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Abstract

We present an algorithm for unconstrained face verifi-
cation using Fisher vectors computed from frontalized off-
frontal gallery and probe faces. In the training phase, we
use the Labeled Faces in the Wild (LFW) dataset to learn
the Fisher vector encoding and the joint Bayesian metric.
Given an image containing the query face, we perform face
detection and landmark localization followed by frontaliza-
tion to normalize the effect of pose. We further extract dense
SIFT features which are then encoded using the Fisher vec-
tor learnt during the training phase. The similarity scores
are then computed using the learnt joint Bayesian metric.
CMC curves and FAR/TAR numbers calculated for a subset
of the IARPA JANUS challenge dataset are presented.

1. Introduction

Face recognition/verification has been one of the core
problems in computer vision and has been actively re-
searched for over two decades [32]. Many algorithms have
been shown to work well on images that are collected in
controlled settings. However, the performance of these al-
gorithms often degrades significantly on images that have
large variations such as pose, illumination, expression, ag-
ing, cosmetics, and occlusion.

To deal with this problem, many methods have focused
on finding invariant and discriminative representations from
face images and videos. For instance, it was shown in [6]
that the high-dimensional multi-scale Local Binary Pattern
(LBP) features extracted from local patches centered at each
facial landmarks can find discriminative representation for
face recognition. Recognition methods based on Fisher vec-
tor (FV) representation have also been considered. In par-
ticular, FV representation has shown to work well for face
recognition problems [23], [21]. In these methods, the FV is
applied to the videos by pooling the features extracted from
each frame or averaging the encoded FVs over the frames.

Even though the FV descriptors are compact for videos and
produce discriminative features for verification, they often
fail when faces contain large pose variations.

To mitigate this pose problem in FV encoding, we
present a method which essentially performs FV encod-
ing on frontalized images. The overview of our method
is shown in Figure 1. The common preprocessing steps in
training and testing phases include face/landmark detection
on the input image, face frontalization to compensate for
pose variations, and local feature extraction. In the train-
ing phase, these local features are pooled together to learn a
Gaussian Mixture Model (GMM) whose means and covari-
ances are used in the FV encoding procedure. In order to
get a more efficient representation of the encoded features, a
metric is learnt using the joint Bayesian metric learning pro-
cedure. In the testing phase, given a face verification pair,
for each image of the pair, the preprocessing steps are per-
formed and the local features are encoded using the GMM
learnt in the training stage. The similarity scores are then
computed using the learnt metric. All these are done inde-
pendently for each image of the verification pair.

The rest of the paper is organized as follows. We briefly
review some related works in Section 2. Details of the dif-
ferent components of the proposed approach which include
frontalization, FV representation and joint Bayesian metric
learning are given in Section 3. In Section 4, we present the
protocol for the JANUS CS0 dataset and present results and
comparisons with commercial face matchers. We conclude
the paper in Section 5 with a brief summary and discussion.

2. Related Work

In this section, we briefly review several recent works
on face verification and related problems. In particular, we
survey recent feature learning, metric learning and pose nor-
malization methods.



Figure 1: An overview of our Fisher vector representation algorithm on frontalized faces for face verification.

2.1. Feature Learning

Learning invariant and discriminative representation is
the first step towards a successful face verification sys-
tem. Ahonen et al. [1] showed that LBP is effective for
face recognition. Several variants of LBP have been pro-
posed: Local Ternary Patterns (LTP) [25] and three-patch
LBP (TP-LBP) [29]. Like LBP, Gabor wavelets [31][30]
have been widely used to encode multi-scale and multi-
orientation information for given face images. On the other
hand, Coates et al. [11] showed that over-complete repre-
sentation is critical for achieving high recognition rates re-
gardless of the encoding methods. In [4], it was shown that
densely sampling overlapped image patches helps to im-
prove the recognition performance. For still-face recogni-
tion, Chen et al. [7] demonstrated excellent results using the
high-dimensional multi-scale LBP features extracted from
patches centered at dense facial landmarks. These works
showed that over-complete and high-dimensional features
are effective for face recognition. Li et al. [20] proposed
a probabilistic elastic model which learned a GMM using
dense local spatial-appearance features, selected sparse rep-
resentative features for each Gaussian, and finally concate-
nated those features into a high-dimensional vector. This
method is effective for face verification through matching
the correspondence between facial parts of a pair of im-
ages (i.e. each Gaussian represents a facial part). On the
contrary, Simonyan et al. [23], Parkhi et al. [21], and
Chen et al. [8] showed that FV, a feature encoding method
widely used for object and image classification, can be suc-
cessfully applied to face recognition. Their experiments
showed that FV effectively encode over-complete and dense
features into generating a robust representation. In addi-
tion, Chen et al. [9][10] proposed a video-based dictionary

framework. Each video dictionary can be learned indepen-
dently for each video and can effectively model the face
variations for a video with joint-sparsity constraints.

