



[3] was used for localizing vertebra bone surfaces. Despite the fact that methods
based on deep learning produce robust and accurate results, the success rate
is dependent on: (1) number of US scans used for training, (2) quality of the
collected US data for testing [4].

In this paper, we propose a novel neural network architecture for simul-
taneous bone surface enhancement, segmentation and classification from US
data. Our proposed network accommodates a bone surface enhancement net-
work which takes a concatenation of B-mode US scan, local phase-based enhan-
ced bone images, and signal transmission-based bone shadow enhanced image as
input and outputs a new US scan in which only bone surface is enhanced. We
show that the bone surface enhancement network, referred to as pre-enhancing
(PE ), improves robustness and accuracy of bone surface localization since it
creates an image where the bone surface information is more dominant. As a
second contribution, a deep-learning bone surface segmentation framework for
US image, named classification U-net, cU-net for short, is proposed. Although
cU-net shares the same basic structure with U-net [3], it is fundamentally diffe-
rent in terms of designed output. Unlike U-net, cU-net is capable of identifying
bone type and segmenting bone surface area in US image simultaneously. The
bone type classification is implemented by feeding part of the features in U-net
to a sequence of fully-connected layers followed by a softmax layer. To take the
advantages of both PE and cU-net, we propose a framework that can adaptively
balance the trade-off between accuracy and running-time by combining PE and
cU-net.

2 Proposed Method

Fig.1 gives an overview of the proposed joint bone enhancement, segmentation
and classification framework. Incorporating pre-enhancing net, cU-net+PE, into
the proposed framework is expected to produce more accurate results than using
only cU-net. However, because of the computation of the additional input featu-
res and convolution layers, cU-net+PE requires more running time. Therefore,
the proposed framework can be configured for both (i)real-time application using
only cU-net, and (ii)off-line application using cU-net+PE for different clinical
purposes. In the next section, we explain how the various filtered images are
extracted.
2.1 Enhancement of Bone Surface and Bone Shadow Information
Different from using only B-mode US scan as input, the proposed pre-enhancing
network, that enhances bone surface, takes the concatenation of B-mode US scan
(US(x, y)) and three filtered image features which are obtained as follows:
Local Phase Tensor Image (LPT (x, y)): LPT (x, y) image is computed by
defining odd and even filter responses using [5]:

Teven = [H(USDB(x, y))] [H(USDB(x, y))]
T

, (1)

Todd = −0.5× ([∇USDB(x, y)]
[
∇∇2USDB(x, y)

]T
+[

∇∇2USDB(x, y)
]

[∇USDB(x, y)]
T

).



Fig. 1. Overview of the proposed simultaneous enhancement, segmentation and clas-
sification network.

Here Teven and Todd represent the symmetric and asymmetric features of US(x, y).
H,∇ and∇2 represent the Hessian, Gradient and Laplacian operations, respecti-
vely. In order to improve the enhancement of bone surfaces located deeper in the
image and mask out soft tissue interfaces close to the transducer, US(x, y) image
is masked with a distance map and band-pass filtered using Log-Gabor filter[5].
The resulting image, from this operation, is represented as USDB(x, y). The final
LPT (x, y) image is obtained using: LPT (x, y) =

√
T 2
even + T 2

odd× cos(φ), where
φ represents instantaneous phase obtained from the symmetric and asymmetric
feature responses, respectively [5].

Local Phase Bone Image (LP (x, y)): LP (x, y) image is computed using:
LP (x, y) = LPT (x, y)×LPE(x, y)×LwPA(x, y), where LPE(x, y) and LwPA(x, y)
represent the local phase energy and local weighted mean phase angle image fe-
atures, respectively. These two features are computed using monogenic signal
theory as [6]: LPE(x, y) =

∑
sc |USM1(x, y)| −

√
US2

M2(x, y) + US3
M2(x, y),

LwPA(x, y) = arctan

∑
sc USM1(x, y)√∑

sc US
2
M1 +

∑
sc US

2
M2(x, y)

, (2)

where USM1, USM2, USM3 represent the three different components of monoge-
nic signal image (USM (x, y)) calculated from LPT (x, y) image using Riesz filter
[6] and sc represents the number of filter scales.

