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Abstract—In recent years, the theories of Compressive Sensing
(CS), Sparse Representation (SR) and Dictionary Learning (DL)
have emerged as powerful tools for efficiently processing data
in non-traditional ways. An area of promise for these theories
is object recognition. In this paper, we review the role of SR,
CS and DL for object recognition. Algorithms to perform object
recognition using these theories are reviewed.

An important aspect in object recognition is feature extraction.
Recent works in SR and CS have shown that if sparsity in the
recognition problem is properly harnessed then the choice of
features is less critical. What becomes critical, however, is the
number of features and the sparsity of representation. This issue
is discussed in detail.

I. INTRODUCTION

Sparse and redundant signal representations have recently
drawn much interest in vision, signal and image processing [1],
[2], [3]. This is due in part to the fact that signals and images
of interest can be sparse or compressible in some dictionary.
The dictionary can be either based on a mathematical model
of the data or it can be learned directly from the data. It has
been observed that learning a dictionary directly from training
rather than using a predetermined dictionary (such as wavelet
or Fourier) usually leads to better representation and hence
can provide improved results in many practical applications
such as restoration and classification.

In this paper, we summarize approaches to object recog-
nition based on sparse representation, compressive sensing
and dictionary learning. We first give an overview of these
theories. Then, we show that how traditionally used features
such as principle component analysis and linear discriminant
analysis provide information as good as randomly projected
features when classification is performed using these theories.
What becomes important when such features are used is the
dimension of features and how the sparse representation is
computed. Finally, we present some simulation results to show
the effectiveness of these methods for object recognition.

II. BACKGROUND

In this section, we present an overview of sparse represen-
tations, compressive sampling and dictionary learning.

A. Sparse Representation

Sparse coding allows us to represent a signal as a linear
combination of a few atoms of a dictionary. Suppose the signal
x ∈ IRm of measurements xi satisfies

x = Dα for D ∈ IRm×n, m << n. (1)

As m << n, the system (1) admits infinitely many solutions.
One way of choosing a solution for (1) involves taking the
solution that is ‘smallest,’ (in the l2 sense), which corresponds
to

α̃ = DT (DDT )−1x,

called the pseudo inverse of D.
One of the popular ways of computing a solution of (1),

involves finding the ‘sparsest’ vector. The sparsest solution
may be obtained by solving the following problem

min
ω
‖ω‖0 subject to Dω = x, (2)

where ‖α‖0 := |#{i : αi 6= 0}| < n, which is a count for the
number of nonzero elements in α. As the problem in (2) is NP
hard alternative solutions are often sought. For instance, Basis
Pursuit (see e.g. [4]) offers the solution via l1 minimization
as

min
ω
‖ω‖1 subject to Dω = x. (3)

The sparsest recovery is possible provided that certain condi-
tions are met [5].

One can adapt the above framework to noisy setting, where
the measurements are contaminated with an error η obeying
‖η‖2 < ε, that is

x = Dα + η for ‖η‖2 < ε. (4)

A stable solution could be obtained from

min
α
‖α‖1 subject to ‖Ax− y‖2 < ε. (5)

Intuitively, the l1-norm is the convex function closest to the
l0-(quasi)-norm, so this substitution is referred to as convex
relaxation [5]. One hopes that the solution to the relaxation
yields a good approximation of the ideal solution vector. The
advantage of the new formulation is that it can be solved in



polynomial time with standard scientific softwares. One can
also use greedy pursuits and iterative thresholding algorithms
to solve the above problems [5], [6], [7], [8].

B. Compressive Sensing

Compressive sampling is a new concept in signal processing
and information theory where one measures a small number
of non-adaptive linear combinations of the signal. These
measurements are usually much smaller than the number of
samples that define the signal. From these small number of
measurements, the signal is then reconstructed by a non-linear
procedure [9], [10].

More precisely, suppose x ∈ IRm is k-sparse in a basis
(or a Dictionary) Ψ, so that x = Ψx0, with ‖ x0 ‖0= k ¿
m. In the case when x is compressible in Ψ, it can be well
approximated by the best k-term representation. Consider a
random n×m measurement matrix Φ with n < m and assume
that m measurements, that make up a vector y, are made such
that

y = Φx = ΦΨx0 = Θx0.

