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Abstract

Estimating crowd count in densely crowded scenes is
an extremely challenging task due to non-uniform scale
variations. In this paper, we propose a novel end-to-
end cascaded network of CNNs to jointly learn crowd
count classification and density map estimation. Classi-
fying crowd count into various groups is tantamount to
coarsely estimating the total count in the image thereby
incorporating a high-level prior into the density esti-
mation network. This enables the layers in the network
to learn globally relevant discriminative features which
aid in estimating highly refined density maps with lower
count error. The joint training is performed in an end-to-
end fashion. Extensive experiments on highly challenging
publicly available datasets show that the proposed method
achieves lower count error and better quality density maps
as compared to the recent state-of-the-art methods.

1.. Introduction

Crowd analysis has gained a lot of interest in recent
years due to it’s variety of applications such as video
surveillance, public safety design and traffic monitoring.
Researchers have attempted to address various aspects
of analyzing crowded scenes such as counting [3], [4],
[23], [10], density estimation [12], [32], [31], [18], [29],
[2], segmentation [11], behavior analysis [24], tracking
[21], scene understanding [25] and anomaly detection [19].
In this paper, we specifically focus on the joint task of
estimating crowd count and density map from a single
image.

One of the many challenges faced by researchers work-
ing on crowd counting is the issue of large variations in
scale and appearance of the objects that occurs due to
severe perspective distortion of the scene. Many methods
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Fig. 1: Proposed method and results. (a) Cascaded archi-
tecture for learning high-level prior and density estimation.
(b) Input image (from the ShanghaiTech dataset [32]. (c)
Ground truth density map. (d) Density map generated by
the proposed method.

have been developed that incorporate scale information
into the learning process using different methods. Some of
the early methods relied on multi-source and hand-crafted
representations and catered only to low density crowded
scenes [10]. These methods are rendered ineffective in
high density crowds and the results are far from optimal.
Inspired by the success of Convolutional Neural Networks
(CNNs) for various computer vision tasks, many CNN-
based methods have been developed to address the problem
of crowd counting [2], [1], [31]. Considering scale issue
as a limiting factor to achieve better accuracies, certain
CNN-based methods specifically cater to the issue of
scale changes via multi-column or multi-resolution net-
work [32], [17], [23]. Though these methods demonstrated
robustness to scale changes, they are still restricted to the
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scales that are used during training and hence are limited
in their capacity to learn well-generalized models.

The aim of this work is to learn models that cater
to a wide variety of density levels present in the dataset
by incorporating a high-level prior into the network. The
high-level prior learns to classify the count into various
groups whose class labels are based on the number of
people present in the image. By exploiting count labels,
the high-level prior is able to estimate coarse count of
people in the entire image irrespective of scale variations
thereby enabling the network to learn more discriminative
global features. The high-level prior is jointly learned along
with density map estimation using a cascade of CNN
networks as shown in Fig. 1 (a). The two tasks (crowd
count classification and density estimation) share an initial
set of convolutional layers which is followed by two
parallel set of networks that learn high-dimensional feature
maps relevant to high-level prior and density estimation,
respectively. The global features learned by the high-level
prior are concatenated with the feature maps obtained
from the second set of convolutional layers and further
processed by a set of fractionally strided convolutional
layers to produce high resolution density maps. Results of
the proposed method on a sample input image are shown
in Fig. 1 (c)-(d).

2.. Related work
Traditional approaches for crowd counting from single

images relied on hand-crafted representations to extract
low level features. These features were then mapped to
count or density map using various regression techniques.
Loy et al. [14] categorized existing methods into (1)
detection-based methods (2) regression-based methods and
(3) density estimation-based methods.

Detection-based methods typically employ sliding
window-based detection algorithms to count the number
of object instances in an image [26]. These methods
are adversely affected by the presence of high density
crowd and background clutter. To overcome these issues,
researchers attempted to count by regression where they
learn a mapping between features extracted from local
image patches to their counts [22], [6]. Using a similar
approach, Idrees et al. [10] fused count from multiple
sources. The authors also introduced an annotated dataset
(UCF CC 50) of 50 images containing 64000 humans.

Detection and regression methods ignore key spatial
information present in the images as they regress on
the global count. Hence, in order to incorporate spatial
information present in the images, Lempitsky et al. [12]
introduced a new approach of learning a linear mapping
between local patch features and corresponding object
density maps. Instead of a linear mapping, Pham et al.
in [18] proposed to learn a non-linear function using a

random forest framework. Wang and Zou [29] computed
the relationship between image patches and their density
maps in two distinct feature spaces. Recently, Xu and Qiu
[30] proposed to use much richer and extensive set of fea-
tures for crowd density estimation. A more comprehensive
survey of different crowd counting methods can be found
in [6], [13].

