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Abstract

We present a method using facial attributes for contin-
uous authentication of smartphone users. The binary at-
tribute classifiers are trained using PubFig dataset and pro-
vide compact visual descriptions of faces. The learned clas-
sifiers are applied to the image of the current user of a mo-
bile device to extract the attributes and then authentication
is done by simply comparing the difference between the ac-
quired attributes and the enrolled attributes of the origi-
nal user. Extensive experiments on two publicly available
unconstrained mobile face video datasets show that our
method is able to capture meaningful attributes of faces and
performs better than the previously proposed LBP-based
authentication method.

1. Introduction
Advances in communication and sensing technologies

have led to an exponential growth in the use of mobile
devices such as smartphones and tablets. Mobile devices
are becoming increasingly popular due to their flexibility
and convenience in managing personal information. Tradi-
tional methods for authenticating users on mobile devices
are based on passwords, pin numbers, secret patterns or fin-
gerprints. As long as the mobile phone remains active, typ-
ical devices incorporate no mechanisms to verify that the
user originally authenticated is still the user in control of
the mobile device. Thus, unauthorized individuals may im-
properly obtain access to personal information of the user
if a password is compromised or if a user does not exercise
adequate vigilance after initial authentication on a device.

To deal with this problem, various continuous authenti-
cation (also known as active authentication) systems have
been developed in which users are continuously validated
after the initial access to the mobile device. For instance,
[8], [7], [17] proposed to continuously authenticate users
based on their touch gestures or swipes. Gait as well as
device movement patterns measured by the smartphone ac-
celerometer were used in [5], [14] for continuous authenti-

Figure 1. Overview of our attribute-based authentication method.

cation. Stylometry, GPS location, web browsing behavior,
and application usage patterns were used in [9] for active
authentication. Face-based continuous user authentication
has also been proposed in [10], [6], [13]. Fusion of speech
and face was proposed in [13] while [3] proposed to fuse
face images with the inertial measurement unit data to con-
tinuously authenticate the users. A low-rank representation-
based method was proposed in [16] for fusing touch ges-
tures with faces for continuous authentication. Finally, a
domain adaptation method was proposed in [18] for dealing
with data mismatch problem in continuous authentication.

Most face-based authentication systems use
representation-based features and hence perform poorly
when the testing environment is different from where
enrollment occurred. This is clearly explored in [6] where
enrollment and testing sessions don’t overlap leading to
notable lower accuracy compared to when enrollment and
testing sessions overlap. Facial attributes ideally should
remain the same under different background or lighting
conditions which makes them more robust to changes in
acquisition conditions.

In this paper, we present an attribute-based continuous
authentication system for smartphone users. Figure 1 gives
an overview of the proposed attribute-based continuous au-
thentication method. Given a face image sensed by the



front-facing camera, our pre-trained attribute classifiers pro-
vide a 44-dimensional attribute feature. The score is de-
termined by comparing the extracted features with features
corresponding to the enrolled user. These score values are
used to continuously authenticate the mobile device user.

This paper is organized as follows. Section 2 gives
the details of the proposed attribute-based authentication
method. Experimental results on two publicly available mo-
bile face video datasets are given in Section 3. Finally, Sec-
tion 4 concludes the paper with a brief summary and dis-
cussion.

2. Attribute-based Authentication

In this section, we present the details of the proposed
attribute-based authentication system. In particular, we de-
scribe the training data used to learn the attribute classifiers,
how different classifiers are trained for each attribute and
how verification is performed using the attributes.

