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Abstract

We propose domain adaptive extensions of the recently introduced sparse subspace
clustering and low-rank representation-based subspace clustering algorithms for cluster-
ing data lying in a union of subspaces. We propose a general method that learns the
projections of data in a space where the sparsity or low-rankness of data is maintained.
We propose an efficient iterative procedure for solving the proposed optimization prob-
lems. Various experiments on face, object and handwritten digits datasets show that the
proposed methods can perform better than many competitive subspace clustering meth-
ods.

1 Introduction
Many practical applications in image processing and computer vision require one to analyze
and process high-dimensional data. It has been observed that these high-dimensional data
can be represented by a low-dimensional subspace. For instance, it is well known in com-
puter vision and graphics that a set of face images under all possible illumination conditions
can be well approximated by a 9-dimensional linear subspace [1]. Similarly, handwritten
digits with different variations as well as trajectories of a rigidly moving object in a video
can be represented by low-dimensional subspaces [3, 11]. As a result, the collection of data
from different classes can be viewed as samples from a union of low-dimensional subspaces.
In subspace clustering, given the data from a union of subspaces, the objective is to find the
number of subspaces, their dimensions, the segmentation of the data and a basis for each
subspace [24].

Various subspace clustering algorithms have been developed in the literature [24]. These
methods can be categorized into four main groups - algebraic methods [2, 25], iterative
methods [12, 31], statistical methods [5, 20, 29], and the methods based on spectral clus-
tering [7, 8, 9, 17, 28]. In particular, methods based on sparse and low-rank representations
have gained a lot of attraction in recent years [7, 8, 17]. These methods find a sparse or
low-rank representation of the data and build a similarity graph whose weights depend on
the sparse or low-rank coefficient matrix for segmenting the data. Some of these approaches
do not require the knowledge of the dimensions and the number of subspaces and produce
state-of-the-art results on many publicly available datasets such as the Hopkins155 bench-
mark motion segmentation dataset [23] and Extended YaleB face dataset [16].
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Figure 1: An overview of the proposed domain adaptive subspace clustering framework.

In many applications, one has to deal with heterogeneous 1 data. For example, when
clustering digits, one may have to process both computer generated as well as handwritten
digits. Similarly, when clustering face images collected in the wild, one may have to cluster
images of the same individual collected using different cameras and possibly under different
resolution and lighting conditions. Clustering of heterogeneous data is difficult because it is
not meaningful to directly compare the heterogeneous samples with different distributions
which may span different feature spaces. In recent years, various domain adaptation meth-
ods have been developed to deal with the distributional changes that occur after learning
a classifier for supervised and semi-supervised learning [19]. However, to the best of our
knowledge, these methods have not been developed for clustering heterogeneous data that
lie in a union of low-dimensional subspaces.

In this paper, we present domain adaptive versions of the sparse and low-rank subspace
clustering methods. Figure 1 gives an overview of the proposed method. Given data from
K different domains, we simultaneously learn the projections and find the sparse or low-
rank representation in the projected common subspace. Once the projection matrices and the
sparse or low-rank coefficient matrix is found, it can be used for subspace clustering.

This paper is organized as follows. Section 2 gives a brief background on sparse and
low-rank representation-based subspace clustering. Details of the proposed domain adaptive
subspace clustering methods are given in Section 3. Optimization procedure for solving the
proposed problems is described in Section 4. Experimental results are presented in Section 5.
Finally, Section 6 concludes the paper with a brief summary and discussion.

2 Background

In this section, we give a brief background on sparse and low-rank subspace clustering. Let
Y = [y1, · · · ,yN ] ∈ RD×N be a collection of N signals {yi ∈ RD}N

i=1 drawn from a union of
n linear subspaces S1 ∪S2 ∪ ·· · ∪ Sn of dimensions {d`}n

`=1 in RD. Let Y` ∈ RD×N` be a
sub-matrix of Y of rank d` with N` > d` points that lie in S` with N1 +N2 + · · ·+Nn = N.
Given Y, the task of subspace clustering is to cluster the signals according to their subspaces.

