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ABSTRACT

In this work, we propose a generative way of modeling faces, where
the 3D shape of a face is generated by a supervised learning proce-
dure involving coupled sparse feature learning. To learn dictionaries
using the proposed method, we use the USF-HUMAN ID database
[1]. We provide as input to our training system, paired correspon-
dences of 2D and 3D images of individuals and aim to learn the
low-level patches both in 2D and 3D domains that describe the cor-
responding subspaces in a sparse manner. We demonstrate the effi-
cacy of our method by quantitative results on the 3D database and
qualitative results on images drawn from the internet.

Index Terms— 3D Model, Face Synthesis, Coupled Sparse
Coding, Cross-modal Learning

1. INTRODUCTION

The problem of generating a 3D surface from a 2D image has been
a greatly studied problem in Computer Vision. Since the seminal
work of Horn et al. describing a variational solution to the Shape
from Shading problem [2], there have been several approaches
that have provided efficient solutions to learn the 3D geometry
given an image of the surface. The common attributes of these
approaches have been to exploit prior knowledge on reflectance and
lighting conditions, thereby constraining the solution space. With
the abundance of 3D sensors like kinect available today, there is a
variety of approaches that try to ”learn” these physical constraints
from the training data. A popular example of such a method is
the make3D [3] system that computes the depth of each pixel of a
two-dimensional scene. This work is one such attempt of 3D model
estimation of a particular class of objects, human faces. The overall
objective of this work is to obtain a 3D surface that’s underlying
a given 2D face image. By 3D surface, we mean the depth map
(range data) corresponding to the 2D image. One such 2D-3D pair
is shown in Figure 1.

The problem of inferring the 3D model from a 2D image can
be cast as learning a mapping between two domains: intensity and
depth. The mapping is in most cases, highly non-linear. However,
in cases where the domains under consideration have an intrinsic
connection, such as when they represent the same classes of objects,
this mapping could be approximately learned using shared sparse
representations as shown in [4],[5] for a variety of problems such as
compressive sensing, image super-resolution etc. In this work, we
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Fig. 1: Overview of the proposed method

extend the idea of coupled feature learning using sparse dictionaries
to the problem of obtaining a 3D model of a given 2D image. Due
to the difficulty of the problem for general object classes, we restrict
ourselves to human face images. Figure 1 presents an overview of
the proposed method. Given an input image, the face is detected and
warped to a 2D reference image chosen from a standard database.
The trained dictionaries along with the reference 2D-3D pair are
used to infer the 3D shape for the warped face. In order to visualize
the 3D output better, the synthesized images from the 3D model
estimate produced by our method are shown in the bottom row.

2. RELATED WORK

The formulations used in this work can be related to two different
classes of works: learning coupled feature representations; obtain-
ing 3D model estimate from still images/video. Learning coupled
feature space representations using dictionary-based methods was
used in the work of single image super-resolution by Yang et al.
[4]. In their work, the main objective was to generate a higher res-
olution image given the same image in a lower resolution. The idea
of bilevel sparse coding was later proposed by the same authors
for a more general category of problems involving coupled feature
space representations. The major difference is that in bilevel sparse
coding, the sparsity structure between the two domains under con-
sideration can be tweaked using a parameter which trades off the
reconstruction errors in each domain. Since then, there have been
several approaches that extended these ideas to learn mappings be-
tween several domains of interest: Photo to Sketch [6], RGB-HOG
[7] etc. This work uses the ideas of coupled feature learning to ap-
proximate the mapping between intensity and depth domains.

In the context of facial models, with sophisticated imaging sen-
sors, the seminal work of Blanz and Vetter [8] provided a boost
to the area of 3D modeling. Several approaches for solving this
ill-constrained problem have been proposed over the years [9], [3],
[10], [11], [12]. The solution to 3D model estimation has been dealt



Fig. 2: Region masks overlaid over the reference image.

with in two ways: learning a mapping between the image and depth
domain by using hand-crafted features as in [3] or molding a prior
3D shape to fit the appearance of the test image. In this work, we
combine the two approaches by learning the mapping using fea-
tures learnt from the data and using a prior 3D shape as a global
constraint. We provide both visual results and a quantitative com-
parison of our method with the Depth transfer method [12].

