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Abstract—Acute Kidney Injury (AKI) is one of the most
frequent postoperative complications and is associated with both
short- and long-term mortality. Improved prediction of AKI is
crucial and may help clinicians prevent and mitigate its adverse
effects. In this paper, we explore the use of machine learning
methods to predict postoperative AKI. Our analysis centers on
the ensemble-based random forest (RF) classifier, which operates
on static clinical variables, and a novel deep learning archi-
tecture that incorporates intraoperative time series data along
with the static variables. The architecture uses a dual-attention
mechanism to select both features and time intervals relevant
for AKI prediction. We evaluate our models on the publicly
available VitalDB database of 3,640 patients who underwent non-
cardiac surgery. The RF outperformed existing machine learning
classifiers in the AKI literature (AUROC: 0.86, AUPRC: 0.54). In
addition, the RF identified a robust set of preoperative variables
that can be screened in a simple blood test. While the deep
learning model achieved slightly lower performance (AUROC:
0.84, AUPRC: 0.44), the attention weights provide important
intraoperative information, which can be monitored by clinicians
during surgery. Taken together, our results highlight the promise
of machine learning for AKI prediction and take the first steps
towards developing clinically translatable models.

Index Terms—Acute Kidney Injury, Random Forest, Convolu-
tional Neural Network, Recurrent Neural Network

I. INTRODUCTION

Acute Kidney Injury (AKI) is a common post-surgical
complication that refers to an abrupt decline in renal function,
characterized by retention of nitrogenous waste products and
creatinine, along with dysregulation of extracellular fluids.
AKI occurs in approximately 5–7.5% of all acute care hos-
pitalizations, and roughly 30–40% of these cases are observed
in conjunction with surgery [1]. AKI is a serious morbidity
associated with longer hospital stays, increased mortality, and
greater risk of developing long-term chronic kidney injury [2],
[3]. Hence, there is a clear need for perioperative physicians
to understand the baseline and ongoing risk for AKI. Such
information could help guide multiple aspects of perioperative
management, including drug dosing, fluid titration, hemody-
namic targets, and monitoring strategies [4], [5].

The risk for AKI is difficult to predict in any individual
patient, as it can involve multiple patient comorbidities and
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surgical factors. As a consequence, the current standard of
care relies heavily on (subjective) expert assessment, clinical
expertise, and simple risk-prediction models based on patient
characteristics. The rise of machine learning has fueled predic-
tive models for AKI that leverage classical techniques, such
as logistic regression, support vector machines, and random
forests [6]. Going one step further, the seminal work by [7]
introduced a deep learning architecture based on recurrent
neural networks to forecast AKI based on patient history.
While these methods provide a valuable starting point, they
have three key limitations. First, existing studies focus on well-
known preoperative variables (demographics, comorbidities,
lab values) but do not leverage intraoperative information.
Intraoperative data can help illuminate physiological insults
that occur during surgery and are thought to play a key
role in the development of AKI. In addition, many of these
intraoperative variables can be modified during the surgery,
thus providing a crucial opportunity to prevent AKI before it
develops. Second, deep learning methods in particular provide
black-box predictions, which make it difficult to disentangle
the relevant influences. This is a major detriment to devel-
oping better clinical management strategies for AKI. Third,
prior work focuses on just two evaluation metrics: prediction
accuracy and area under the receiver operating characteristic
curve (AUROC). Both metrics are overly optimistic in the case
of severe class imbalance [8], which makes it unlikely that the
methods will generalize to larger clinical populations.

In this paper, we take a critical approach to the design,
application, and evaluation of machine learning for AKI pre-
diction that addresses the above limitations. First, we propose
a novel deep learning architecture to integrate static clinical
variables with intraoperative time series data. This architecture
uses a convolutional neural network (CNN) to construct a
low-dimensional encoding [9] and a long short-term memory
(LSTM) module to capture temporal dependencies. The CNN-
LSTM is complemented by a static random forest (RF) clas-
sifier [10], which achieves one of the highest AKI prediction
performances reported to date. Second, both models provide
interpretable feature importance scores. For the CNN-LSTM,
these scores are computed by a novel dual attention module
that identifies both clinical variables and intraoperative time
intervals that predict AKI. Third, we propose a larger suite



of evaluation metrics, including the area under the precision-
recall curve (AUPRC), which emphasizes the minority AKI
class. Finally, we evaluate our models on a large publicly
available database of heterogeneous surgical cases. Hence, our
approach can be easily replicated and provides an important
benchmark for future AKI research.

II. CLINICAL DATASET

A. Data Source

Data used in this study was drawn from the VitalDB
database, which contains preoperative and intraoperative data
from 6,388 patients who underwent non-cardiac surgery [11].
The database was compiled and released by the VitalLab in
2016 and consists of patients admitted to the Seoul National
University Hospital in Seoul, Republic of Korea. VitalDB
contains patient comorbidities, preoperative laboratory values,
surgical factors, and intraoperative signals sampled at 1–7
seconds. VitalDB also contains postoperative measurements,
which we use to determine the incidence of AKI. For this
study, we use a criteria outlined by the KDIGO (Kidney
Disease: Improving Global Outcomes) organization: an abso-
lute increase of creatinine levels by 0.3mg/dL or an increase
to 1.5 times the patient’s baseline levels defines AKI [12].
Due to data limitations, we were unable to identify and
exclude patients on dialysis. Only patients with both a baseline
creatinine value at least one postoperative creatinine value
were included in this study.

B. Data Processing

Data was downloaded through the VitalDB API in the
form of csv files. We also subselected 16 intraoperative time
series that were acquired for the majority of patients: body
temperature, diastolic/systolic blood pressure, end-tidal CO2,
fraction of inspired/expired N2O, fraction of inspired/expired
O2, heart rate, propofol infusion rate, infused volume of propo-
fol, remifentanil infusion rate, infused volume of remifentanil,
respiratory rate, percutaneous O2 saturation, and tidal volume.