2.1. Training Data

PubFig dataset [12] is one of the few publicly available
datasets that provides facial attributes along with face im-
ages. We use this dataset to train our attribute classifiers.
PubFig dataset consists of unconstrained faces collected
from the Internet by using a person’s name as the search
query on a variety of image search engines, such as Google
Images and flickr. However, there are several challenges
that we have to overcome before this dataset can be effec-
tively utilized for our application. Since the release of this
dataset in 2009, many links to the images in this dataset are
broken. Hence, not all the images listed in this dataset are
available for downloading. As a result, we use a subset of
this dataset where we could establish proper links to the im-
ages. Furthermore, the true attribute labels of the images
are not provided, instead the output of their attribute classi-
fiers are provided. As a result, we used a proper threshold
to get the labels for each attribute of the available images
to ensure that the classifier is certain enough about the label
it is giving to the image. Finally, rather than using all 73
binary attributes in the PubFig dataset, we selected a more
meaningful subset of 44 attributes in our implementation.

FaceTracer [11] is another publicly available dataset that
has face images with 18 attributes. This dataset is smaller
than PubFig dataset and again a greater portion of the hy-
perlinks to the images in this dataset are broken. Also, not
all but a subset of attribute labels are provided.

2.2. Attributes Classifiers

Each attribute classifier Cli ∈ {Cl1, ..., ClN} is trained
by an automatic procedure of model selection for each at-
tribute Ai ∈ {A1, ..., AN}, where N is the total number of
attributes. Automatic selection is necessary since each at-

tribute needs a different model. Our models are indexed as
follows

1 Facial parts: For each attribute, a set of differ-
ent facial components can be more discriminative.
The face components considered for training are:
eyes, nose, mouth, hair, eyes&nose, mouth&nose,
eyes&nose&mouth, eyes&eyebrows, and the full face.
In total, nine different face components are considered.

2 Features: For different attributes, different types of
features may be needed. For example, for the at-
tribute ”blond hair”, features related to color can
be more discriminative than features related to tex-
ture. The following features are considered in this pa-
per: LBP[1], ColorLBP, HoG[4], and ColorHoG. Col-
orLBP and ColorHOG are obtained by concatenating
the HoG/LBP feature of each RGB channel. In total,
four types of features are extracted using the VLFeat
toolbox [15].

3 Locality of features: In order to capture the local in-
formation, we consider different cell sizes of the HOG
and the LBP features. In total, six different cell sizes,
6, 8, 12, 16, 24, 32, are used.

We use a state-of-the-art publicly available fiducial point
detection method [2] to extract the different facial compo-
nents. Furthermore, the detected landmarks are also used to
align the faces to a canonical coordinate system. After ex-
tracting each set of features, the Principal component anal-
ysis (PCA) is used with 99% of the energy to project each
feature onto a low-dimensional subspace. An SVM with the
RBF kernel is then learned on these features. This process
is run exhaustively to train all possible models. For each
attribute classifier, 80% of the available data is used for
training the SVMs and 20% of the data is used for model
selection. The face images in the test set do not overlap
with those in the training set. Total number of negative and
positive classes are the same for both training and testing.
Finally, among all 216 SVMs, five with the best accuracies
are selected.

For a given test face imageF , a feature vector [fa1 ...faN
]

is calculated by

fak
=

∑5
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i
kCl

i
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i
k

, (1)

where Clik(F ) → {0, 1} is the output of the ith accurate
classifier for the kth attribute Ak on face image F , and wi

is the accuracy of Clik. The entire training pipeline of our
method is shown in Figure 2.

2.3. Verification

We consider the continuous authentication problem as
a verification problem in which given two pairs of videos



Figure 2. Training phase pipeline for each attribute classifier. Landmarks are first detected on a given face. Different facial components are
then extracted from these landmarks. Then for each part, features are extracted with different cell sizes and the dimensionality of features
is reduced using the PCA. Classifiers are then learned on these low-dimensional features. Finally, top five Cls are selected as our attribute
classifier.

or images, we determine whether they correspond to the
same person or not. The well-known receiver operating
characteristic (ROC) curve, which describes the relations
between false acceptance rates (FARs) and true acceptance
rates (TARs), is used to evaluate the performance of verifi-
cation algorithms. As the TAR increases, so does the FAR.
Therefore, one would expect an ideal verification frame-
work to have TARs all equal to 1 for any FARs. The ROC
curves can be computed given a similarity matrix.