2.2. Metric Learning

The similarity measure is the other key component in a
face verification system. Due to the large volume of met-
ric learning approaches in the literature, we briefly review
several works on learning a discriminative metric for verifi-
cation problems. Guillaumin et al. [15] proposed to learn
two robust distance measures: Logistic Discriminant-based
Metric Learning (LDML) and Marginalized kNN (MkNN).
The LDML method learns a distance through performing
logistic discriminant analysis on a set of labeled image pairs
and the MkNN method marginalizes a k-nearest-neighbor
classifier to both images of the given test pair using a set
of labeled training images. Taigman et al. [24] learned
the Mahalanobis distance for face verification using the In-
formation Theoretic Metric Learning (ITML) method pro-
posed in [12]. Wolf et al. [28] proposed the one-shot simi-
larity (OSS) kernel based on a set of pre-selected reference
images mutually exclusive to the pair of images being com-
pared and training a discriminative classifier between the
test image and the new reference set. Kumar et al. [19]
proposed two classifiers for face verification: attribute clas-
sifier and simile classifiers. Attribute classifiers are a set of
binary classifiers used to detect the presence of certain vi-
sual concepts where visual concepts are defined in advance.
Simile classifiers were trained to measure the similarities of
facial parts of a person to specific reference people. Chen
et al. [6] proposed a joint Bayesian approach which mod-
els the joint distribution of a pair of face images instead of
modeling the difference vector of them and uses the ratio of



between-class and within-class probabilities as the similar-
ity measure.

2.3. Pose Normalization

Traditionally, pose normalization for face recognition
has used similarity transform-based warping using the 2D
coordinates of several fiducial points computed on the input
face, the most relevant being the FV face recognition work
of Simonyan et al. [23]. 3D face models have been used
to generate a frontal face warp since the work of Blanz et
al.. [3] The drawbacks of such methods are the time needed
to fit the model, availability of a 3D database during test
time and non-robustness to unconstrained settings. A more
detailed survey of recent pose normalization methods can
be found in [13]. In this work, we use the frontalization
framework of Hassner et al. [16] which provides a fast
and efficient solution to the problem of generating a frontal
face warp using a single reference 3D model. To make the
method more robust to the failures of the landmark detec-
tion process, we ignore the landmark points of the face con-
tour in the frontalizing process.

3. Proposed Approach
In this section, we present the details of our method

based on FV encoding of frontalized faces (FVFF) for face
verification.

3.1. Face Frontalization

The first step of our algorithm is to make non-frontal
faces frontal. In this section, we describe the method used to
obtain a frontalized warp of the given face image. To gener-
ate a frontal warp we use the given 2D-3D correspondences
of a reference image from the USF-HUMAN ID database
for which we can precompute the camera projection matrix.
Specifically, the frontalization procedure is outlined below:

• A random image from the USF-HUMAN ID database
is taken as the reference and rendered in the frontal
view. Let Cref be the corresponding camera matrix.
Facial landmark detection on the frontalized image
is performed and using the camera matrix the corre-
sponding 3D points are computed. Let pref be the 2D
coordinates of the landmark points, then the 3D coor-
dinates Pref are fixed using the following equation:

pref = Cref ·Pref .

• Given an input image in a non-frontal pose, let Linp
be the detected landmark points. Then, the reference
3D coordinates Pref are used as the 3D surface coor-
dinates from which the given input view is generated,
which then allows the calculation of the rotation matrix
Rinp and the translation vector tinp that correspond to
the pose in the given input.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Input images and frontalized outputs:(a)-(d):
Good examples. (e)-(h): Examples with artifacts.

• Using the estimated rotation and translation parame-
ters, each pixel in the input image is warped onto a lo-
cation in the frontal view, the color at each pixel com-
puted using bicubic interpolation.

More details of this method can be found in [16]. We use the
source code provided by the authors to generate the frontal
warp. The frontalization process can be performed using the
output of any face detector. For this work, we have used [2]
which provides 66 landmark points for a face image. To be
robust to extreme pose variations, we ignore the landmark
points corresponding to the face contour for the frontaliza-
tion procedure. Since, the amount of landmark points is
very sparse, we encounter some artifacts in the frontalized
image corresponding to the non-frontal poses, as shown in
Figure 2.

