
Active User Authentication for Smartphones: A Challenge
Data Set and Benchmark Results

Upal Mahbub1 Sayantan Sarkar1 Vishal M. Patel2 Rama Chellappa1
1Department of Electrical and Computer Engineering and the Center for Automation Research,

UMIACS, University of Maryland, College Park, MD 20742
{umahbub, ssarkar2, rama}@umiacs.umd.edu

2Rutgers, The State University of New Jersey, 508 CoRE, 94 Brett Rd, Piscataway, NJ 08854
vishal.m.patel@rutgers.edu∗

Abstract

In this paper, automated user verification techniques for
smartphones are investigated. A unique non-commercial
dataset, the University of Maryland Active Authentication
Dataset 02 (UMDAA-02) for multi-modal user authentica-
tion research is introduced. This paper focuses on three
sensors - front camera, touch sensor and location service
while providing a general description for other modali-
ties. Benchmark results for face detection, face verification,
touch-based user identification and location-based next-
place prediction are presented, which indicate that more ro-
bust methods fine-tuned to the mobile platform are needed
to achieve satisfactory verification accuracy. The dataset
will be made available to the research community for pro-
moting additional research.

1. Introduction

The recent proliferation of mobile devices like smart-

phones and tablets has given rise to security concerns about

personal information stored in them. Studies show that

users are more concerned about the security of their cell

phones over laptops [5]. Though over 40% of users in ma-

jor U.S. cities have lost their phones or have been victims

of phone theft [12], industry surveys estimate that 34% of

smartphone users in the U.S. do not lock their phones with

passwords [1]. This contradictory behavior is due to the

time-consuming, cumbersome and error-prone hassles of

entering passwords on virtual keyboards or due to users’ be-

liefs that extra passwords are not needed [12]. 76% attacks
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Figure 1. Association of smartphone sensors with behavioral and

biometric information.

on smart phones exploit weak passwords [39], but users still

prefer those over stronger passwords, as the stronger pass-

words are difficult to remember and type, especially since

the average cell phone user checks their smartphone device

150 times per day [26].

Going beyond traditional passwords and fingerprint-

based one-time authentication, the concept of Active Au-

thentication (AA) has emerged recently [29], where the en-

rolled user is authenticated continuously in the background

based on the user’s biometrics such as front camera face

capture [34], [10], touch screen gesture [11], [42], typing

pattern [2] etc. Conceptually, in an AA system users do

not password-lock the phone at all. When a user uses the

phone, the AA system compares the usage pattern with the

enrolled user’s pattern of use. If the system deems that the

usage patterns are sufficiently similar, the phone’s full func-

tionality (including sensitive applications and data) is made

available, else it blocks the current user. At present, most

of the AA systems are based on face, touch and typing pat-

tern biometrics. As shown in Fig. 1, modern smartphones

provide multiple sensors associated with a variety of be-

havioral and physiological biometric information, however

research on multi-modal authentication using multi-sensor

data is lagging behind, because of paucity of datasets.

The first non-commercial dataset on smartphone us-



age containing a wide range of sensor data, namely the

University of Maryland Active Authentication Dataset 02

(UMDAA-02), is introduced in this paper. Unlike task-

based data collection schemes, the data collection was pas-

sive and hence is representative of the natural, regular

smartphone usage by the volunteers. The data collection

application ran on the Nexus-5 device, completely in the

background, saving sensor data and periodically uploading

the data to a secure online location.

The benchmark results of 4 experiments on the

UMDAA-02 dataset are reported in this paper. Face is the

most widely used biometric, but the images captured by the

front-facing camera of smartphones present certain chal-

lenges such as partial face detection under occlusion and

large variations in pose and illumination. The face images

in the UMDAA-02 dataset are difficult to detect and the

performances of traditional face detection methods are ex-

plored on a smaller annotated subset of the dataset. Next,

faces of the annotated subset are verified using multiple

state-of-the-art features and distance measures. On the full

dataset, swipe-based user identification has been performed.