We use the proposed framework to extract the attribute
vector from each image in a given video. We then simply
average them to obtain a single attribute vector that repre-
sents the entire video. Then, the (i, j) entry of the similarity
matrix Sattrs is calculated as

si,j =
1

‖ei − tj‖2
, (2)

where ei is the ith attribute vector representing the gallery
(or enrollment) video, and tj is the jth attribute vector rep-
resenting the probe video.

3. Experimental Results

We evaluate the performance of the proposed attribute-
based authentication method on two publicly available mo-
bile video datasets - MOBIO [13] and UMDAA-01 [6]. In
addition to the ROC curves, Equal Error Rate (EER) is used
to measure the performance of different methods. The EER
is the error rate at which the probability of false acceptance
rate is equal to the probability of false rejection rate. The
lower the EER value, the higher the accuracy of the authen-
tication system.

We use an LBP-based method as a baseline for com-
parison. In this method, each detected face is represented
by the histogram of LBP features. The same aligned faces
that are used for attribute feature extraction are also used to
extract the LBP features. Similar to the attribute features,
the LBP features from each image in a video are extracted
and averaged to represent a single video. The LBP features
are extracted using the VLfeat toolbox. The similarity ma-
trix, SLBP , is then built by comparing two feature vectors.
This LBP-based method has been used for mobile face au-
thentication in [13] and [10]. A third fusion score matrix,
Sfusion = S̃LBP + S̃attrs, is calculated by z-score normal-
ization

s̃i,j =
si,j − S̄
σ(S)

, (3)

where S̄ and σ(S) are the mean and the standard deviation
of the entries in similarity matrix S, respectively.

3.1. Results on Attribute Classifiers

In order to see how well our attribute classifiers work,
Tables 1 and 2 contain the accuracies of the attribute classi-
fiers trained using our system on the PubFig and FaceTracer
datasets, respectively. As it can be seen from these tables,
most of the accuracies are high.

Furthermore, in Figure 3 we show some sample outputs
of our attribute classifiers. Results of the classifiers are
scaled to be between -0.5 to 0.5. For the first face, eye-
glasses, chubby, round jaw, Asian, male, no beard, side-
burns, bangs classifiers give high scores. This clearly
matches with the image shown on the left. For the sec-
ond face, it is interesting to see that the Male classifier pro-
duces a negative score since the image corresponds to a fe-



Figure 3. Illustration of our attribute classifiers on sample face images from the UMDAA-01 (first two images) and the MOBIO (last image)
datasets.

Attribute Accuracy Attribute Accuracy
Blond Hair 0.9089 Child 0.9538
Partially Visible Forehead 0.8645 Narrow Eyes 0.7777
Round Face 0.9156 Big Nose 0.8039
Indian 0.9714 Male 0.9451
Gray Hair 0.9091 Pointy Nose 0.816
Bags Under Eyes 0.8986 Asian 0.9225
Obstructed Forehead 0.8913 White 0.6992
Shiny Skin 0.9532 Youth 0.7299
No Eyewear 0.8875 Brown Hair 0.6725
Middle Aged 0.929 Bald 0.7909
Senior 0.8867 Wavy Hair 0.9357
Eyeglasses 0.9397 Straight Hair 0.7408
Sunglasses 0.9701 Bangs 0.9397
Mustache 0.8606 Arched Eyebrows 0.6462
Chubby 0.8815 Strong Lines 0.9308
Receding Hairline 0.8164 Pale Skin 0.793
Round Jaw 0.9357 Flushed Face 0.7819
Big Lips 0.7578 Double Chin 0.9727
No Beard 0.7766 Black Hair 0.8029
Goatee 0.9775 Curly Hair 0.8746
Black 0.7818 Bushy Eyebrows 0.836
Sideburns 0.8756 Oval Face 0.82

Table 1. Accuracies of the 44 attribute classifiers proposed in this
paper on the PubFig dataset [12].

male subject. Finally, for the last face, mustache, Goatee,
chubby and bags under eyes produce high positive scores

Attribute Accuracy Attribute Accuracy
asian 0.8786 middle aged 0.7321
eyeglasses 0.7214 black 0.808
sunglasses 0.89 female 0.88
smiling false 0.8 senior 0.7933
no eyewear 0.7481 hair color blond 0.7875
child 0.8276 white 0.763
mustache 0.815 youth 0.692

Table 2. Accuracies of the attribute classifiers proposed in this pa-
per on available attributes on the FaceTracer dataset [11].

which clearly match with the image shown on the left.