Sparse Subspace Clustering (SSC). The SSC algorithm [7], which exploits the fact that
noiseless data in a union of subspaces are self-expressive, i.e. each data point can be ex-
pressed as a sparse linear combination of other data points. Hence, SSC aims to find a

1Data with different sizes
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sparse matrix C such that Y = YC and diag(C) = 0, where the constraint prevents the trivial
solution C = I. Since this problem is combinatorial and to deal with the presence of noise,
SSC solves the following optimization problem instead

min
C
‖C‖1 +

τ

2
‖Y−YC‖2

F , s. t. diag(C) = 0, (1)

where ‖C‖1 = ∑i, j |Ci, j| is the `1-norm of C and τ > 0 is a parameter.

Low-Rank Representation-Based Subspace Clustering (LRR). The LRR algorithm [17]
for subspace clustering is very similar to the SSC algorithm except that a low-rank repre-
sentation is found instead of a sparse representation. In particular, the following problem is
solved

min
C
‖C‖∗+

τ

2
‖Y−YC‖2

F , (2)

where ‖C‖∗ is the nuclear-norm of C which is defined as the sum of its singular values. In
SSC and LRR, once C is found, spectral clustering methods [18] are applied on the affinity
matrix |C|+ |C|T to obtain the segmentation of the data Y.

3 Domain Adaptive Subspace Clustering

Suppose that we are given Ns samples, {yds
i }

Ns
i=1, from domain Ds, and Nt samples, {ydt

i }
Nt
i=1,

from domain Dt . Assuming that each sample from domain Ds has the dimension of Ms, let
Ys = [yds

1 , ...,yds
Ns
] ∈ RMs×Ns denote the matrix of samples from domain Ds. Similarly, let

Yt ∈ RMt×Nt denote the matrix containing Nt samples each of dimension Mt from domain
Dt . Note that the dimensions of features in Ds and Dt are not required to be the same, i.e.,
Ms 6= Mt . The task of domain adaptive subspace clustering is to cluster the data according to
their original subspaces even though they might lie in different domains.

Domain Adaptive Sparse Subspace Clustering (DA-SSC). Let Ps ∈Rm×Ns and Pt ∈Rm×Nt

be mappings represented as matrices that project the data from Ds and Dt to a latent m-
dimensional space, respectively. As a result, PsYs and PtYt lie on an m-dimensional space.
Let G = [PsYs,PtYt ] = [g1, · · · ,gNs+Nt ] ∈ Rm×(Ns+Nt ) denote the concatenation of the pro-
jected samples in the m-dimensional space from both source and target domains. The pro-
posed method takes advantage of the self-expressiveness property of the data in the low-
dimensional space as discussed in the previous section. That is, we want to write each sam-
ple as a sparse linear combination of the other samples in the projected space. Assuming the
presence of noise in the projected samples, the sparse coefficients can be found by solving
the following optimization problem

min
C
‖C‖1 +

τ

2
‖G−GC‖2

F , s. t. diag(C) = 0, (3)

where the ith column of C = [c1,c2, · · · ,cNs+Nt ] ∈ RNs+Nt×Ns+Nt is the sparse coefficient for
gi and diag(C) is the vector of the diagonal elements of C. We propose to learn projec-
tions Ps and Pt and the sparse coefficient matrix C simultaneously by solving the following
optimization problem
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min
P,C
‖C‖1 +

τ

2
‖PY−PYC‖2

F s.t. diag(C) = 0, PsP
T
s = PtP

T
t = I, (4)

where τ > 0 is a parameter and

P = [Ps,Pt ], and Y =
[

Ys 0Ns×Nt
0Nt×Ns Yt

]
. (5)

The constrain, PsPT
s = PtPT

t = I, is added to avoid degenerate solutions.