3. PREPROCESSING - WARPING AND REGION
LABELING

For training, we use a database of 2D-3D image pairs, an example
of which is shown in Fig.1. In this work, the USF-HUMAN ID
database [1] is used for experiments. In the training stage, since
we are given the 3D models that belong to the input 2D images, a
straight forward rendering scheme is used to render a frontal view.
During inference, we are given a random 2D input whose 3D model
is unknown and hence a more sophisticated warping procedure
is followed. Given an input image, we use the publicly available
implementation of Discriminative response map fitting (DRMF)
method [13] to extract facial landmarks. The input image is warped
to a reference image chosen from [1], whose 3D model is available.
The warping procedure takes as input the facial landmarks from the
input image, reference image and the 2D-3D correspondences to
estimate the intrinsic and extrinsic camera parameters and hence the
projection matrices. Using these projection matrices, a frontal warp
of the input image is generated. The whole procedure is performed
using our implementation of the method described in the DeepFace
work [14].

We split the frontal face into eight overlapping regions as shown
in Figure 2 and learn the dictionaries {Dx,Dz} for each region sep-
arately. Since any input image is warped to a given reference image
the regions are marked off by manually annotated masks on the ref-
erence image. Thus, when the patches are generated, each patch car-
ries a region-id signifying the region it belongs to. In the inference
stage, a patch extracted from region r is processed using the dictio-
naries learnt corresponding to region r. This step is a simple way
to affirming that the semantic regions of the face are represented in
a consistent manner. These regions are chosen so that each region
models at most one semantic part of the face (eyes/nose/mouth/ear)
and the surface orientation encoded by different regions are differ-
ent.

4. LEARNING WITH PATCHES

After the pre-processing stage, we are left with a training database
of corresponding 2D-3D image patch pairs {X,Z} = {xn, zn}Nn=1,
where N is the total number of patches. In our experiments, we ex-
tract roughly 10000 overlapping patches per image. These patches
are then split into R = 8 regions as explained in the Section 3.
The objective of the training phase is to learn coupled dictionaries
{Dx,Dz} for each region separately such that the sparse repre-
sentation of each 2D-3D pair are shared. We also require that the
dictionary Dx(z) is able to sparsely represent the domain X(Z).
In this section, we present the two formulations used in this work

in terms of joint/coupled dictionary learning and how we use it to
perform inference.

4.1. Joint Dictionary Learning (JDL)

This formulation is derived from the Joint Feature learning frame-
work of [4] for single image-based super resolution. Here the spar-
sity structure between the two domains is constrained to be the
same. The objective function should reflect that the reconstruction
errors in each domain using the dictionary atoms belonging to that
domain should be minimized, also making sure that a sparse combi-
nation of the dictionary atoms is used. Equation 1 implements this
objective. λ offers a trade-off between the domain reconstruction
error and the sparsity of α. In our experiments, we set λ = 0.5.

min
Dx,Dz,α

||X−Dxα||22 + ||Z−Dzα||22 + λ||α||1 (1)

4.2. Optimizing (1)

It can be seen that (1) can be compactly written in the following
form:

min
D̃,α
||X̃− D̃α||22 + λ||α||1 (2)

where, X̃ = [X,Z]T and D̃ = [Dx,Dz]
T . Equation (2) is in

the form of the traditional sparse coding problem and we use the
publicly available SPAMS toolbox [15] for its solution.

4.3. Coupled Dictionary Learning (CDL)

The bi-level sparse coding approach from [5] offers a slightly differ-
ent formulation of the same problem. In JDL, the sparsity structure
is constrained to be the same across the two domains. Since this
need not be the case, we can add an additional term to the objec-
tive in (1) where the reconstruction errors are minimized while the
sparse codes across the domains are ”similar” in a L2-norm sense.
This gives rise to the objective function shown in (3).

J (Dx,Dz,αx,αz) =

min
Dx,Dz,αx,αz

||X−Dxαx||22 + ||Z−Dzαz||22

+ γ||αx −αz||22
s.t αx = min

α
||X−Dxα||22 + λ||α||1

αz = min
α
||Z−Dzα||22 + λ||α||1 (3)

In (3), the parameter λ serves the same purpose as in (1). The
parameter γ trades off the similarity of the structure of the sparse
codes belonging to each domain with the corresponding reconstruc-
tion errors. We set γ = 1.