Bone Shadow Enhanced Image (BSE(x, y)): BSE(x, y) image is computed
by modeling the interaction of the US signal within the tissue as scattering and
attenuation information using [6]:

BSE(x, y) = [(CMLP (x, y)− ρ)/[max(USA(x, y), ε)]δ] + ρ, (3)

where CMLP (x, y) is the confidence map image obtained by modeling the pro-
pagation of US signal inside the tissue taking into account bone features present
in LP (x, y) image [6]. USA(x, y), maximizes the visibility of high intensity bone



features inside a local region and satisfies the constraint that the mean intensity
of the local region is less than the echogenicity of the tissue confining the bone
[6]. Tissue attenuation coefficient is represented with δ. ρ is a constant related
to tissue echogenicity confining the bone surface, and ε is a small constant used
to avoid division by zero [6].

2.2 Pre-enhancing Network (PE)
A simple and intuitive way to view the three extracted feature images is viewing
them as an input feature map of a CNN. Each feature map provides different
local information of bone surface in an US scan. In deep learning, if a network
is trained on a dataset of a specific distribution and is tested on a dataset that
follows another distribution, the performance usually degrades significantly. In
the context of bone segmentation, different US machines with different settings
or different orientation of the transducer will lead to scans that have different
image characteristics. The main advantage of multi-feature guided CNN is that
filtered features can bring the US scan to a common domain independent of the
image acquisition device. Hence, the bone surface in a US scan appears more
dominant after the multi-feature guided pre-enhancing net regardless of different
US image acquisition settings (Fig.2).

Fig. 2. From left to right: B-mode US scan, LPT, LP, BSE, bone-enhanced US scan.

The input data consists of a 4×256×256 matrix, i.e., each channel consists of
a 256×256 image. The pre-enhancing network (PE ) contains seven convolutional
layers with 32 feature maps and one with single feature map (Fig.1 (b)). To
balance the trade-off between the large receptive field, which can acquire more
semantic spatial information and the increase in the number of parameters, we
set the convolution kernel size to be 3 × 3 with zero-padding of size 1. The
batch normalization (BN) [7] and rectified linear units (ReLU) are attached to
every convolutional layer except the last one for faster training and non-linearity.
Finally, the last layer is a Sigmoid function that transforms the single feature
map to visible image of values between [0, 1]. Next we explain the proposed
simultaneous segmentation and classification method.

2.3 Joint Learning of Classification and Segmentation
Although U-net has been widely used in many segmentation problems in the
field of biomedical imaging, it lacks the capability of classifying medical images.
Inspired by the observation that the contracting path of U-net shares similar
structure with many image classification networks, such as AlexNet [8]and VGG
net [9], we propose a classification U-net (cU-net) that can jointly learn to classify
and segment images. The network structure is shown in Fig.1 (c).

While our proposed cU-net is structurally similar to U-net, three key diffe-
rence of the proposed cU-net from U-net are as follows:



1. The MaxPooling layers and the convolutional layers in the contracting path
are replaced by the convolutional layers with stride two. The stride of convo-
lution defines the step size of the kernel when traversing the image. While its
default is usually 1, we use a stride of 2 for downsampling an image similar to
MaxPooling. Compared to MaxPooling, strided convolution can be regarded
as parameterized downsampling that preserves positional information and
are easy to reverse.

2. Different from [10], for the purpose of enabling U-net to classify images,
we take only part of the feature maps at the last convolution layer of the
contracting path (left side) and expand it as a feature vector. The resulting
feature vector is input to a classifier that consists of one fully-connected layer
with a final 4-way softmax layer.