Also, utilizing the user’s geolocation information, the next

place prediction experiment is performed which can be use-

ful in AA research when fusing multiple modalities.

2. Previous Works
Among the AA techniques, the most explored are

based on faces [10], [34], touch/swipe signature[37],

multi-modal fusion [42], gait [8] and device movement-

patterns/accelerometer [30], [6]. Face-based authentication,

though most accurate, requires more computational power

and can cause faster battery drain if the images are captured

frequently. On the other hand, swipe and accelerometer data

alone are not discriminative enough. Among the other AA

approaches, in [14], the authors fused stylometry with appli-

cation usage, web browsing data and location information.

Various protocols for AA with and without multi-modal

fusion have been suggested over the years. In [32], the au-

thors explored the idea of progressive or risk-based authen-

tication by combining multiple verification signals to deter-

mine the users level of authenticity. The AA system sur-

faces only when this level is too low for the content being

requested. In [18], the authors proposed context aware pro-

tocols for more flexible yet robust authentication. In [33],

the authors discuss three possible levels of fusion (a) fu-

sion at feature level, (b) fusion at score level, and (c) fu-

sion at decision level. Different fusion algorithms based on

k-Nearest Neighbour classifiers, Support Vector Machines,

decision trees, Bayesian methods, Gaussian Mixture Mod-

els (GMM) have been employed. [33], [7].

The MOBIO dataset [25] is a well-known dataset for

face-based AA research. It contains 61 hours of audio-

visual data from a NOKIA N93i phone (and a 2008 Mac-

book laptop) with 12 distinct sessions of 150 participants

spread over several weeks. However, since users were re-

quired to position their head inside a certain elliptical box

within the scene while capturing the data, the face images of

this dataset do not represent real-life acquisition scenarios.

Faces captured by the front camera (and also screen

touch data) of University of Maryland Active Authentica-

tion Dataset (UMDAA-01) [42][34] of 50 users are uncon-

strained and hence presents a more realistic and challeng-

ing scenario for face-based continuous authentication where

partially visible, frontal and non-frontal faces under vari-

ous illumination conditions are available. In [23] and [36],

the authors introduced facial segment-based face detection

(FSFD) method and deep feature-based face detection for

UMDAA-01-FD which is a small annotated subset of the

UMDAA-01 dataset, respectively, and showed that the par-

tial face detection capabilities of these methods make them

suitable candidates for mobile front-camera face detection.

The MIT Reality Dataset [9] consists of call logs, Blue-

tooth devices in proximity, cell tower IDs, application us-

age, and phone status (such as charging and idle) infor-

mation from 100 Nokia-6600 smart phones users collected

over 450,000 hours. Since it focused on analyzing social

behavior of the subjects, it does not contain vital biomet-

rics such as face and touch. The Rice Livelab dataset [38]

consists of information on application usage, wifi networks,

cell towers, GPS readings, battery usage and accelerometer

output of 35 users, collected from iPhone 3GS devices over

durations ranging from a few days to less than a year.

The largest known dataset on smartphone usage is the

Google’s Project Abacus data set consisting of 27.62 TB

of smartphone sensor signals collected from approximately

1500 users for six months on Nexus 5 phones [27]. Data

was collected for the front-facing camera, touchscreen and

keyboard, gyroscope, accelerometer, magnetometer, ambi-

ent light sensor, GPS, Bluetooth, WiFi, cell antennae, app

usage and on time statistics. Google also collected the

114GB Project Move data set, which consists of smart-

phone inertial signals collected from 80 volunteers over two

months on LG3, Nexus5, and Nexus6 phones. The data

collection was passive for both projects. To date, neither of

these two datasets are available for the research community.