Domain Adaptive Low-Rank Representation-based Subspace Clustering (DA-LRR).
Similar to the DA-SSC method, once the data are projected onto the latent space, rather than
finding sparse representation, we seek the lowest rank representation. In particular, the fol-
lowing optimization is proposed for obtaining the domain adaptive low-rank representation

min
P,C
‖C‖∗+

τ

2
‖PY−PYC‖2

F s.t. PsP
T
s = PtP

T
t = I. (6)

Note in the case when there is significant distributional change between the source and
the target data, the proposed methods tend to produce over segmentation. That is, even
though data from the same class should be segmented into one cluster, they are segmented
into two clusters - one corresponding to the target domain and the other corresponding to the
source domain. To avoid this, we force C to pick samples from both domains for each class.
To this end, we modify (4) and (6) by solving two separate problems - one for intra-domain
coefficients and the other for inter-domain coefficients. From the formulation of (5), one can
see that C consists of four blocks C11,C12,C21 and C22 as follows

C =
[

C11 C12
C21 C22

]
= C1 +C2, with C1 =

[
0 C12
C21 0

]
,C2 =

[
C11 0
0 C22

]
, (7)

where C11 ∈ RNs×Ns and C22 ∈ RNt×Nt correspond to the inter-domain similarity between
samples, while C12 ∈ RNs×Nt and C21 ∈ RNt×Ns are responsible for connecting samples be-
tween the two domains. Thus, by replacing C in (4) with C1

2 and C2, matrices for selecting
intra-domain and inter-domain parts of C, we can solve the problem in two steps - one for
C1 and the other for C2. Once the coefficient matrix C is found by adding the estimated C1
and C2 matrices, spectral clustering can be applied on the affinity matrix W = |C|+ |C|T
to obtain the segmentation of the heterogeneous data. The proposed domain adaptive sparse
and low-rank subspace clustering methods are summarized in Algorithm 1.
Multiple Domains. The above formulations can be extended from two domains to multiple
domains. For K domain problem, we have data {Yi ∈ RMi×Ni}K

i=1 from K different domains
{Di}K

i=1. By simply constructing P and Y as

P = [P1,P2, ...,PK ] and Y =

Y1 0 ... 0
0 Y2 0
...

. . .
0 0 YK

 , (8)

where {Pi ∈ Rm×Ni}K
i=1 are the projection matrices that map the data from their correspond-

ing domains to an m-dimensional latent space, one can extend (4) and (6) to multiple domains

2Intra-domain matrix can mathematically be written as: C1 =

[
INs 0
0 0

]
×C×

[
0 0
0 INt

]
+

[
0 0
0 INt

]
×C×

[
INs 0
0 0

]
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Algorithm 1: The DA-SSC and DA-LRR Algorithms.
Input: Ys,Yt , τ

0: Initialize P; Y = [Ys,0;0,Yt ].
1a: DA-SSC: Find C by solving the DA-SSC optimization problem (4).
1b: DA-LRR: Find C by solving the DA-LRR optimization problem (6).
2: Normalize the columns of C as ci← ci

‖ci‖∞ .
3: Form a similarity graph with N nodes and set the weights on the edges between the
nodes by W = |C|+ |CT |.

4: Apply spectral clustering to the similarity graph.
Output: Segmented data: {Yl

D}l=1,...,n, D={s,t}.

with the constraints that PiPT
i = I. Similarly, the intra-domain and inter-domain coefficient

matrices can be defined as

CInter =

C11 0 ... 0
0 C22 0
...

. . .
0 0 Cnn

 ,CIntra =

0 C12 ... C1n
C21 0 C2n
...

. . .
Cn1 Cn2 0

 . (9)

4 Optimization
We solve the optimization problems (4) and (6) by optimizing over P and C, iteratively. Note
that although problems (4) and (6) are non-convex, numerical results show that they typically
converge to a local minimum in a few iterations.

Update step for C. Fixing P turns (4) and (6) into SSC and LRR problems, respectively as
follows

min
C
‖C‖1 +

τ

2
‖G−GC‖2

F s.t. diag(C) = 0,and (10)

min
C
‖C‖∗+

τ

2
‖G−GC‖2

F , (11)

where G is the projected data. These problems can be efficiently solved using the the alter-
nating direction method of multipliers (ADMM) [7], [17].