3.2. Fisher Vector Representation

The Fisher vector is one of bag-of-visual-word encoding
methods which aggregates a large set of local features into
a high-dimensional vector. In general, the FV is extracted
by fitting a parametric generative model for the features and
encoding them using the derivatives of the log-likelihood of
the learned model with respect to the model parameters. As
in [22], a Gaussian mixture model (GMM) with diagonal
covariances is used in this work. In addition, the first-and
second-order statistics of the features with respect to each
component are computed as follows:
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where wk, µk, Σk = diag(σ1k, ...,σdk) are the weights,
means, and diagonal covariances of the kth mixture com-
ponent of the GMM. Here, vp ∈ Rd×1 is the pth feature
vector and N is the number of feature vectors. The param-
eters can be learned from the training data using the EM
algorithm. αk(vp) is the weight of vp belonging to the kth
mixture component. The final FV, Φ(I), of an image I is ob-
tained by concatenating all the Φ

(1)
k and Φ

(2)
k s into a high-

dimensional vector Φ(I) = [Φ
(1)
1 ,Φ

(2)
1 , ...,Φ

(1)
K ,Φ

(2)
K ],

whose dimensionality is 2Kd where K is the number of
mixture components and d is the dimensionality of the ex-
tracted features.

In this work, we use the dense SIFT features as local
features. To incorporate spatial information, each SIFT fea-
ture is augmented with the normalized x and y coordinates
[20][23] as [axy,

x
w −

1
2 ,

y
h −

1
2 ]
T , where axy is the SIFT

descriptor at (x, y), and w and h are the width and height of
the image, respectively. To satisfy the diagonal covariance
assumption, all the SIFT features are de-correlated with
PCA first. In this paper, we use K = 512 number of com-
ponents and d = 66 feature dimensionality after augmen-
tation. In addition, each FV is also processed with signed
square-rooting and L2 normalization as suggested in [22].
To extract the FV from an image set and videos, one can ei-
ther (1) pool all the SIFT features extracted from each face
image/frame together into a large feature matrix and then
perform FV encoding on the pooled matrix, or (2) perform
FV encoding to the features of individual face image/frame
and then average all the FVs into one. All the experiments
in this paper are performed using (2).

3.3. Joint Bayesian Metric Learning

Once feature representations for two face images/videos
have been extracted, we compute their similarity. One of
the simplest similarity measures is the Euclidean distance.
However, because of the high-dimensionality of the FV and
complex distribution of face images/videos, directly apply-
ing it usually results in unsatisfactory performance. Re-
cently, the joint Bayesian method to face metric learning
has been shown to achieve good performance for face ver-
ification [6][5]. Instead of modeling the difference vec-
tor between the two faces, this approach directly models
the joint distribution of feature vectors of both ith and jth
images, {xi,xj}, as a Gaussian. Let P (xi,xj |HI) ∼
N(0,ΣI) when xi and xj belong to the same class, and
P (xi,xj |HE) ∼ N(0,ΣE) when they are from different
classes. In addition, each face vector can be modeled as,
x = µ + ε, where µ stands for the identity and ε for pose,
illumination, and other variations. Both µ and ε are as-
sumed to be independent zero-mean Gaussian distributions,
N(0,Sµ) andN(0,Sε), respectively. Then, the covariances
for intra-class, ΣI , and for inter-class, ΣE , can be derived

as follows

ΣI =

[
Sµ + Sε Sµ

Sµ Sµ + Sε

]
,ΣE =

[
Sµ + Sε 0

0 Sµ + Sε

]
.

(4)
The log likelihood ratio of intra- and inter-classes,
r(xi,xj), which has a closed-form solution can be com-
puted as follows:

r(xi,xj) = log
P (xi,xj |HI)

P (xi,xj |HE)
= xTi Mxi+xTj Mxj−2xTi Rxj ,

(5)
where

M = (Sµ + Sε)
−1 − (F + R) (6)[

F + R R
R F + R

]
= Σ−1

I . (7)

More details of this method can be found in [6]. Both Sµ
and Sε can be estimated using the EM algorithm which op-
timizes the similarity measure indirectly. Instead of using
the EM algorithm, we optimize the closed-form distance in
a large-margin framework. Equation (5) can be derived into
the form as (xi − xj)