More recently, due to the success of CNNs in vari-
ous computer vision tasks, several CNN-based approaches
have been developed for crowd counting [28], [31], [15],
[16]. Walach et al. [27] used CNNs with layered training
approach. In contrast to the existing patch-based estima-
tion methods, Shang et al. [23] proposed an end-to-end
estimation method using CNNs by simultaneously learning
local and global count on the whole sized input images.
Observing that the existing approaches cater to a single
scale due to their fixed receptive fields, Zhang et al. [32]
proposed a multi-column architecture to extract features at
different scales. In addition, they also introduced a large
scale annotated dataset (ShanghaiTech dataset). Onoro-
Rubio and López-Sastre in [17] addressed the scale issue
by proposing a scale aware counting model called Hydra
CNN. Boominathan et al. in [2] proposed to tackle the
issue of scale variation using a combination of shallow and
deep networks along with an extensive data augmentation
by sampling patches from multi-scale image representa-
tions.

Zhang et al. [32] and Onoro et al. [17] demonstrated
that designing networks that are robust to scale variations
is crucial for achieving better performance as compared
to other CNN-based approaches. However, these methods
rely on architectures that cater to selected set of scales
thereby limiting their abilities to learn more generalized
models. Additionally, the recent approaches individually
regress either on crowd count or density map. Among
the approaches that estimate density maps, the presence
of pooling layers in the existing approaches reduce the
resolution of the output density map prohibiting one to
regress on full resolution density maps. This results in
the loss of crucial details especially in images containing
large variation in scales. Considering these drawbacks,
we present a novel end-to-end cascaded CNN network
that jointly learns a high-level global prior and density
estimation. The high-level prior enables the network to
learn globally relevant and discriminative features that
aid in estimating density maps from images with large
variations in scale and appearance.

3.. Proposed method
Inspired by the success of cascaded convolutional net-

works for related multiple tasks [5], [8], [20], we propose
to learn two related sub-tasks: crowd count classification
(which we call as high-level prior) and density map estima-



Fig. 2: Overview of the proposed cascaded architecture for
jointly learning high-level prior and density estimation.

tion in a cascaded fashion as shown in Fig. 2. The network
takes an image of arbitrary size, and outputs crowd density
map. The cascaded network has two stages corresponding
to the two sub-tasks, with the first stage learning high-level
prior and the second stage preforming density map estima-
tion. Both stages share a set of convolutional features. The
first stage consists of a set of convolutional layers and
spatial pyramid pooling to handle arbitrarily sized images
followed by a set of fully connected layers. The second
stage consists of a set of convolutional layers followed by
fractionally-strided convolutional layers for upsampling the
previous layer’s output to account for the loss of details due
to earlier pooling layers. Two different set of loss layers
are used at the end of the two stages, however, the loss of
the second layer is dependent on the output of the earlier
stage. The following sub-sections discuss the details of all
the components of the proposed network.

3.1.. Shared convolutional layers
The initial shared network consists of 2 convolutional

layers with a Parametric Rectified Linear Unit (PReLU)
activation function after every layer. The first convolutional
layer has 16 feature maps with a filter size of 9 × 9 and
the second convolutional layer has 32 feature maps with
a filter size of 7 × 7. The feature maps generated by this
shallow network are shared by the two stages: high-level
prior stage and density estimation stage.

3.2.. High-level prior stage
Classifying the crowd into several groups is an easier

problem as compared to directly performing classification
or regression for the whole count range which requires
a larger amount of training data. Hence, we quantize the
crowd count into ten groups and learn a crowd count group
classifier which also performs the task of incorporating
high-level prior into the network. The high-level prior stage
takes feature maps from the previous shared convolutional
layers. This stage consists of 4 convolutional layers with a
PReLU activation function after every layer. The first two

layers are followed by max pooling layers with a stride
of 2. At the end, the high-level prior stage consists of
three fully connected (FC) layers with a PReLU activation
function after every layer. The first FC layer consists of
512 neurons whereas the second FC layer consists of 256
neurons. The final layer consists of a set of 10 neurons
followed by a sigmoid layer, indicating the count class
of the input image. To enable the use of arbitrarily sized
images for training, Spatial Pyramid Pooling (SPP) [9] is
employed as it eliminates the fixed size constraint of deep
networks which contain fully connected layers. The SPP
layer is inserted after the last convolutional layer. The SPP
layer aggregates features from the convolutional layers to
produce fixed size outputs and can be fed to the fully
connected layers. Cross-entropy error is used as the loss
layer for this stage.