Update step for P. For a fixed C, we can rewrite (4) and (6) as

min
P
‖PY−PYC‖2

F s.t. PsP
T
s = PtP

T
t = I, (12)

which can be simplified as

min
P

Trace
(
P[YYT −YCT YT −YCYT +YCCT YT ]PT ) s.t. PsP

T
s = PtP

T
t = I. (13)

This problem is not a convex problem because of the orthonormality constraints on Pi.
Specifically, it involves optimization on Stiefel manifold, hence, we solve it using the mani-
fold optimization technique described in [27].
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5 Experimental Results
We evaluate the performance of our domain adaptive subspace clustering methods on three
publicly available datasets - UMD-AA01 face dataset [30], Amazon/DLSR/Webcam dataset
[21] and USPS/MNIST/Alphadigits handwritten digits datasets [13, 15]. Sample images
from these datasets are shown in Figure 2. We compare the performance of our methods
with that of several recent domain adaptation methods including frustratingly easy domain
adaptation (ED) method [4], Correlation Alignment (CORAL) [22], and a Grassmann man-
ifold (GM) based method [10]. Note that these methods were not necessarily developed
for domain adaptive subspace clustering but we first use them to extract the domain adaptive
features and then simply feed them into the SSC and LRR algorithms. We denote these meth-
ods as EA-SSC/EA-LRR, CO-SSC/CO-LRR, and GM-SSC/GM-LRR. We also compare the
performance of our method with that of the traditional SSC and LRR methods where we sim-
ply apply these algorithms on the original data without any domain adaptive normalization.
These methods essentially serve as baseline for comparisons.

(a) (b) (c)
Figure 2: Samples images from (a) UMD dataset [30], (b) Amazon/DLSR/Webcam dataset
[21], and (c) USPS/MNIST/Alphadigit datasets [13, 15]. One can clearly see the domain
changes among the samples in these datasets.

Note that the CORAL method [22] requires the source and target domains to have the
same number of samples. Thus, in order to make this method capable of handling the tests,
the same number of samples as the number of target samples are randomly chosen. The
colored target samples along with the source samples are given to the SSC and LRR meth-
ods. Regarding the Grassmann manifold method, as suggested in the original paper [10], 10
sample points are selected in the geodesic path between the source and the target domains.
Samples corresponding to all of these 10 subspaces are concatenated to form the domain in-
variant features. These features are then fed into the SSC and LRR algorithms. For the EA-
SSC/EA-LRR methods, we first map the data according to the mapping introduced in [4] and
feed the resulting mapped data into SSC and LRR for clustering. The regulation parameters
in our methods are selected by cross validation. Parameters for the other domain adaptation
methods were optimized according to the discussion provided in the corresponding papers.
Subspace clustering error is used to measure the performance of different algorithms. It is
defined as

Subspace clustering error =
# of misclassified points

total # of points
×100.

Face Clustering. The UMD-AA01 dataset is collected on mobile devices for the original
purpose of active authentication, but as it contains various ambient conditions, we use it for
experiments in this paper. This dataset contains facial images of 50 users over 3 sessions
corresponding to different illumination conditions. In each session more than 750 sample
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Method {1}→ {2} {1}→ {3} {2}→ {1} {2}→ {3} {3}→ {1} {3}→ {2} Avg. ± std.
50

-s
ub

je
ct

s

SSC 56.93 57.14 58.16 57.14 54.69 54.08 56.36 ± 1.60
CO-SSC 55.91 57.14 58.16 57.75 52.65 53.87 55.91 ± 2.22
DA-SSC 52.86 54.29 55.71 57.55 53.67 50.81 54.15 ± 2.33
ED-SSC 57.75 58.75 59.59 60.61 54.08 53.67 57.40 ± 2.90
GM-SSC 54.69 54.69 59.39 58.57 58.78 57.76 57.31 ± 2.09

LRR 52.04 48.57 53.26 56.53 44.28 43.26 49.66 ± 5.23
CO-LRR 46.73 47.35 47.96 52.45 54.49 53.27 50.37 ± 3.4
DA-LRR 36.76 36.12 35.51 34.69 37.55 36.12 36.13 ± 0.99
ED-LRR 42.45 44.29 42.04 49.39 41.43 42.45 43.67 ± 2.96
GM-LRR 47.76 45.10 47.14 37.96 47.96 49.59 45.92 ± 4.16

Table 1: Average clustering errors on the UMD-AA01 face dataset. The top performing
method in each experiment is shown in boldface. Note that {1},{2} and {3} correspond to
session 1, session 2 and session 3, respectively.

images are taken from each face. Some of the sample images from this dataset are shown
in Figure 2 (a), where one can clearly see the differences in the ambient lighting condi-
tions. Following the standard experimental protocol for testing domain adaptation methods
[19], we randomly select seven samples per class from the source domain and three samples
per class from the target domain. We repeat this process 10 times and report the average
clustering errors. After extracting face regions, we normalize the images using the method
introduced in [26]. Then, the layer “fc7" features from the Alexnet convolutional neural
network [14] are extracted from each image. These features are then used for testing the
performance of different domain adaptive subspace clustering methods.