TM(xi − xj) − 2xTi (R −M)xj .
Directly learning of M ∈ RD×D and R ∈ RD×D are in-
tractable because of the high dimensionality of FVs, where
D = 2Kd. Let M = HTH and B = (R −M) = VTV,
where H ∈ Rr×D and V ∈ Rr×D. With this definitions,
we choose r = 128� D in our work. Finally, we solve the
following optimization problem

argmin
H,V,b

∑
i,j

max[1− yij(b− (xi − xj)
THTH(xi − xj)

+2xTi VTVxj), 0],
(8)

where b ∈ R is the threshold, and yij is the label of a pair:
yij = 1 if person i and j are the same and yij = −1, other-
wise. For simplification, we denote (xi − xj)

THTH(xi −
xj)− 2xTi VTVxj as dH,V(xi,xj). In addition, H and V
are updated using stochastic gradient descent as follows and
are equally trained on positive and negative pairs in turn:

Ht+1 =

{
Ht, if yij(bt − dH,V(xi,xj)) > 1
Ht − γyijHtΨij , otherwise,

Vt+1 =

{
Vt, if yij(bt − dH,V(xi,xj)) > 1
Vt + γyijVtΓij , otherwise,

bt+1 =

{
bt, if yij(bt − dH,V(xi,xj)) > 1
bt + γbyij , otherwise,

(9)
where Ψij = (xi−xj)(xi−xj)

T , Γij = xix
T
j +xjx

T
i , γ

is the learning rate for H and V, and γb for the bias b. We
perform the whitening PCA to the extracted features and
initialize both H and V with r largest eigenvectors. Note
that H and V are updated only when the constraints are vi-
olated. The training and testing algorithms are summarized
in Algorith 1 and Algorithm 2, respectively.



Algorithm 1 TRAINING

Input: (a) Training images and labels with positive and negative
pairs from LFW dataset [17] and (b) maxIter iterations.

Output: (a) Model parameters of Gaussians, µi, Σi, and wi for
i = 1...K, and (b) projection matrices learned from metric
learning, H and V.

1: Perform face and landmark detection for each training images.
2: Apply the face frontalization step discussed in Section 3.1.
3: Extract multi-scale dense root-SIFT features from the whole

frontalized face and augment them with normalized x and y
coordinates.

4: Learn a K-component GMM (µi, Σi, and wi) for the dense
features using EM algorithm

5: Perform FV encoding to the feature vectors.
6: Apply stochastic gradient descent using the training positive

and negative face pairs in turn to optimize (8) until the maxIter
iteration is reached to learn H and V.

Algorithm 2 TESTING

Input: (a) Model parameters of Gaussians, µi, Σi, and wi for
i = 1...K, (b) target and query images/video frames, {T}Nt

i=1

and {Q}Nq

i=1, (c) projection matrices H and V which are used
to measure face similarity between a pair of images/video
frames.

Output: Similarity matrix, S.
1: Perform face and landmark detection for each target and query

images/video frames.
2: Perform the same frontalization techniques to all the cropped

faces of target and query images/video frames.
3: Extract multi-scale dense root-SIFT features using the whole

face of testing face images/video frames and augment them
with normalized x and y coordinates.

4: Perform FV encoding to feature vectors of frames of a video
using the learned µi, Σi, and wi for i = 1...K. and average
all of them as the final descriptor.

5: Apply the learned joint Bayesian metric to each testing pair of
faces to get the face similarity matrix, S.

4. Experimental Results
We evaluated the performance of the proposed method

on a subset of the challenging IARPA Janus Benchmark A
(IJB-A) [18]. The receiver operating characteristic (ROC)
curves and the cumulative match characteristic (CMC)
scores are used to evaluate the performance of different al-
gorithms. The ROC curve measures the performance in the
verification scenarios, and the CMC score measures accu-
racy in a closed set identification scenarios.

4.1. IARPA Janus Benchmark Challenge Set 0

The IARPA Janus Benchmark Challenge Set 0 (IJB-
CS0) is the first released version of the IJB-A dataset [18]
and the IJB-CS0 is a subset of IJB-A. The IJB-CS0 dataset
has 150 subjects in total with 2103 images and 858 videos
split into 7438 frames. Resolutions of the images dif-

fer. Sample images and video frames from this dataset are
shown in Fig. 3. It contains a variety of challenging con-
ditions on pose, illumination, resolution, and image quality.
The dataset is divided into training and testing sets. The
training set contains 100 subjects and the testing set con-
tains the remaining 50 subjects with no overlapping subjects
between the two sets. Ten random splits of training and test-
ing are provided by the benchmark. For the test set, the im-
age and video frames of each subject are randomly split into
gallery and probe with no overlap between them. Moreover,
each subject’s imagery is further separated into protocol A
and B using their genuine match scores produced by a com-
mercial matcher such that protocol B is much harder than
protocol A.