3. Description of the UMDAA-02 Dataset
The UMDAA-02 data set consists of 141.14 GB of

smartphone sensor signals collected from 48 volunteers on

Nexus 5 phones over a period of 2 months (15 Oct. 2015

to 20 Dec. 2015). The data collection sensors include the

front-facing camera, touchscreen, gyroscope, accelerom-

eter, magnetometer, light sensor, GPS, Bluetooth, WiFi,

proximity sensor, temperature sensor and pressure sensor.

The data collection application also stored the timing of

screen lock and unlock events, start and end time stamps



Table 1. Significant Information for Each Modality Per Session

Modality Information

Accelerometer Event Time, X, Y, Z

Gyroscope Event Time, X, Y, Z

Image Shutter Time, Filename

Bluetooth Developer, Paired/Unpaired Flag

Location Event Time, Lat., Long., Accuracy

Usage Event Time, % CPU, % Memory

Magnetic Field Event Time, X, Y, Z

Gravity Event Time, X, Y, Z

Connectivity Capture Time, Flag (Bluetooth, Gps, Wifi,

Cell Network), Network Name and Code

Foreground App

Info

Start Time, Duration, End Time, App

Name, Launched From Home Flag

WiFi SSID, BSSID, Authentication Type, IP

Address, RSSI

Ambient Light Event Time, Value

Ambient Cells MCC, CI, MNC, Sig. Strength, TAC

Screen Event Time, Key

Motion/Touch Event Time, Type, Pressure, Major-Minor

Axis, Position

Call Event Time, Key

Key Event Time, Pressure, Type, Key Code

Screen Res Event Time, X, Y

Table 2. Information on UMDAA-02 and UMDAA-02-FD Dataset
Description UMDAA-02 UMDAA-02-FD

No. of Subjects 36M, 12F 34M, 10F

Age Range (years) 22− 31 22− 31

Avg. Days/User (days) � 10 � 10

Avg. Sessions/User � 248 � 200

Total Number of Images 600712 33209

No. of Images without Faces − 9060

Avg. Images/User � 12515 � 755

Avg. Images/Session � 51 � 4

Min. no. of Image for a User 1038 64

Max. no. of Image for a User 49023 2787

of calls, currently running foreground application etc. The

volunteers used the research phone as their primary device

for a week and were given the option to stop data collection

at will and review the stored data prior to sharing.

In Table 1, the most significant information for each

modality associated with the sensor data is presented. Data

for most of the modalities are stored when there is signifi-

cant change in that modality. For example, the GPS data is

stored at a rate proportional to the movement speed of the

phone. The front camera images are captured only for the

first 60 seconds for each session at a rate of 3 fps.

Some general information on the dataset is provided in

Table 2. The usage information is arranged in ‘Sessions’

which starts when the user unlocks the phone and ends

when the phone goes to the locked state. The data is stored

in nested folders with the year, month, day and start time of

the session embedded in the folder names.
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Figure 2. (a) Histogram of number of images per user, and (b)

histogram of number of sessions per user.

Figure 3. Sample images from one of the users showing a wide

variety of pose, illumination, occlusion and expression variations.

4. Face Detection and User Verification
In this section, we describe face detection and verifica-

tion tasks from faces captured by the front-facing camera.

Fig. 2 shows histograms of number of images per user and

the number of sessions per user. The number of images

varies between 2000 to 50, 000 per user and the number of

sessions varies between 25 and 750, thus providing a large

number of images for each user and session.

UMDAA-02-FD Face Detection Dataset: State-of-the-

art face detection algorithms that perform satisfactorily on

datasets like faces-in-the-wild [19], [20] are not suitable for

detecting partially visible faces that are typically present in

the UMDAA-02 dataset. Moreover, for practical implemen-

tation purposes, the algorithm must be very fast and have a

high recall rate to ensure continuous authentication [23]. A

few sample images are shown in Fig. 3 which shows that the

faces suffer from partial visibility, illumination changes, oc-

clusion and wide variation in poses and facial expressions.