3. To further accelerate the training process and improve the generalization
ability of the network, we adopt BN and add it before every ReLU layers.
By reducing the internal covariance shift of features, the batch normalization
can lead to faster learning and higher overall accuracy.

Apart from the above two major differences, one minor difference is the num-
ber of starting feature maps. We reduce the number of starting feature maps from
32 to 16. Overall, the proposed cU-net consists of the repeated application of one
3 × 3 convolution (zero-padded convolution), each followed by BN and ReLU,
and a 2× 2 strided convolution with stride 2 (down-conv) for downsampling. At
each downsampling step, we double the number of feature maps. Every step in
the expansive path consists of an upsampling of the feature map followed by a
dilated 2 × 2 convolution (up-conv) that halves the number of feature maps, a
concatenation with the corresponding feature map from the contracting path,
and one 3× 3 convolution followed by BN and ReLU.

2.4 Data Acquisition and Training
After obtaining the institutional review board (IRB) approval, a total of 519 dif-
ferent US images, from 17 healthy volunteers, were collected using SonixTouch
US machine (Analogic Corporation, Peabody, MA, USA). The scanned anato-
mical bone surfaces included knee, femur, radius, and tibia. Additional 131 US
scans were collected from two subjects using a hand-held wireless US system
(Clarius C3, Clarius Mobile Health Corporation, BC, Canada). All the collected
data was annotated by an expert ultrasonographer in the preprocessing stage.
Local phase images and bone shadow enhanced images were obtained using the
filter parameters defined in [6]. For the ground truth labels we dilated the ground
truth contours to a width of 1 mm.

We apply a random split of US images from SonixTouch in training (80%)
and testing (20%) sets. The training set consists of a total of 415 images obtained
from SonixTouch only. The rest 104 images from SonixTouch and all 131 images
from Clarius C3 were used for testing. We also made sure that during the random
split of the SonixTouch dataset the training and testing data did not include
the same patient scans. Experiments are carried out three times on random
training-testing splits and average results are reported. For training both cU-
net and pre-enhancing net (PE ), we adapt a 2-step training phase. In a total



of 30,000 training iterations, the first 10,000 iterations were only performed on
cU-net and we jointly train the cU-net and pre-enhancing net for another 20,000
iterations. We used cross entropy loss for both segmentation and classification
tasks of cU-net. As for the pre-enhancing net, to force the network only enhance
bone surfaces, we used Euclidean distance between output and input as the loss.
ADAM stochastic optimization [11] with batch size of 16 and a learning rate of
0.0002 are used for learning the weights.

For the experimental evaluation and comparison, we selected two reference
methods: original U-net [3] and modified U-net for bone segmentation [4] (de-
noted as TMI). For the proposed method, we included two configurations: cU-
net+PE and cU-net, where cU-net is the trained model without pre-enhancing
net (PE). To further validate the effectiveness of cU-net and PE, U-net+PE (U-
net trained with enhanced images) and U-net trained using same input image
features as PE (denoted as U-net2 ) were added to the comparison. All these
methods were implemented and evaluated on segmenting several bone surfaces
including knee, femur, radius, and tibia. To localize the bone surface, we thres-
hold the estimated probability segmentation map and use the center pixels along
each scanline as a single bone surface. The quality of the localization was evalu-
ated by computing average Euclidean distance (AED) between the two surfaces.
Apart from AED, we also evaluated the bone segmentation methods with re-
gards to recall, precision, and their harmonic mean, the F-score. Since manual
ground truths cannot be regarded as absolute gold standard, true positive are
defined as detected bone surface points that are maximum 0.9 mm away from
the manual ground truth.