Table 1 compares the performance of our method with that of different subspace cluster-
ing methods on this dataset. Here, {a} → {b} means that data in domain a is used as the
source domain data in b is used as the target domain data. First, it is apparent from this table
that compared to the SSC-based methods, LRR-based methods generally perform better. An
explanation for this could that since most of the images are somewhat aligned, the resulting
coefficient matrix C is more low-rank than sparse. Second, it can be seen from the table that
our domain adaptive SSC and LRR methods perform significantly better than original SSC
and LRR methods. The table also reveals that the CORAL method, Easy Domain adaptation
method and Grassmann manifold-based method can improve the performance of the original
SSC and LRR methods. However, these methods on average do not provide the improve-
ments which our methods bring. Also, since these methods find domain invariant features,
one can improve the performance of our method by using these features in our method as the
input features.

Object Clustering. For clustering objects in different domains, we use the Amazon, DLSR,
Webcam dataset introduced in [21]. The dataset consists of 31 objects and the images are
from the following three sources: Amazon (consumer images from online merchant sites),
DSLR (images by DSLR camera) and Webcam (low quality images from webcams). Fig-
ure 2 (b) shows sample images from these datasets, and clearly highlights the differences
between the domains. This dataset is more challenging as the images in this dataset contain
various illumination, resolution and pose variations. We used the DeCAF features provided
by [6] for this dataset 3. As before, we sample seven samples per class from the source do-

3These features are available online at:
https://www.eecs.berkeley.edu/~jhoffman/domainadapt/
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Method a → d a → w d → a d → w w → a w → d Avg. ± std.
31

-s
ub

je
ct

s

SSC 59.67 57.41 56.45 53.54 52.90 47.74 54.61 ± 4.20
CO-SSC 55.16 54.51 55.80 51.93 42.90 48.38 51.44 ± 4.99
DA-SSC 54.19 53.55 50.00 51.29 40.65 46.77 49.41 ± 5.05
ED-SSC 60.00 59.67 51.22 52.90 45.16 50.96 53.32 ± 5.69
GM-SSC 58.06 58.39 55.81 58.06 44.52 48.71 53.92 ± 5.89

LRR 40.32 30.96 41.61 36.12 36.77 28.70 35.75 ± 5.08
CO-LRR 46.73 47.35 47.96 52.45 54.49 53.27 50.37 ±3.40
DA-LRR 37.09 32.25 41.29 35.48 36.45 27.74 35.05 ± 4.62
ED-LRR 40.00 32.58 49.03 40.32 46.12 43.54 41.93 ± 5.73
GM-LRR 44.90 45.31 48.98 52.86 49.80 46.53 48.06 ± 3.06

Table 2: Average clustering errors on the Amazon/DSLR/Webcam dataset. The top perform-
ing method in each experiment is shown in boldface. Note that {a},{d} and {w} correspond
to Amazon, DSLR and Webcam datasets, respectively.