Excluding the data of 5 users from a phone whose front

camera malfunctioned during data collection phases, a set

of 33209 images was selected from all sessions of the re-

maining 43 users at an interval of 7 seconds. The images

were manually annotated for ground truth face bounding

box, face orientation and five landmarks - left eye, right

eye, nose, left and right corners of the mouth to create

the UMDAA-02 face detection dataset (UMDAA-02-FD).

Some information on the UMDAA-02-FD is provided in

Table 2. The chronology and session information of all

the images are also available. The histogram of face height

and width distribution shown in Fig. 4 indicates that face

widths vary approximately from 400 to 650 pixels, while

face heights vary approximately from 300 to 700 pixels.

The database contains many partial faces as can be seen

from the extremities of the distribution, information from

which can help tune the hyper-parameters of face detectors.

Evaluation of Face Detection Performances: Accuracy

and F1-score measures are adopted as evaluation metrics



Figure 4. Distribution of bounding box width and heights

Table 3. Comparison between FD methods at 50% overlap

Method Accuracy F1-Score Time/Image(s)

VJ [40] 60.24 64.50 0.16
DPM [43] 62.62 65.50 5.51

LAEO [24] 19.40 32.49 4.57

FSFD(Cbest)[23] 73.48 79.11 0.68

DP2MFD[31] 76.15 82.83 15.0(CPU),

0.8(GPU)

for face detection to ensure that both precision and recall

performances are taken into consideration. The processing

time per image is also measured to analyze the suitability

for real-time operations. Prior to face detection, the images

are down sampled by 4 to ensure reasonable processing time

for all algorithms. 50% intersection-over-union overlap be-

tween the detection results and the ground truth bounding

box is considered to be the threshold for correct detection.

The performances of four face detection algorithms on

the UMDAA-02-FD dataset are presented in Table 3. The

recently proposed Facial Segment-Based Face Detector

(FSFD) algorithm [23] (with number of random subset

ζ = 20 and minimum number of segments c = 2), which is

specifically designed for detecting partial faces, performs

better than other popular non-commercial detectors like

Viola-Jones (VJ) [40] and Deformable Part-based Model

(DPM) [43] and in reasonable processing time. Another

recent FD technique, the Deep Pyramid Deformable Part

Model (DP2MFD) [31] utilizes normalized convolutional

neural network (CNN) features. It outperforms all the

other methods in terms of Accuracy and F1-Score but the

processing time is quite long (almost 100 times more than

VJ) thus making it unattractive for realtime implementation

on smartphones. However, the best scores are far from

satisfactory and better face detectors for AA are needed.

Face-based User Verification: Face verification is per-

formed on the UMDAA-02-FD dataset. For each annotated

face, 68 fiducial landmarks are extracted using the Local

Deep Descriptor Regression (LDDR) method trained on Im-

agenet and FDDB datasets [22]. Feature extraction is per-

formed after alignment, centering and cropping.

Feature Extraction from Faces: Given a face image, pixel

intensity, Local Binary Pattern (LBP) [28] and Convolu-

tional Neural Network (CNN) features using the pre-trained

Alexnet network [21] and the DCNN network [4] are ex-

tracted. In total, 6 different features are extracted for each

Figure 5. Flow diagram for features extraction for face verification.

Figure 6. Block diagram depicting the face verification protocol.

face as shown in fig. 5.

• F1: Pre-processed faces are converted to grayscale,

rescaled (32 × 32) and vectorized (1024 dimensional

vector).

• F2: From the 64 × 64 rescaled grayscale image, LBP

features of size 8 × 8 × 58 (3712 dimensional vector)

are extracted for a cell size of 8× 8 pixels.

• F3: Bounding boxes of the eyes, nose and mouth are

computed from the landmarks with a 5 pixel margin for

each face part from the pre-processed grayscale image.

The eyes, nose and mouth bounding boxes are resized

to 14×18, 21×13 and 11×23 pixels respectively, then

vectorized to a 1030 dimensional MEEN feature[10].

• F4: LBP features (2842 dimensional) are obtained

from each of the resized bounding boxes of MEEN

parts (F3) with a cell size of 4× 4 pixels.