Unlike the Label Face in the Wild (LFW) [17] and
Youtube Face (YTF) [27] datasets which only use a sparse
set of negative pairs to evaluate the verification perfor-
mance, IJB-CS0 protocol divides the images/video frames
into gallery and probe sets so that it uses all the avail-
able positive and negative pairs for the evaluation. In ad-
dition, each gallery and probe set consist of multiple tem-
plates. That is, one template corresponds to a subset of
images/video frames of one subject in gallery and differ-
ent templates may correspond to the same subject in probe.
Each template contains a combination of images or frames
sampled from multiple image sets or videos of a subject.
For example, the size of the similarity matrix for split1 A
is 50 × 441 where 50 for the gallery and 441 for the probe
(the same subject reappears in several templates). More-
over, some templates contain only one profile face in low
quality. Thus, traditional video-based face verification al-
gorithms can not be directly applied to this dataset. Finally,
the dataset contains faces with full pose and illumination
variations. In contrast, both the LFW and the YTF datasets
only include faces detected by the Viola Jones face detector
[26]. These factors essentially make the IJB-CS0 a chal-
lenging face dataset.

We compare the results of the proposed method with
the FV method (i.e. without pose normalization) and three
other commercial off-the-shelf matchers, COTS1, COTS2,
and GOTS. The COTS and GOTS baselines provided by
IJB-CS0 are the top performers from the most recent NIST
FRVT study [14]. The performance of our frontalization
algorithm relies on the quality of detected landmarks. The
extreme pose is still a challenging problem to the landmark
detector. Therefore, we use the pose information estimated
from the landmark detector and select face images/video
frames whose yaw angle are less than or equal to ± 25 de-
grees for each gallery and probe set. If there are no im-
ages/frames satisfying the constraint, we choose the most
frontal one. For a fair comparison, the same frame selection
is also used for the FV method. Moreover, all the train-
ing images of subjects in LFW who also appear in IJB-CS0



are removed for both FV and FVFF. Figures 4 and 5 show
the ROC curves and the CMC curves, respectively for the
verification results using the previously described protocol.
From the ROC and CMC curves, we see that the proposed
method performs better than the FV method. This can be at-
tributed to the fact that our frontalization method improves
the encoding of faces compared with the similarity trans-
form which is used in the traditional FV encoding.

4.2. Discussion

For the FV method, before feature extraction, we ap-
ply self-quotient image [25] to normalize the illumination
which usually improves the performance. Nevertheless,
the same illumination normalization is not effective on the
frontalized faces due to the artifacts introduced by frontal-
ization. These artifacts are especially significant at regions
surrounding the boundary of the face contour. This is the
main reason why we do not apply it to the proposed method.
However, when we fuse the similarity matrices from the
FV and the proposed method, improved results are seen.
This essentially shows that the FV and the proposed method
complement each other. The performance after the fusion is
comparable to the COTS in protocol A and much better in
the harder protocol B. To give the readers a clear quantita-
tive results, we also summarize all the TARs of different ap-
proaches in Table 1 when FAR = 0.1,0.01,0.001 and 0.0001.
Similarly, the CMC scores are illustrated in Table 2. These
numbers also show how the proposed method improves the
performance of the FV in both identification and verifica-
tion settings.

Interestingly, the IJB-CS0 dataset comes with several
attributes, (1) forehead visibility, (2) eye visibility, (3)
nose/mouth visibility, (4) indoor/outdoor, (5) gender, (6)
skin tone, and (7) age. To investigate the effectiveness of
different attributes on face verification, we use the gender
attribute to combine it with the fusion results from the FV
and the proposed method. Gender is a strong attribute as
the gender information of a pair of faces essentially indi-
cate whether the faces correspond to a same subject or not.
Therefore, if the genders are different, we directly assign -
Inf to the corresponding entry of the similarity matrix. From
the experimental results, we find that the gender attribute
mainly helps to improve the right half of the ROC curves
close to FAR=0.1 for both protocols A and B and improves
a little for the left half part. The ratio of male to female over
10 splits is around 1:1 for gallery template sets and 3:2 for
probe template sets.