4.4. Optimizing (3)

The coupled dictionary learning formulation is a bilevel optimiza-
tion problem and highly non-convex. Hence, we use the stochas-
tic gradient descent algorithm to solve the problem due to the large
training size and the difficulty in gradient computation for each step.
The optimization is done in two levels : Given initial estimates of
{Dx,Dz} the lower level (constraint level) is solved to give a feasi-
ble solution, which consists of the {αx,αz} pair, using the SPAMS
toolbox [15]. In the next step, {αx,αz} are held fixed and the
upper level optimization or the objective function J (Dx,Dz), is
solved by computing its gradient with respect to the variables Dx

and Dz. These two steps are performed iteratively until conver-
gence. The convergence is determined by computing the objective
value at each iteration over a validation set. In our experiments, we



Fig. 3: Convergence plot of inference phase

found that using a batch size of 10 for the stochastic descent, the
problem converges in a single pass over the training data. To get the
update rule to perform the descent step, the gradients for (3) should
be computed. The gradients for the pth sample with respect to the
variables of the problem is given as follows by applying the chain
rule:

dJp
dDk

=
∂Jp
∂Dk

+
∂Jp
∂αpk

∂αpk
∂Dk

, (4)

where k = {x, z}. The first two partial derivatives are computed
as:

∂Jp
∂Dx

= −2(xp −Dxα
p
x)α

pT
x

∂J
∂αx

= −2Dx
T (xp −Dxα

p
x) + 2γ(αx −αz)

and similarly for z. The existence of the derivatives depends on the
existence of the partial derivatives of the sparse code αx(z) with
respect to the corresponding dictionary Dx(z). As pointed out in
[5], there is no direct link between them and hence they have to be
evaluated using implicit differentiation. The result of the analysis
from [5] is being used here to compute the derivatives as follows:

∂αpx
∂Dx

= (Dx
TDx

−1)

(
∂Dx

Txp

∂Dx
− ∂Dx

TDx

∂Dx
αpx

)
Thus, the update rule for the Stochastic descent algorithm for solv-
ing the upper-level subproblem can be given as:

Dx
t+1 = Dx −

ηt

B

B∑
b=1

(∇Jb)Dx

||(∇Jb)Dx ||2

where η is chosen as 0.1√
t

for the tth iteration; (∇Jb)Dx ≡
dJb
dDx

and
B is the batch size. In both the optimizations above (4.1,4.3), the
dictionary pair {Dx,Dz} are initialized individually using the K-
SVD method [16] and the dictionary atoms are normalized to have
unit norm after each update step.

4.5. Inference

In the testing phase, we use a reference intensity-depth pair to guide
our optimization process. Given an input X̂, we obtain the sparse
codes using the intensity domain dictionary(Dx) and use them
along with the depth dictionary (Dz) to reconstruct the depth map
corresponding to X̂. To impose a global shape constraint on the
output depth map, we use the reference depth-map Zr as a prior.
Furthermore, to compute the depth for a pixel which belongs to
a region r, we use the dictionary pair {Dr

x,D
r
z}. Since the test

image is warped to the reference image, this region information
is readily available along with the reference, as shown in Figure
3. The following objective function trades off between the recon-
struction error and the similarity to the prior shape. We found that

Fig. 4: Stepwise procedure for training (top row) and inference
(bottom row)

β = 0.2 gives a better trade off on the validation set. We start with
initializing α̂z as the solution of the sparse coding problem with
image X̂ and dictionary Dx. Then, (5) is solved to get the updated
model estimate.

min
Ẑ
||Ẑ−Dzα̂z||2F + β||Ẑ− Zr||2F (5)

The solution to (5) can be calculated in a straight forward man-
ner to be: Ẑ = Dzα̂z+βZr

1+β
. Then, for the JDL method, α̂z is

recomputed as the solution to Eq.(1) with X ≡ X̂,Z ≡ Ẑ. Dz.
For the CDL method, α̂z is recomputed as the solution to Eq. 6
using the Elastic-Net formulation in the SPAMS toolbox [15].

min
α̂x,α̂z

||X̂−Dxα̂x||2F + ||Ẑ−Dzα̂z||2F

+ λ(||α̂x||1 + ||α̂z||1) + γ||α̂x − α̂z||22 (6)

Using the recomputed α̂z , Ẑ is computed again and this procedure
is performed until convergence, that is, until there is no change in
the model output. We found that it takes typically 6-7 iterations
to converge as shown in Figure 3. The JDL method converges
faster but the CDL method produces slightly better results visu-
ally. Both the procedures converge in 60-70s using a naively im-
plemented MATLAB code. In practice, (5)-(6) are solved on over-
lapping patches and hence their values should be pooled together to
give a single depth estimate at any given pixel. In this step, we per-
form a distance based weighted pooling which is explained as fol-
lows: Any given pixel is covered by multiple overlapping patches
and hence if a pixel is at the center of a patch then its estimate of the
depth value should be weighted more as compared to that of a patch
where the pixel appears in a corner. Thus, we perform a weighted
pooling where the closer the pixel is to the center of the patch, the
higher the depth estimate of that patch is weighted. We found that
this method gives much better visual results as compared to max or
average pooling which give very noisy or very smooth results re-
spectively. We choose the β value such that the resulting 3D shape
does not overfit the prior. Based on experiments over the validation
set, we fix β = 0.2. Figure 4 provides a stepwise procedure for
training and inference stages.