• F5: The first five convolutional layers of Alexnet are

used to extract features of size 6×6×256 (9216 dimen-

sional) from resized color images of faces (227× 227)

• F6: Landmarks are input to the DCNN based face ver-

ification system [4] trained on the CASIA-WebFace

dataset [41], which resizes the face to (125× 125× 3)

and then outputs a 320 dimensional feature vector.

Evaluation Protocol: Six types of feature vectors are con-

sidered in this experiment. In the absence of any particular

enrollment data, to simulate a practical AA scenario, the

faces are sorted chronologically for each user and the first

N faces are considered for enrollment while the rest are

used for verification. The mean of the features of the en-

rollment set of a user followed by L2 normalization of the

mean vector is stored as his/her template u.



Figure 7. EER (%) vs. M for varying N using DCNN features

(F6) and four different metrics.

Figure 8. EER(%) for 6 feature vectors using four metrics.

Fig. 6 shows a block diagram of the verification process.

A reasonable, practical assumption for robust AA is that

the user is verified by the last M faces instead of a single

one. Therefore features vi (i = 1, 2, . . . ,M ) are extracted

from each of the M faces for each location of the mov-

ing window, then averaged and L2-normalized to form the

test vector v. The distances between v and u are calculated

using four distance measures, namely, Euclidean Distance

(EU), Cosine Distance (CosD), Manhattan Distance (MD)

and Correlation Distance (CorrD). For the distance measure

δk of type k the score is Ψk = 1
δk

[34].

Experimental Results: In Fig. 7, the equal error rate

(EER) (%) produced by using F6 features are plotted for

varying M and N values for the four distance measures. It

is evident from the plots that the EER decreases with in-

creasing N and M for all the cases. The lowest EER of

18.44% is achieved for N = 20, M = 30 using either

CorrD or CosD measure.

Fig. 8 shows the EER corresponding to different fea-

tures and distance measures considering N = 20, M = 30.

The DCNN features (F6) are found to be the most effec-

tive (EER of 18.44% for CosD). Since, for a reliable sys-

tem the EER is expected to be at least less than 5%, this

value is not satisfactory at all. The poor performance may

be due to the fact that many faces in the dataset are partially

visible and therefore alignment using facial landmarks fails

badly for these cases. Also, matching the features from a

partial face to the features of the same user’s full face may

result in a large distance measure. Among the other meth-

ods, the Alexnet network does not perform much better than

the non-CNN features in this scenario as it is not trained
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Figure 9. Histogram of the number of data points per swipe.

Table 4. General Information on Swipe Data

No. of subjects 48

Avg. Session/User with swipe data � 196

Total taps (finger down-finger up) 177417

Total swipes (including taps) 489723

Maximum data points in a swipe 3637

No. of Swipes/User � 10203

No. of Swipes/Session � 52

No. of Swipes (> 4 data points) � 167126

No. of Swipes/User (> 4 data points) � 3482

No. of Swipes/Session (> 4 data points) � 18

particularly for faces. The LBP of MEEN face (EER of

28.83% for MD) gives the best result among non-CNN fea-

tures. Note that in practice, the CNN feature extraction step

is generally much slower than the non-CNN feature extrac-

tion methods without the use of a GPU. Thus, more robust

yet fast verification methods are needed to produce satisfac-

tory performance on this dataset.

5. User Identification Using Swipe Dynamics
In this experiment, single finger touch sequences

(swipes) on the screen are studied by considering three

types of events - finger down, in-touch and finger up. The

length of swipes vary between 1 to 3637 touch data points

(Fig. 9). For reliable authentication using swipes, longer

ones are preferable [13]. Hence, swipes with more than four

data points are considered for feature extraction. Table 4

summarizes the swipe dataset, shows that it contains a large

number of touch and swipe data per user and therefore can

serve as a data set for practical experiments on swipe-based

authentication. Since the users were not given any particular

task to perform, the touch data in AA-02 is representative of

how users interact with the phone through touch.