3.2. MOBIO Dataset Results

The MOBIO dataset [13] consists of video data taken
from 152 subjects. The dataset was collected in six different
sites from five different countries. In total twelve sessions
were captured for each subject - six sessions for phase 1
and six sessions for phase 2. The database was recorded
using two mobile devices: a NOKIA N93i mobile phone
and a standard 2008 MacBook laptop computer. The laptop
was only used to capture videos of part of the first session.
So the first session consists of data captured with both the



laptop and the mobile phone. Figure 4 shows some samples
images from the MOBIO dataset.

Figure 4. Sample images from the MOBIO dataset. One can
clearly see different illumination conditions present in this dataset.

In the MOBIO protocol, for each person, the data from
one session is used for enrollment and the data from the
remaining sessions are used for testing. In the first set of
experiments with the MOBIO dataset, we do not consider
the data from the laptop session. The first mobile session is
considered as the enrollment session and the data from the
next 11 sessions are considered for testing. The ROC curves
corresponding to this experiment are shown in Figure 5 for
the entire dataset. As can be seen from this figure, our
attribute-based method performs comparably to the LBP-
based method. However, the best performance is achieved
when the similarity matrices corresponding to the LBP and
attribute features are fused. The EER values corresponding
to this experiment are compared in Table 3.
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Figure 5. Performance evaluation on the MOBIO dataset.

Name LBP Attributes Fusion
MOBIO but 0.29 0.28 0.25

MOBIO idiap 0.18 0.20 0.14
MOBIO lia 0.31 0.24 0.25

MOBIO uman 0.20 0.25 0.18
MOBIO unis 0.24 0.28 0.24

MOBIO uoulu 0.27 0.24 0.23
MOBIO all 0.22 0.23 0.19

Table 3. The EER values for different methods on the MOBIO
dataset.

3.2.1 Cross-device Experiments

Images captured by different cameras have different char-
acteristics. Since the MOBIO dataset has videos that were
captured using different sensors, we conduct cross-session
experiments in which the data from the laptop session are
considered as the enrollment data and the data from the cell
phone are used as the test videos. This experiment essen-
tially allows us to study the robustness of different algo-
rithms with respect to different image quality. Figure 6 and
Table 4 show the the ROC curves and the EER values cor-
responding to this experiment. As can be seen from this
results, attributes are more robust to camera sensor change
than LBP features. In this experiment, fusion does not nec-
essarily improve the performance over the attributes since
LBP features perform poorly.
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Figure 6. Cross device robustness. Laptop session videos are used
for enrollment and the data from the remaining sessions are used
for testing.

Enrollment LBP Attributes Fusion
Laptop 0.33 0.27 0.27

Table 4. The EER values corresponding to the cross-device exper-
iment on the MOBIO dataset.



Name LBP Attributes Fusion
UMDAA-01 1 0.2 0.13 0.13
UMDAA-01 2 0.32 0.13 0.16
UMDAA-01 3 0.23 0.14 0.14
UMDAA-01 all 0.34 0.30 0.30

Table 5. The EER values of different methods on the UMDAA-01
dataset.

3.3. UMDAA-01 Dataset Results

The UMDAA-01 dataset consists of 750 videos from
50 different individuals collected in three different ses-
sions corresponding to three different illumination condi-
tions. The UMDAA-01 dataset was collected using an app
on an iPhone 5s. Each user performed five tasks in three ses-
sions. The different tasks were enrollment task, document
task, picture task, popup task and scrolling task. Figure 7
shows some sample images from the UMDAA-01 dataset
where one can clearly see the different illumination condi-
tions present in this dataset.