3 Experimental Results

The AED results (mean± std) in Table 1 show that the proposed cU-net+PE
outperforms other methods on test scans obtained from both US machines. Note
that training set only contains images from one specific US machine (Sonix-
Touch) while testing is performed on both. A further paired t-test between cU-
net+PE and U-net at a 5% significance level with p-value of 0.0014 clearly
indicates that the improvements of our method are statistically significant. The
p-values for the remaining comparisons were also < 0.05 proving the achieved
significance. The average recall and precision rates as well as F-scores are re-
ported in Table 1. Although our method is not performing the best in term of
average precision, the more practical measurement for detection tasks, F-score,
shows the superiority of our method on bone detection performance. Further ex-
periments of U-net+PE and U-net2 yield 0.949/0.876 and 0.941/0.856 in term
of F-score on both US machines. From the fact that cU-net+PE > U-net+PE
> U-net2, the proposed cU-net and PE are shown to improve the segmentation
result independently. Qualitative results in Fig.3 show that TMI method achie-
ves high precision but low recall due to missing bone boundaries which is more
important for our clinical application. It can be observed that quantitative re-
sults are consistent with the visual results. Average computational time for bone
surface and shadow enhancement was 2 seconds (MATLAB implementation).



Table 1. AED, 95% confidence level (CL), recall, precision, and F-scores for the pro-
posed and state of the art methods.

SonixTouch Clarius C3

cU-net+PE cU-net U-net[3] TMI[4] cU-net+PE cU-net U-net[3] TMI[4]
AED 0.246±0.101 0.338±0.158 0.389±0.221 0.399±0.201 0.368±0.237 0.544±0.876 1.141±1.665 0.644±2.656

95%CL 0.267 0.371 0.435 0.440 0.409 0.696 1.429 1.103
Recall 0.97 0.948 0.929 0.891 0.873 0.795 0.673 0.758

Precision 0.965 0.943 0.930 0.963 0.94 0.923 0.907 0.961
F-score 0.968 0.945 0.930 0.926 0.906 0.855 0.773 0.847

0.99/0.99/0.99 0.92/0.99/0.95 0.87/0.98/0.92

0.91/0.98/0.94 0.73/0.95/0.83 0.68/1/0.81

Fig. 3. From left to right column: B-mode US scans, PE, cU-net+PE, U-net[3], TMI[4].
Green represents manual expert segmentation and red is obtained using corresponding
algorithms. Recall/Precision/F-score are shown under segmentation results.

Moreover, we evaluate the classification performance of the proposed cU-
net by calculating classification errors on four different anatomical bone types.
The proposed classification U-net, cU-net, is near perfect in classifying bones
for US images of SonixTouch ultrasound machine with an overall classification
error of 0.001. However, the classification errors increase significantly to 0.389
when cU-net is tested on test images of Clarius C3 machine. We believe it is
because of the imbalanced dataset and dataset bias since the training set only
contains 3 tibia images and no images from Clarius C3 machine. Furthermore,
Clarius C3 machine is a convex array transducer and is not suitable for imaging
bone surfaces located close to the transducer surface which was the case for
imaging distal radius and tibia bones. Due to suboptimal transducer and imaging
extracted features were not representative of the actual anatomical surfaces.

4 Conclusion

We have presented a multi-feature guided CNN for simultaneous enhancement,
segmentation and classification of bone surfaces from US data. To the best of
our knowledge this is the first study proposing these tasks simultaneously in
the context of bone US imaging. Validation studies achieve a 44% and 27%
improvement in overall AED errors over the state-of-the-art methods reported
in [4] and [3] respectively. In the experiments, our method yields more accurate
and complete segmentation even under not only difficult imaging conditions but



also different imaging settings compared to state-of-the-art. In this study the
classification task involved the identification of bone types. However, this can be
changed to identify US scan planes as well. Correct scan plane identification is
an important task for spine imaging in the context of pedicle screw insertion and
pain management. One of the main drawbacks of the proposed framework is the
long computation time required to calculate the various phase image features.
However, the proposed cU-net is independent of the cU-net+PE. Therefore, for
real-time applications initial bone surface extraction can be performed using cU-
net and updated during a second iteration using cU-net+PE. Future work will
involve extensive clinical validation, real-time implementation of phase filtering,
and incorporation of the extracted bone surfaces into a registration method.
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