Feature Extraction: Every swipe s is encoded as a se-

quence of 4-tuples si = (xi, yi, pi, ti) for i ∈ 1, . . . , Nc

where xi, yi is the location coordinates and pi is the pres-

sure applied at time ti. Nc is the number of data points

captured during the swipe. From each swipe-action data

with Nc ≥ 5, a 24-dimensional feature vector, listed in Ta-

ble 5, is extracted using the method described in [13] and

[42]. Note, in the UMDAA-02 dataset, the measure of area

covered by the finger is not present.

Experimental Setup and Evaluation: The swipe data

for each user (with Nc ≥ 5) are sorted chronologi-

cally and the first 70% swipes are considered for training-

validation while the rest for testing. After extracting the

24-dimensional feature vector from each swipe, the train-



Table 5. Features Extracted From Each Swipe Event

Features Description

1-2 inter-stroke time, stroke duration

3-6 start x, start y, stop x, stop y

7-8 direct end-to-end distance, mean resultant length

9 up/down/left/right flag

10-12 20%, 50%, 80% -perc. pairwise velocity

13-15 20%, 50%, 80%-perc. pairwise acc

16 median velocity at last 3 pts

17 largest deviation from end-to-end (e-e) line

18-20 20%, 50%, 80%-perc. dev. from e-e line

21 average direction

22 ratio of end-to-end dist and trajectory length

23 median acceleration at first 5 points

24 mid-stroke pressure

Figure 10. EER vs. Wswipe.

ing feature matrix is normalized to zero mean and unit vari-

ance. Then individual binary classifiers are trained for each

user following the one-vs-all protocol. The classification

methods considered for this experiment are k-nearest neigh-

bor (KNN) [13], Gaussian kernel Support Vector Machine

(RBF-SVM)[13], Naive Bayes (NB) [37], Linear Regres-

sion (LR) [37], Random Tree estimation followed by Linear

Regression (RT+LR), Random Forest estimator (RF) [3],

[11], [37] and Gradient Boosting Model (GBM) [15]. The

methods are compared based on EER (%).

As proposed in [13], instead of using a single swipe

for authentication, the scores of multiple, consecutive

Wswipes number of swipes are averaged together for robust-

ness. Since all of the methods return confidence probabil-

ities/scores or distance from separating hyper-plane repre-

senting confidence, the score fusion is a simple average of

individual scores. For the nearest neighbor-based methods,

nine neighbors are considered. The parameters of RBF-

SVM are tuned by 10 fold cross validation on smaller sub-

sets of the original training data. Since the training data is

very large, the SVM is trained on a reduced subset, followed

by retraining on the hard negative mined error cases. For the

ensemble-based methods, the number of estimators is set to

200 and the maximum tree depth is set to 10. The EER val-

ues obtained using different methods for differnet Wswipe

values are show in Fig. 10. The random forest (RF ) esti-

mation method outperforms all the other methods and can

reach an EER of 22.1%. However, for practical usage, this

EER is not satisfactory and therefore achieving a better per-

Table 6. General Information on Geo-location Data
No. of Subjects 45

Avg. No. of Sessions/User with Location Data � 186

Total Number of Location Traces 8303813

Number of Location Traces Per User � 184529

Number of Location Traces Per Session � 993

Figure 11. Example of Geo-location Data Clustering - Analysis of

the clusters reveal states of the user such as ’Home’ or ’Work’.

formance for this dataset is a new research challenge.

6. Geo-location Data and Next Place Prediction
The location service of smartphones return geographical

location of the user based on GPS and WiFi network. Ex-

cluding the users who kept their location service off, geolo-

cation data, stored only if there is significant change in the

location, is obtained from 45 users (summarized in Table

6). It is possible to reasonably predict the next location that

a person might visit based on prior knowledge on the pat-

tern on one’s life. In this section, the next place prediction

problem is approached using the geolocation data available

in the UMDAA-02 dataset.

