## Science Leadership Foundations Professional Learning Community

July 20-24, 2020

Syllabus

# Instructors:

Katya Denisova, PhD, Assistant Principal, Western High School, Baltimore, MD; <u>EDDenisova@bcps.k12.md.us;</u> <u>Dr. Denisova also served as the former PI for Baltimore City Public Schools of the National Science Foundation</u> (NSF) Math Science Partnership Grant (DUE-1237992).

Miguel Cervantes Del Toro, Principal, Callaway Elementary School, Baltimore, MD; <u>MCervantesDelToro@bcps.k12.md.us</u>

<u>Time:</u> Monday-Friday, 4:30 -7:30 pm, Synchronous Hybrid Learning Environment with both Synchronous and Asynchronous Learning

Note:

<u>Course objective:</u> Equip school-based leaders with knowledge, skills, and tools to support Science instruction in a preK-8 setting.

<u>General Overview:</u> This 45-hour Professional Learning Course and Community focuses on the content knowledge, pedagogical practices, and leadership knowledge required to support, sustain, and advance science literacy achievement in PreK-5 and PreK-8 schools, as defined by the Common Core and Next Generation Science Standards. The class meets daily in small and large groups via Blackboard collaborative online platform.

### Key Topics:

| Essential Questions                                                | Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What does it take to run a robust<br>science program at my school? | <ul> <li>How does Science instruction connect to other subjects that we teach?</li> <li>How should I schedule science instruction in my building?</li> <li>Management of instructional materials: What to do if I do not have materials for science experiences/labs kits?</li> <li>What are the effective practices of collaborative planning and observation of instruction for science?</li> <li>What are the roles, responsibilities, and characteristics of my Science Lead?</li> <li>What about after-school science and STEM programming: Do they matter?</li> </ul> |
| How does a Science classroom<br>look?                              | <ul> <li>What is the Science Learning Cycle (5Es)?</li> <li>What are science misconceptions and why are they important to know?</li> <li>What's the difference between science by inquiry vs active learning vs scientific method vs NGSS practices vs project-based learning (PBL)?</li> <li>How does science support ELA skills? (Close reading, evidence-based argumentation and writing, student discourse, analysis of complex texts, etc.)</li> <li>How does science support math skills? (Developing and using models, computational thinking, etc.)</li> </ul>      |



|                                           | What are science student habits of mind?                                                       |
|-------------------------------------------|------------------------------------------------------------------------------------------------|
| How do I observe science                  | What are the key science teacher and student actions?                                          |
| instruction so that I can support         | • What tools do I use to provide useful science teacher feedback?                              |
| my teachers?                              | What is rigor in a science lesson?                                                             |
|                                           | How does the new Instructional Framework and other observation                                 |
|                                           | frameworks leverage NGSS instruction?                                                          |
| What is the design and structure          | <ul> <li>What are NGSS instructional shifts?</li> </ul>                                        |
| of NGSS Standards?                        | NGSS Assessments: How do I prepare my students to do well on the                               |
|                                           | MISA or other standardized science assessments?                                                |
|                                           | <ul> <li>Thinking beyond standardized testing: what do students need?</li> </ul>               |
| How do I make science accessible for all? | <ul> <li>What supports and differentiation are needed for:</li> </ul>                          |
|                                           | <ul> <li>Students with special needs</li> </ul>                                                |
|                                           | <ul> <li>ESOL learners</li> </ul>                                                              |
|                                           | <ul> <li>Students below grade level</li> </ul>                                                 |
|                                           | <ul> <li>Students above grade level</li> </ul>                                                 |
| What's the difference between             | <ul> <li>How do we integrate science, engineering, and technology?</li> </ul>                  |
| science and STEM?                         | <ul> <li>What is the Engineering Design Process (EDP)?</li> </ul>                              |
|                                           | <ul> <li>How do I work with families and community to endorse and promote<br/>STEM?</li> </ul> |

### Maryland State Department of Education (MSDE) CPD Credit Requirements:

- 1. Attend all virtual classes and participate in Blackboard discussions.
- 2. Complete course readings and/or assignments prior to each class.
- 3. Design an NGSS-aligned lesson plan.
- 4. Present final project.

#### **Participation**

During each class, each participant will be issued a "participation grade" based on his/her engagement in the work.

#### <u>Assignments</u>

All assignments will be graded as satisfactory or unsatisfactory. Participants must earn satisfactory on all assignments to receive course credit. Assignments that are unsatisfactory can be resubmitted once.

### READINGS (provided)

#### Books:

- Banko, W., Grant, M. L., Jabot, M. E., McCormack, A. J., & O'Brien, T. Science for the next generation: Preparing for the new standards. NSTA Press. 2013.
- Brunsell, E., Kneser, D. & Niemi, K. Introducing Teachers and Administrators to the NGSS: A Professional Development Facilitator's Guide. *Alexandria*, VA: NSTA Press. 2014.
- Koch, J. Science Stories: Science Methods for Elementary and Middle School Teachers. 5<sup>th</sup> edition. Cengage Learning. 2013.

Rhoton, J., & Shane, P. (Eds.). (2006). *Teaching science in the 21st century*. NSTA Press.

#### Articles:

- Blank R. What is the impact of decline in science instructional time in elementary school. Noyce Foundation. 2012.
- Sadler P., Sonnert, G. Understanding Misconceptions: Teaching and Learning in Middle School Physical Science. American Educator, 2016.