5. EXPERIMENTS AND RESULTS

We show the effectiveness of our modeling paradigm by conduct-
ing both qualitative and quantitative experiments on the 3D Face
dataset: USF-HUMAN ID [1]. To generate training data, we use
the 3D model files provided to render frontal views of 100 individ-
uals with neutral expressions. For training and inference, we set the
patch size as 16 and the number of dictionary atoms to 512. These
were chosen as a trade-off between faster computation and model-
ing accuracy. We show the synthesised 2D non-frontal images from
the resultant 3D models in Fig. 5. In order to measure the accuracy



Fig. 5: Synthesized faces using the 3D model output. Input images are shown in the first column and the synthesized images are shown in
columns 2 to 7.

Fig. 6: Left row shows the 2D input images; Right row shows the
3D model produced by the proposed method, texture mapped with
the input image.

of the modeling procedure, we use the following metrics (z is the
Ground Truth (GT) depth image and ẑ is the model estimate, both of

dimension N ): Root mean Square error(RMSE):
√
||z−ẑ||22

N
, log10

error: 1
N

∑N
i=1 |log10(z)−log10(ẑ)|. Aside from these commonly

used metrics, we use two new metrics which are independent of the
range of the output values and do not strictly penalize pixel-wise
inaccuracies, like the previous metrics do. The mean normal error
(MNE) penalizes the difference in the surface orientation between
the GT and the model estimate. Given a depth map z, the surface
normals ~n of the underlying 3D point cloud is calculated using stan-
dard methods, for the GT and the model estimate. MNE is the com-
puted by measuring the difference between the normal orientations:
1
N

∑N
i=1 cos

−1(ni · n̂i), where the normals are normalized to unit
norm. Thus, MNE penalizes the difference in the 3D surface ori-
entation rather than the actual depth values. MNE-V refers to the
average error for per vertex normals and MNE-F refers to the per
face normals, where the vertex and faces are from the triangulated

Error Baseline 1 DT [12] JDL CDL

USF

log10 0.7386 0.2882 0.3181 0.31
RMSE 0.1323 0.0837 0.1174 0.1028
MNE-V 0.4425 0.4538 0.3355 0.3436
MNE-F 0.4915 0.4834 0.3766 0.384

Table 1: Quantitative results on USF dataset.

3D model output. The reported values for MNE are in radians.

5.1. 3D Model Synthesis Results

The dataset consists of 100 pairs of 2D intensity and range images
each in neutral expression and frontal pose. We split the dataset as
20 pairs for training, 10 for validation and 70 for testing such that
each image gets to be in the training once and hence resulting in 5
runs. The reported results are averaged across these runs. As a base-
line we use two comparisons. For baseline 1, we take the reference
depth image and consider that as the model estimate. For Baseline
2, we use the Depth Transfer (DT) approach. It should be noted that
there is no training required for DT but it requires the existence of
the 2D-3D pairs during inference. To make a fair comparison, we
use the same 20 training pairs for each run for DT and allow one
reference image. It should be noted that the DT code was not op-
timized for any parameters and default settings were used. While
both the proposed formulations give very close numerical results in
all the metrics used, we found that the CDL method gives visually
better results in slightly more cases in the validation set as com-
pared to the JDL method. Hence the qualitative results shown here
are using the CDL method. Figure 5 shows the synthesized faces
using the 3D model outputs for the input images shown in the first
column. More results are shown in Figure 6.

6. CONCLUSION AND FUTURE WORK

In this work, we proposed a supervised learning approach for 3D
model estimation approach with applications in synthesizing novel
views of faces. Due to the flexibility of the learning formulation,
the same methodology with simple changes can be applied to any
class of images. In future, we plan to formulate the model estima-
tion problem as a convolutional sparse coding problem. This can
be made to work in a feed forward way and can be recast as a deep
learning problem thus making it significantly faster and more ac-
curate. Another natural extension of this formulation that is being
worked on is to derive 3D models of faces appearing over a video
sequence, performing model updates in an online manner.
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