State Definition for Mobility Markov Chains: Loca-

tion histories are first clustered into Ni clusters, namely

C1
i . . . C

N
i , for the i-th user using the DBSCAN algorithm

[35] based on distances between data points. The maximum

distance between a point from the center of the cluster in

which that point belongs is set to be below a certain value

R meters. Such clustering for a student (shown in Fig. 11)

reveals the expected dominant regions that the user would

visit - home, university, a certain shop and a restaurant. Two

additional clusters, Transit (Tr) and Unknown (Unk), are

also assigned for each user. If the user is traveling, causing

location information to change rapidly (≥ 2ms−1), then

he/she is assigned to Tr. The remaining data points are de-

noted as Unk.

Data points at each cluster are assigned to six different

observations based on the day and time information. Week-

days and weekend data points are flagged with WD and

WE. Also, the whole day is divided into three time zones

(TZs) - TZ1 (8:00 am to 4:00 pm), TZ2 (4:00 pm to 10:00

pm) and TZ3 (10:00 pm to 8:00 am). Thus, for the i-th user,

there are (Ni+2)×2×3 possible observation states. How-

ever, since the location service only collects data when the

phone is unlocked, there are many gaps in the data and it is

possible that many of these observation states are absent in

the training phase but present in the test data or vice-versa.



Figure 12. Next location prediction Accuracy (left) and

Accuracy3 (right) measures for increasing number of previous

observations for MMC at different R.

The location service data is utilized for development and

evaluation of Mobility Markov Chains (MMC) [17], [16]

which is a discrete stochastic process model of the mobility

behavior of an individual in which the probability of moving

to a state depends only on the last visited state and the tran-

sition matrix for all probable states. Thus an MMC is com-

posed of a set of k-states S = s1, s2, . . . , sk, prior probabil-

ity of entering a state p1, p2, . . . , pk and a set of transitions

ti,j where ti,j = Prob(Xn = sj |Xn−1 = si).
Experimental Setup and Evaluation: From the chrono-

logical organization of a user’s mobility traces, the first 70%
are used for training while the rest for testing. Each trace of

the training set is tagged with a unique tag identifying the

state it belongs to. The prior and transition probabilities

of each state are calculated from the chronological traces.

Since, the number of states for a subject depends upon the

maximum radius parameter R for the clusters, nearby small

clusters get merged into bigger ones with increasing R caus-

ing a reduction in the number of states. In the training set,

the average number of states per user drops to 35 from 144
if the maximum radius is increased to 500 m from 20 m.

MMC-based next location prediction results in terms of

Accuracy and Accuracy3 (percentage of times the correct

next location was among the top 3 most probable locations)

metrics are presented in Fig. 12. The horizontal axis rep-

resents the number of previous observations. Considering

n previous observations, the MMC algorithm returns prob-

abilities of each state to be the next. Since the day and

time zone of the next location are known, states that do

not belong to that day and time zone are dropped. The

most probable state among the rest of the states is picked

as the next predicted location. Fig. 12 indicates that know-

ing more prior states increases the accuracy. The accuracy

also increases with increasing maximum radius R (from 20
meters to 500 meters) at the cost of localization capabil-

ity. Between the two measures, Accuracy3 is can go much

higher (Accuracy = 65.3% and Accuracy3 = 96.6% for

R = 500 meters, n = 8) indicating the feasibility of loca-

tion prediction.

7. Conclusion
In this paper, we presented a multi-modal challenge data

set for AA problems. Benchmark results for face and touch-

based active authentication are provided. Preliminary re-

sults for predicting the next location are also given. The

UMDAA-02 is the first non-commercial data set on smart

phone usage containing data form a wide variety of smart

phone sensors. Thus this data set can provide sufficient re-

sources to AA researchers to investigate the efficacy and

performance of multi-modal fusion model for a wide vari-

ety of modalities in a practical AA scenario. The dataset

will be released to the research community in due course.
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