4.3. Runtime

On average, the frontalization per image using the given
face bounding box from the metadata takes around 5 sec-
onds (including the landmark detection time). In addition,
the SIFT feature extraction and the FV encoding with 512

Figure 3: Sample images and frames from the IJB-CS0
dataset. A variety of challenging variations on pose, illumi-
nation, resolution, occlusion, and image quality are present
in these images.

components takes around 0.5 second and 2 second per im-
age, respectively. To verify a pair of templates takes 0.2 sec-
ond using the average FV feature . The entire experiments
are performed in a cluster with 64 cores of AMD Opteron
6274 processors (2.2 Ghz per core) with 128GB memory.
Frontalization and feature extraction parts can be fully par-
allelized and distributed over all available cores. However,
we use an iterative algorithms for training the model which
can only run in sequential mode utilizing single core. It is
the most time consuming part that takes around 4.5 hours
(EM for GMM) and 9 hours for the SGD metric learning.

5. Conclusion
In this paper, we presented a method based on FV rep-

resentation on frontalized faces for face verification. Our
method essentially takes advantage of the discriminative
power of features extracted from frontalized images. Fur-
thermore, the joint Bayesian metric learning is applied to
learn the projection matrices to reduce the feature dimen-
sionality for efficiency and improving discriminative perfor-
mance. Preliminary experiments on the challenging Janus
dataset demonstrate the effectiveness of our proposed ap-
proach.
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Figure 4: (a) The average ROC curves with the standard deviation for the CS0-A dataset and (b) the CS0-B dataset over 10
splits. Our proposed FVFF method performs better than the FV method.
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Figure 5: (a)The average CMC curves with the standard deviation for the CS0-A dataset and (b) the CS0-B dataset over 10
splits. Our proposed FVFF performs better than the FV method.

FAR@CS0-A COTS1 COTS2 GOTS FV FVFF FV + FVFF FV + FVFF + Gender
1e-4 0.166±0.044 0.057±0.04 0.039±0.038 0.18±0.055 0.162±0.042 0.194±0.041 0.189±0.041
1e-3 0.346±0.048 0.209±0.034 0.205±0.042 0.32±0.042 0.323±0.03 0.357±0.038 0.358±0.044
1e-2 0.575±0.026 0.512±0.047 0.403±0.032 0.527±0.028 0.55±0.019 0.568±0.027 0.573±0.031
1e-1 0.805±0.018 0.814±0.032 0.676±0.02 0.827±0.020 0.829±0.017 0.852±0.019 0.864±0.019

FAR@CS0-B COTS1 COTS2 GOTS FV FVFF FV + FVFF FV + FVFF + Gender
1e-4 0.084±0.029 0.034±0.025 0.011±0.017 0.093±0.044 0.133±0.045 0.130±0.033 0.130±0.033
1e-3 0.183±0.036 0.096±0.044 0.099±0.047 0.207±0.052 0.245±0.047 0.251±0.049 0.251±0.047
1e-2 0.373±0.032 0.269±0.046 0.295±0.039 0.371±0.038 0.398±0.033 0.412±0.045 0.42±0.039
1e-1 0.621±0.039 0.567±0.052 0.545±0.032 0.656±0.042 0.665±0.035 0.684±0.038 0.728±0.355

Table 1: The TARs of all the approaches at FAR=0.1, 0.01, 0.001, and 0.0001 for the ROC curves for the both protocols A
and B of the IJB-CS0 dataset.

CMC@CS0-A COTS1 COTS2 GOTS FV FVFF FV + FVFF FV + FVFF + Gender
Rank-1 0.639±0.024 0.635±0.03 0.473±0.02 0.631±0.02 0.632±0.03 0.68±0.041 0.691±0.043
Rank-5 0.802±0.019 0.81±0.029 0.668±0.024 0.841±0.011 0.832±0.017 0.861±0.017 0.874±0.017

CMC@CS0-B COTS1 COTS2 GOTS FV FVFF FV + FVFF FV + FVFF + Gender
Rank-1 0.432±0.038 0.358±0.045 0.332±0.038 0.455±0.036 0.464±0.038 0.496±0.042 0.514±0.04
Rank-5 0.617±0.034 0.58±0.048 0.529±0.037 0.668±0.042 0.675±0.032 0.697±0.037 0.732±0.035

Table 2: The Rank-1 and Rank-5 retrieval accuracies for the both protocols A and B of the IJB-CS0 dataset.
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