(a) (b) (c)
Figure 7. Sample images from the UMDAA-01 dataset. (a), (b)
and (c) show some sample images from session 1, 2 and 3, respec-
tively.

In the first set of experiments using this dataset, we use
the data corresponding to the enrollment task as gallery
and the data from the remaining tasks for testing. Fig-
ure 8 and Table 5 show the ROC curves and the EER val-
ues, respectively corresponding to this experiment. As can
be seen from these results, our attribute-based method per-
forms much better than the LBP-based authentication sys-
tem. Fusion of the LBP and the attribute similarity matri-
ces results in performance comparable to our method as the
LBP features do not perform well on this dataset.

Furthermore, we conducted several session-wise exper-
iments on this dataset. We used the enrollment data as
gallery and the data from other tasks from the same session
as probe. The ROC curves corresponding to these exper-
iments are shown in Figure 9(a)-(c). It can be seen from
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Figure 8. Performance evaluation on the UMDAA-01 dataset.

Gallery LBP Attributes Fusion
Session 1 0.36 0.33 0.32
Session 2 0.35 0.31 0.30
Session 3 0.38 0.33 0.31

Table 6. The EER values corresponding to the cross-session exper-
iments on the UMDAA-01 dataset.

these figures that our attribute-based method works sig-
nificantly better than the LBP-based method on the same-
session experiments.

Finally, similar to the cross-device experiments on the
MOBIO dataset, we conducted cross-session experiments
on the UMDAA-01 dataset. We used the data from the en-
rollment task from one session as gallery and the data from
the other sessions as probe. This experiment shows the ro-
bustness of our attribute-based method to different illumi-
nation conditions. From Figure 9(d)-(f), we see that even
when the illumination conditions are different, our attribute-
based method is more robust than the LBP feature-based
method. From Figure 9(d)-(f) and Table 6 we see that in all
cases, attributes performed better than LBP and the fusion
of both gives the best results.

3.4. Runtime

The prediction and matching algorithm were tested on
one core of Intel Xeon(R) CPU E5620 clocked at 2.4GHz
with 12GB of RAM. Per video frame, the algorithm took
3.2s on average to extract face components and 0.09s to ex-
tract attribute features. The attributes prediction part took
5MB of memory on average which is reasonable for mobile
device. The fast runtime and low memory usage is due to
the order of algorithm being linear with image size. With-
out any improvement on face component extraction, on a
Nexus 5 device which has four 2.3GHz CPU cores of Qual-
comm MSM8974 Snapdragon 800, one can reliably extract
attributes every 4 to 5 seconds with a very low memory us-
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(d) (e) (f)
Figure 9. Session-wise performance evaluations on the UMDAA-01 dataset. (a) Gallery and probe data from session 1. (b) Gallery and
probe data from session 2. (c) Gallery and probe data from session 3. (a) Gallery data from session 1 and probe data from sessions 2 and 3.
(e) Gallery data from session 2 and probe data from sessions 1 and 3. (f) Gallery data from session 3 and probe data from sessions 2 and 1.

age. However, the face component extraction part can be
done much faster if the detectors are trained on the face
parts using methods such as [10]. As a result, one can detect
facial parts in less than 0.5s [10] and hence the algorithm
can run in real time.

4. Conclusion and Future Directions

We presented a novel continuous face-based authenti-
cation method using facial attributes for mobile devices.
We trained 44 binary attribute classifiers and showed their
effectiveness as feature vectors for active authentication
with extensive experiments. We showed that attribute-based
scores alone can improve the verification results. Further-
more, in situations where the representation-based features
are also reliable, verification results can be further improved
by fusing attribute-based scores.

In the future, we are planning on exploring how at-
tributes can be detected more reliably from mobile images
with sparse-representation-based methods and also how we
can effectively adapt the attribute classifiers to changing at-
tributes of the user, like aging or facial hair change by ex-
ploiting classifiers with feedback.
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