According to CS theory, when Θ satisfies the restricted
isometry property (RIP) [11], one can reconstruct x via its
coefficients x0 by solving the following `1 minimization
problem [9], [10]:

x̂0 = arg min
x0∈IRN

‖ x0 ‖1 subject to y = ΦΨx0. (6)

A matrix Θ is said to satisfy the RIP of order k with constants
δK ∈ (0, 1) if

(1− δk) ‖ v ‖22≤‖ Θv ‖22≤ (1 + δk) ‖ v ‖22 (7)

for any v such that ‖ v ‖0≤ k.
One popular class of measurement matrices satisfying an

RIP is the one consisting of i.i.d. Gaussian entries. It is a
well known fact that if Φ is an n×m Gaussian matrix where
n > O (k log m) and Ψ is a sparsifying basis, then Θ satisfies
the RIP with high probability. One can also use greedy pursuits
and iterative soft or hard thresholding algorithms to recover
signals from compressive measurements.

C. Dictionary Learning

It has been observed that learning a dictionary directly from
training rather than using a predetermined dictionary (such
as wavelet or Fourier) usually leads to better representation
and hence can provide improved results in many practical
image processing applications such as restoration and clas-
sification [3]. Designing dictionaries based on training is a
much recent approach to dictionary design which is strongly
motivated by recent advances in the sparse representation
theory [12],[13],[3]. In dictionary learning methods, given a
set of examples B = [x1, · · · ,xm], the objective is to find
a dictionary that provides the best representation for each
examples in this set. One can obtain this by solving the
following optimization problem

(D̂, Γ̂) = arg min
D,Γ

‖B−DΓ‖2F subject to ∀i ‖γi‖0 ≤ T0 (8)

where γi represents a column of Γ. Here, ‖A‖F denotes
the Frobenius norm defined as ‖A‖F =

√∑
ij A2

ij . Two
of the simplest algorithms for finding such dictionary are the
method of optimal directions (MOD)[12] and the K-SVD [13]
algorithm.

Both MOD and K-SVD are iterative methods and they
alternate between sparse-coding and dictionary update steps.
First, a dictionary D with `2 normalized columns is initialized.
Then, the main iteration is composed of the following two
stages:
• Sparse coding: In this step, D is fixed and the following

optimization problem is solved to compute the represen-
tation vector γi for each example xi

i = 1, · · · ,m, min
γi

‖xi −Dγi‖22 s. t. ‖γi‖0 ≤ T0.

As discussed earlier, since the above problem is NP-hard,
approximate solutions are usually sought. Any standard
technique [4] can be used but a greedy pursuit algorithm
such as orthogonal matching pursuit [6],[7] is often
employed due to its efficiency [8].

• Dictionary update: This is where both MOD and K-SVD
algorithms differ. The MOD algorithm updates all the
atoms simultaneously by solving a quadratic problem
whose solution is given by D = BΓ†, where Γ† de-
notes the Moore-Penrose pseudo-inverse. Even though the
MOD algorithm is very effective and usually converges
in a few iterations, it suffers from the high complexity of
the matrix inversion.
In the case of K-SVD, the dictionary update is performed
atom-by-atom in an efficient way rather than using a
matrix inversion. It has been observed that the K-SVD
algorithm requires fewer iterations to converge than the
MOD method.

D. Discriminative Dictionary Learning

While dictionaries are often trained to obtain good recon-
struction, training dictionaries with a specific discriminative
criteria has also been considered. For instance, linear dis-
criminant analysis (LDA) based basis selection and feature
extraction algorithm for classification using wavelet packets
was proposed by Etemand and Chellappa in the late nineties
[14]. Recently, similar algorithms for simultaneous sparse sig-
nal representation and discrimination have also been proposed
[15], [16], [17]. In [17], Huang and Aviyente present a frame-
work for signal classification that combines a discriminative
method with a generative method using LDA and a pre-defined
dictionary. A similar algorithm called supervised simultane-
ous orthogonal matching pursuit (SSOMP) is presented by
Kokiopoulou and Frossard in [16].

Suppose that we are given C distinct classes and a set of
mi training images per class, i ∈ {1, · · · , C}. We identify an
l × q grayscale image as an N -dimensional vector, x, which
can be obtained by stacking its columns, where N = l × q.
Let

Bi = [xi1, · · · ,ximi ] ∈ IRN×mi (9)



be an N ×mi matrix of training images corresponding to the
ith class. Similarly, we define a new matrix

A = [B1, ...,BC ] ∈ IRN×M (10)
= [x11, ...,x1m1 |x21, ...,x2m2 |......|xC1, ...,xCmC

],

as concatenation of training samples from all the classes,
where M =

∑C
i=1 mi. Then, for dimensionality reduction,

one can decompose A in the following form

A = DS, D ∈ IRN×R, S ∈ IRR×M ,

where D is drawn from a predefined dictionary D̃ and S
contains the coefficients. In other words, every column of A is
represented in the same set of basis functions using different
coefficients. This can be viewed as a dimensionality reduction
step where each data sample is represented in the subspace
spanned by the columns of D, using only R ¿ N coefficients.
Similarly, one can formulate a supervised dimensionality re-
duction problem as follows

min
DS

‖A−DS‖2F − λJ(D) s.t D ⊆ D̃,

where J denotes the cost function that captures the separability
of different classes [16].