3.3.. Density estimation

The feature maps obtained from the shared layers are
processed by an another CNN network that consists of
4 convolutional layers with a PReLU activation function
after every layer. The first two layers are followed by max
pooling layers with a stride of 2, due to which the output
of CNN layers is downsampled by a factor of 4. The first
convolutional layer has 20 feature maps with a filter size of
7× 7, the second convolutional layer has 40 feature maps
with a filter size of 5×5, the third layer has 20 feature maps
with a filter size of 5×5 and the fourth layer has 10 feature
maps with a filter size of 5×5. The output of this network
is combined with that of the last convolutional layer of
high-level prior stage using a set of 2 convolutional and
2 fractionally strided convolutional layers. The first two
convolutional layers have a filter size of 3×3 with 24 and
32 feature maps, respectively. These layers are followed by
2 sets of fractionally strided convolutional layers with 16
and 18 feature maps, respectively. In addition to integrating
high-level prior from an earlier stage, the fractionally
strided convolutions learn to upsample the feature maps
to the original input size thereby restoring the details
lost due to earlier max-pooling layers. The use of these
layers results in upsampling of the CNN output by a
factor of 4, thus enabling us to regress on full resolution
density maps. Standard pixel-wise Euclidean loss is used
as the loss layer for this stage. Note that this loss depends
on intermediate output of the earlier cascade, thereby
enforcing a causal relationship between count classification
and density estimation.

3.4.. Objective function

The cross-entropy loss function for the high-level prior
stage is defined as follows:



Lc = − 1

N

N∑
i=1

M∑
j=1

[(yi = j)Fc(Xi,Θ)], (1)

where N is number of training samples, Θ is a set
of network parameters, Xi is the ith training sample,
Fc(Xi,Θ) is the classification output, yi is the ground truth
class and M is the total number of classes.
The loss function for the density estimation stage is defined
as:

Ld =
1

N

N∑
i=1

‖Fd(Xi, Ci,Θ)−Di‖2, (2)

where Fd(Xi, Ci,Θ) is the estimated density map, Di is
the ground truth density map, and Ci are the feature maps
obtained from the last convolutional layer of the high-level
prior stage.
The entire cascaded network is trained using the following
unified loss function:

L = λLc + Ld, (3)
where λ is a weighting factor.
This loss function is unlike traditional multi-task learning,
because the loss term of the last stage depends on the
output of the earlier one.

3.5.. Training and implementation details

In this section, details of the training procedure are dis-
cussed. To create the training dataset, patches of size 1/4th

the size of original image are cropped from 100 random
locations. Other augmentation techniques like horizontal
flipping and noise addition are used to create another 200
patches. The random cropping and augmentation resulted
in a total of 300 patches per image in the training dataset.
Note that the cropping is used only as a data augmentation
technique and the resulting patches are of arbitrary sizes.

Several sophisticated methods are proposed in the lit-
erature for calculating the ground truth density map [31],
[32]. We use a simple method in order to ensure that the
improvements achieved are due to the proposed method
and are not dependent on the sophisticated methods for
calculating the ground truth density maps. Ground truth
density map Di corresponding to the ith training patch is
calculated by summing a 2D Gaussian kernel centered at
every person’s location xg as defined below:

Di(x) =
∑
xg∈S

N (x− xg, σ), (4)

where σ is the scale parameter of the 2D Gaussian kernel
and S is the set of all points at which people are located.

The training and evaluation was performed on NVIDIA
GTX TITAN-X GPU using Torch framework [7]. λ was
set to 0.0001 in (3). Adam optimization with a learning
rate of 0.00001 and momentum of 0.9 was used to train
the model. Additionally, for the classification (high-level

prior) stage, to account for the imbalanced datasets, the
losses for each class were weighted based on the number
of samples available for that particular class. The training
took approximately 6 hours.

4.. Experimental results
In this section, we present the experimental details

and evaluation results on two publicly available datasets:
ShanghaiTech [32] and UCF CROWD 50 [10]. For the
purpose of evaluation, the standard metrics used by many
existing methods for crowd counting were used. These
metrics are defined as follows:

MAE =
1

N

N∑
i=1

|yi − y′i|, MSE =

√√√√ 1

N

N∑
i=1

|yi − y′i|2,

where MAE is mean absolute error, MSE is mean squared
error, N is number of test samples, yi is ground truth count
and y′i is estimated count corresponding to the ith sample.