main and three samples per class from the target domain. We repeat this process 10 times and
report the average clustering errors in Table 5. As can be seen from this table, our LRR-based
methods perform better than the SSC-based methods. The CORAL-based methods, easy do-
main adaptation-based methods and Grassmann-based methods provide some improvements
to original SSC and LRR, but the proposed methods outperform them in terms of clustering
error.
Heterogeneous and Multi-Domain Clustering of Digits. In the final set of experiments,
we use three publicly available handwritten digits datasets - USPS [13], MNIST [15] and
Alphadigits4 for conducting heterogeneous as well as multi-domain adaptation experiments.
There exist 1100, 16× 16 images in the USPS dataset, 7K, 28× 28 images in the MNIST
dataset, and 39 binary 20× 16 images in the Alphadigits dataset for each digit. Figure 2
(c) shows sample images from these datasets. For heterogeneous domain adaptation experi-
ments, we follow the same protocol as defined before. For multi-source domain adaptation,
we follow a similar protocol but now we have more than one domains in the source domain
and a single target domain. We sample 39 images per class from each of the source domains,
and 19 samples per class from the target domain. We repeat this procedure 10 times and
report average clustering errors. Note that the ED-based methods, the Grassmann manifold-
based methods and the classical SSC and LRR methods require the data in the source and
target domains to be of same dimension. Thus, we resize the larger size images of Alphadig-
its and MNIST datasets to 16×16 so that it matches with size of images in the USPS dataset.
The results obtained by different methods in various combinations of source/target pairs are
summarized in Table 3.

As before, it can be seen from this table that the LRR-based methods outperform the
SSC-based methods. Another interesting finding from this table is that GM-LRR method
performs comparably to DA-LRR, especially in the multi-source domain adaptation cases.
However, in multi-source domain adaptation, GM-based methods sample the geodesic path
20 times. As a result the final concatenated feature is extremely high-dimensional which
makes the processing of multi-source data inefficient and expensive. Also, from this table,
one can see that there is a larger gap between our method and the other methods compared
to the previous experiments. This is mainly due to the fact that in previous experiments we

4Available at http://www.cs.toronto.edu/~roweis/data.html
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U →M U → A M→U M→ A A→U A→M U,M→ A U,A→M M,A→U Avg. ± std.
SSC 49.65 45.86 62.34 61.55 59.48 50.51 67.32 68.35 68.55 59.29 ± 16.59

CO-SSC 58.62 48.79 60.86 62.76 53.79 52.24 63.12 63.12 68.05 59.04 ± 14.20
DA-SSC 43.62 44.82 54.83 57.59 59.48 46.55 54.83 61.68 67.92 54.59 ± 19.73
ED-SSC 50.69 51.9 58.79 62.24 55.86 52.07 62.08 62.08 70.39 58.46 ± 21.51
GM-SSC 51.55 53.28 63.28 59.83 57.32 52.76 64.03 67.14 69.35 59.84 ± 19.08

LRR 23.28 30.17 27.76 18.28 29.31 23.28 27.27 19.74 21.3 24.49 ± 13.02
CO-LRR 18.45 22.59 29.31 23.97 26.72 31.21 25.84 23.25 22.73 24.90 ± 20.56
DA-LRR 14.14 17.28 18.16 13.78 11.90 22.59 20.13 14.65 20.78 17.05 ± 24.43
ED-LRR 28.62 29.66 17.93 20.86 26.9 37.24 27.4 19.48 23.51 25.73 ± 24.66
GM-LRR 19.83 18.1 23.97 25.69 17.07 24.14 19.48 15.37 22.21 20.65 ± 3.54

Table 3: Subspace clustering performance of different methods for on the handwritten dig-
its datasets. Note that {U},{M} and {A} correspond to USPS, MNIST and Alphadigits
datasets, respectively.

used deep features while in this experiment we use pixel intensities as features. It has been
shown that deep features are less dependent on different domains [6].
Convergence. As discussed earlier, our method is non-convex and often converges to a
local minima in a few iterations. To empirically show the convergence of our methods, in
Figure 3 (a) and (b), we show the objective function vs iteration plots for solving (4) and (6),
respectively in the case of single-source digits clustering experiment. As can be seen from
these figures, our algorithms do converge in a few iterations.

(a) (b)
Figure 3: Objective function versus number of iterations of the proposed optimization prob-
lems. (a) Convergence plot corresponding to the DA-SSC problem (4). (b) Convergence plot
corresponding to the DA-LRR problem (6).

6 Conclusion
We introduced domain adaptive extensions of the classical SSC and LRR methods for sub-
space clustering. The proposed DA-SSC and DA-LRR algorithms are applicable to single-
source domain, multi-source and heterogeneous domain adaptive clustering problems. We
proposed an iterative method for solving the proposed optimization problems. Extensive ex-
periments on face, object and digit clustering showed that the proposed methods can perform
better than many state-of-the-art domain adaptive subspace clustering methods.
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