Note that approaches mentioned above are based on pre-
defined dictionary. In contrast with these methods, Rodriguez
and Sapiro present [15] a method that learns a non-parametric
dictionary which is efficient for simultaneous sparse represen-
tation as well as class discrimination. Other methods have also
been proposed for learning discriminative dictionaries [18],
[19], [20], [21], [22], and [23]. In particular, a dictionary
learning method based on information maximization principle
was proposed in [24] for action recognition. The objective
function in [24] maximizes the mutual information between
what has been learned and what remains to be learned in
terms of appearance information and class distribution for each
dictionary item. A Gaussian Process (GP) model is proposed
for sparse representation to optimize the dictionary objective
function. The sparse coding property allows a kernel with a
compact support in GP to realize a very efficient dictionary
learning process. Hence an action video can be described
by a set of compact and discriminative action attributes. In
[25] a discriminative K-SVD method was proposed for face
recognition. This framework was recently extended for object
recognition in [26]. Additional techniques for discriminative
dictionary learning may be found within these references.

E. Feature Extraction

Extraction of relevant low dimensional features of an object
is an important issue in object recognition. Many methods have
been developed for transforming high-dimensional features
into lower dimensional feature space. Some of them include
principle component analysis, linear discriminant analysis and
locality preserving projections [27], [28], [29]. Advances in
SR and CS have shown that the precise choice of features is
no longer critical. What is critical is that the dimension of the
features and the sparsity of the representation. It was shown

that, even random features contain enough information to
correctly classify any test sample [29]. This is partly motivated
by the following lemma [30], [31], [32]

Lemma 1. (Johnson-Lindenstrauss) Let ε ∈ (0, 1) be given.
For every set S of ](S) points in IRN , if n is a positive integer
such that n > n0 = O

(
ln(](S))

ε2

)
, there exists a Lipschitz

mapping f : RN → Rn such that

(1− ε)‖u− v‖2 ≤ ‖f(u)−f(v)‖2 ≤ (1+ ε)‖u− v‖2 (11)

for all u,v ∈ S.

This lemma essentially states that, a set S of points in
IRN can be embedded into a lower-dimensional Euclidean
space IRn such that the pairwise distance of any two points is
approximately maintained. In fact, it can be shown that f can
be taken as a linear mapping represented by an n×N matrix
Φ whose entries are randomly drawn from certain probability
distributions. This in turn implies that it is possible to change
the original form of the data and still preserve its statistical
characteristics useful for recognition. One can clearly see the
link between JL-lemma and the restricted isometry property
[32].

Let Φ be an n × N random matrix with n ≤ N such
that each entry φi,j of Φ is an independent realization of
q, where q is a random variable on a probability measure
space (Ω, ρ). It has been shown that given any set of points S,
the following are some of the matrices that will satisfy (11)
with high probability, provided n satisfies the condition of the
Lemma 1 [31]:
• n × N random matrices Φ whose entries φi,j are inde-

pendent realizations of Gaussian random variables φi,j ∼
N

(
0, 1

n

)
.

• Independent realizations of ±1 Bernoulli random vari-
ables

φi,j
.=

{
+1/

√
n, with probability 1

2
−1/

√
n, with probability 1

2 .

• Independent realizations of related distributions such as

φi,j
.=





+
√

3/n, with probability 1
6

0, with probability 2
3

−
√

3/n, with probability 1
6 .

III. ALGORITHMS AND APPLICATIONS

To illustrate the effectiveness of SR, CS and DL methods
for object recognition, in this section, we highlight some of the
results on face recognition [29], [33] and action recognition
[24].

A. Face recognition

Sparse representation-based classification (SRC) [29] was
one of the first methods that showed the effectiveness of
SR and CS for face recognition. The idea is to create a
dictionary matrix of the training samples as column vectors.
The test sample is also represented as a column vector.
Different dimensionality reduction methods are used to reduce



the dimension of both the test vector and the vectors in the
dictionary. In particular, random projections, using a generated
sensing matrix, are taken of both the dictionary matrix and
the test sample. It is then simply a matter of solving an `1
minimization problem in order to obtain the sparse solution.
Once the sparse solution is obtained, it can provide information
as to which training sample the test vector most closely relates
to. This algorithm was shown to be robust to noise and
occlusion.