4.1.. ShanghaiTech dataset

The ShanghaiTech dataset was introduced by Zhang et
al. [32] and it contains 1198 annotated images with a total
of 330,165 people. This dataset consists of two parts: Part
A with 482 images and Part B with 716 images. Both
parts are further divided into training and test datasets
with training set of Part A containing 300 images and that
of Part B containing 400 images. Rest of the images are
used as test set. The results of the proposed method are
compared with two recent approaches: Zhang et al. [31]
and MCNN by Zhang et al. [32] (Table I). The authors
in [31] proposed a switchable learning function where
they learned their network by alternatively training on two
objective functions: crowd count and density estimation.
In the other approach by Zhang et al. in [32], the authors
proposed a multi-column convolutional network (MCNN)
to address scale issues and a sophisticated ground truth
density map generation technique. It can be observed
from Table I, that the proposed method is able to achieve
significant improvements without the use of multi-column
networks or sophisticated ground truth map generation.
Furthermore, to demonstrate the improvements obtained by
incorporating high-level prior via cascaded architecture, we
evaluated our network without the high-level prior stage
(Single stage CNN) on ShanghaiTech dataset. It can be
observed from Table I, that the cascaded learning of count
classification and density estimation reduces the count
error by a large margin as compared to the single stage
CNN.

Fig. 3 illustrates the density map results obtained using
the proposed method as compared to Zhang et al. [32] and
single stage CNN. It can be observed that in addition to
achieving lower count error, the proposed method results in



(a) (b) (c)
Fig. 3: Density estimation results using proposed method
on ShanghaiTech dataset. (a) Input (b) Ground truth (c)
Output.

higher quality density maps due to the use of fractionally
strided convolutional layers.

TABLE I: Comparison results: Estimation errors on the
ShanghaiTech dataset. The proposed method achieves
lower error compared to existing approaches involving
multi column CNNs and sophisticated density maps.

Part A Part B
Method MAE MSE MAE MSE
Zhang et al. [31] 181.8 277.7 32.0 49.8
MCNN [32] 110.2 173.2 26.4 41.3
Single stage CNN 130.4 190.9 29.3 40.5
Proposed method 101.3 152.4 20.0 31.1

4.2.. UCF CC 50 dataset
The UCF CC 50 is an extremely challenging dataset

introduced by Idrees et al. [10]. The dataset contains 50
annotated images of different resolutions and aspect ratios
crawled from the internet. There is a large variation in
densities across images. Following the standard protocol
discussed in [10], a 5-fold cross-validation was performed
for evaluating the proposed method. The results are com-
pared with five recent approaches: Idrees et al. [10], Zhang
et al. [31], MCNN [32], Onoro et al. [17] and Walach et al.
[27]. The authors in [10] proposed to combine information
from multiple sources such as head detections, Fourier
analysis and texture features (SIFT). Onoro et al. in [17]
proposed a scale aware CNN to learn a multi-scale non-
linear regression model using a pyramid of image patches
extracted at multiple scales. Walach et al. [27] proposed a
layered approach of learning CNNs for crowd counting by
iteratively adding CNNs where every new CNN is trained
on residual error of the previous layer. It can be observed

(a) (b) (c)
Fig. 4: Density estimation results using proposed method
on UCF CC 50 dataset. (a) Input (b) Ground truth (c)
Output.

from Table II that our network achieves the lowest MAE
and comparable MSE score. Density maps obtained using
the proposed method on sample images from UCF CC 50
dataset are shown in Fig. 4.

TABLE II: Comparison results: Estimation errors on the
UCF CC 50 dataset.

Method MAE MSE
Idrees et al. [10] 419.5 541.6
Zhang et al. [31] 467.0 498.5
MCNN [32] 377.6 509.1
Onoro et al. [17] 465.7 371.8
Walach et al. [27] 364.4 341.4
Proposed method 322.8 397.9

5.. Conclusions
In this paper, we presented a multi-task cascaded CNN

network for jointly learning crowd count classification
and density map estimation. By learning to classify the
crowd count into various groups, we are able to incorpo-
rate a high-level prior into the network which enables it
to learn globally relevant discriminative features thereby
accounting for large count variations in the dataset. Ad-
ditionally, we employed fractionally strided convolutional
layers at the end so as to account for the loss of details
due to max-pooling layers in the earlier stages there by
allowing us to regress on full resolution density maps.
The entire cascade was trained in an end-to-end fashion.
Extensive experiments performed on challenging datasets
and comparison with recent state-of-the-art approaches
demonstrated the significant improvements achieved by the
proposed method.
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