The recognition rates achieved by the SRC method for
face recognition with different features and dimensions are
summarized in Table I on the extended Yale B Dataset [34]. As
it can be seen from Table I the SRC method achieves the best
recognition rate of 98.09% with randomfaces of dimension
504. Note that the recognition rate does not change signifi-
cantly with different features provided that the dimension of
the feature is high enough. This can be seen from the last
column of Table I. The SRC framework was extended for
cancelable iris biometric in [35].

TABLE I
RECOGNITION RATES (IN %) OF SRC ALGORITHM [29] ON THE

EXTENDED YALE B DATABASE.

Dimension 30 56 120 504
Eigen 86.5 91.63 93.95 96.77

Laplacian 87.49 91.72 93.95 96.52
Random 82.60 91.47 95.53 98.09

Downsample 74.57 86.16 92.13 97.10
Fisher 86.91 - - -

The SRC method uses training samples as dictionary. It
recognizes faces by solving an optimization problem over the
set of images enrolled into the database. This solution trades
robustness and size of the database against computational
efficiency. To deal with this, a dictionary-based face recog-
nition (DFR) algorithm was recently proposed in [33]. This
method consists of two main stages. In the first stage, given
training samples from each class, class specific dictionaries
are trained with some fixed number of atoms. In the second
stage, a novel test image is projected onto the span of the
atoms in each learned dictionary. The residual vectors are then
used for classification. Furthermore, assuming the Lambertian
reflectance model for the facial surface, a relighting approach
is introduced within this framework so that one can add many
elements to gallery and robustness to illumination changes can
be realized. This method was shown to be very efficient and
effective in recognizing face images under varying illumina-
tion.

The average rank-1 results obtained using various methods
are summarized in Table II on the PIE database [36]. The
average rank-1 recognition rate achieved by DFR method is
99% and it outperforms the other competitive methods that
follow similar experimental setting.

B. Action recognition

In [24], an information maximization-based dictionary
learning method was proposed for action recognition. Given

TABLE II
AVERAGE RANK-1 RECOGNITION RATES (RR) (IN %) OF DIFFERENT

METHODS ON THE PIE DATABASE [37].
Method DFR MA[38] MB[38] [39]

RR 99 93 96 94

the initial dictionary Do, the objective is to compress it into
a dictionary D∗ of size k, which encourages the signals from
the same class to have very similar sparse representations.

Let L denote the labels of M discrete values, L ∈ [1, M ].
Given a set of dictionary atoms D∗, define P (L|D∗) =

1
|D∗|

∑
di∈D∗ P (L|di). For simplicity, denote P (L|d∗) as

P (Ld∗), and P (L|D∗) as P (LD∗). To enhance the discrimi-
native power of the learned dictionary, the following objective
function is considered

arg max
D∗

I(D∗; Do\D∗) + λI(LD∗ ;LDo\D∗) (12)

where λ ≥ 0 is the parameter to regularize the emphasis
on appearance or label information and I denotes mutual
information. One can approximate (12) as

arg max
d∗∈Do\D∗

[H(d∗|D∗)−H(d∗|D̄∗)]

+λ[H(Ld∗ |LD∗)−H(Ld∗ |LD̄∗)], (13)

where H denotes entropy. One can easily notice that the above
formulation also forces the classes associated with d∗ to be
most different from classes already covered by the selected
atoms D∗; and at the same time, the classes associated with d∗

are most representative among classes covered by the remain-
ing atoms. Thus the learned dictionary is not only compact,
but also covers all classes to maintain the discriminability.

In Fig. 1, we present the recognition accuracy on the
Keck gesture dataset with different dictionary sizes and over
different global and local features [24]. Leave-one-person-out
setup is used. That is, sequences performed by a person are
left out, and the average accuracy is reported. Initial dictionary
size |Do| is chosen to be twice the dimension of the input
signal and sparsity 10 is used in this set of experiments. As
can be seen the mutual information-based method, denoted as
MMI-2 outperforms the other methods.
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Fig. 1. Recognition accuracy on the Keck gesture dataset with different
features and dictionary sizes (shape and motion are global features. STIP is
a local feature.) [24]. The recognition accuracy using initial dictionary Do:
(a) 0.23 (b) 0.42. In all cases, the MMI-2 (red line) outperforms the rest.



IV. CONCLUSION

In this paper, we reviewed some of the approaches to object
recognition based on the recently introduced theories of sparse
representation, compressed sensing and dictionary learning.
Furthermore, we discussed that the type of features is flexible
when sparse representation-based classification is used for ob-
ject recognition. What is important is the dimension of features
and the sparsity of representation. Even though, the main
emphasis was given to object recognition, these methods can
offer compelling solutions to other computer vision problems
such as clustering, matrix factorization, tracking and object
detection.
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