Static variables that were missing in more than 30% of
patients were removed, resulting in 62 features for analysis.
These features included demographics, like age and sex, pre-
operative lab test baselines, like sodium and hemoglobin, and
intraoperative summaries, like operation position and duration.
Categorical variables were encoded using label encoding, and
missing values were imputed using the K-nearest neighbors
algorithm. Lab test data was used exclusively to diagnose a
patient with AKI using the KDIGO criteria to create binary
labels for each patient, with 1 representing that the patient
developed AKI in the next 7 days (the critical monitoring
period) and 0 representing that the patient did not develop
AKI within this time. We resampled the intraoperative data
to 0.1 Hz and linearly interpolated missing values from the
neighboring time points. To address the varying lengths of
operations, time points were replicated from shorter operations
until all samples were of the same length. Finally, patients with
operation durations in the top and bottom 2% were removed. In

TABLE I
STATISTICS OF THE VITALDB DATA USED IN THIS STUDY.

Category AKI No-AKI Total
Sex(Male) 149 1961 2110
Age(Mean) 52.8 59.9 59.5
BMI(Mean) 22.3 23.0 22.9

General surgery 205 2515 2720
Thoracic 18 770 788

Gynecology 1 52 53
Urology 7 72 79

Total 231 3409 3640

total, our final cohort contained 3,640 patients. Table I shows
demographic and clinical information about the patient cohort.

C. Class Imbalance

We note that only 231 out of the 3640 patients (6.35%) had
a record of developing postoperative AKI. This massive class
imbalance makes it difficult to evaluate model performance.
Specifically, a classifier can achieve high accuracy simply by
predicting the label 0 (no AKI) for all patients. Thus, we train
the models using a weighted loss in which wrongly classifying
an AKI patient will incur a greater penalty than the reverse.

III. METHODS

A. Random Forest Model

Random forest (RF) is an ensemble learning method which
combines bagging decision trees, grown across random subsets
of the data, with random feature sub-sampling to construct
the decision splits. The dual randomization has been shown to
reduce model overfitting since features are chosen individually
by each decision tree, and results are aggregated based on
multiple such data splits. Statistically speaking, this bagging
procedure helps mitigate errors made by individual trees in the
ensemble to infer a more robust feature selection. In this vein,
the RF computes a selection weight for each feature known
as the Gini Importance. At a high level, GI quantifies how
well a particular feature separates the two classes, across all
associated decision nodes in the forest.

Our RF is composed of 400 trees with a max depth of 27
using class weights inversely proportional to their frequency.
The input to the RF was a vector of static variables (demo-
graphics, comorbidities, surgical factors), and the task was a
binary classification of AKI versus no AKI.

B. Deep Learning Architecture

In parallel to the RF, we aim to integrate the static variables
with the intraoperative data space. As the RF does not provide
a natural way to incorporate dynamics, we approach this
problem from the deep learning lens. Fig. 1 illustrates our
framework. At a high level, our model emphasizes prominent
information from the intraoperative data using a CNN (green
block in Fig. 1) with both channel and temporal attention
modules (Figs. 2 and 3) and feeds it to a recurrent neural
network for the final prediction (purple block in Fig. 1).



Fig. 1. Overview of our CNN-LSTM architecture for postoperative AKI prediction. Green block: Convolutional model for feature aggregation. Given the
intraoperative data, it detects pertinent features and re-weights the input data. Purple block: Recurrent portion for modeling temporal patterns throughout
operations. The input for this block is the obtained convolutional embedding S from the Green block.

CNN for feature extraction: The CNN portion of our model
was inspired by the CBAM developed in [13], which imple-
ments two attention maps corresponding to kernel-wise and
spatial descriptors. To cater to our application, we modify this
setup such that the attention is computed both across time, as
well as across features of the intraoperative data.

Mathematically, let X ∈ RF×T be the intraoperative data
for a single patient, where F is the number of features and T
is the number of time steps. Our model creates a 1D feature
attention vector Mf ∈ RF×1 and a 1D temporal attention
vector Mt ∈ R1×T . The overall attention weighted feature
extraction operation can be formalized as

X′(:, c) = Mf ⊗X(:, c) (1)

X′′(r, :) = Mt ⊗X′(r, :) (2)

where ⊗ indicates the element-wise Hadamard product. At a
high level, we wish to underscore features that are most rele-
vant to prediction in Mf . Simultaneously, Mt is designed to
highlight temporal events during the surgery that are important
for classification.

Feature Attention Module: Fig. 2 illustrates the construction
of our feature-wise attention module. To obtain the feature
attention vector, the data is first passed into two pooling layers.
The first of these performs a max pooling operation, giving
rise to Pf

max ∈ RF×1. The second computes a mean pool,
resulting in Pf

mean ∈ RF×1. The two vectors are then input to
two fully connected layers. From here, they are added together
and passed through the sigmoid function to obtain Mf :

Mf = σ[Φ1(Φ0(P
f
mean)) + Φ1(Φ0(P

f
max))], (3)

Here, σ represents the sigmoid function, and Φ0 and Φ1 are
fully connected linear layers with ReLU activation. Eq. (3)
mimics an encoder-decoder architecture designed for data-
compression, as shown in Fig. 2. This parametrizes a learnable
transformation to accentuate directions in the native data-space
that aid the AKI classification task.

Temporal Attention Module: Our temporal attention network
is depicted in Fig. 3. Similar to the feature attention, we use a
simple neural network to learn the temporal attention weight
vector Mt. Again, the data is input to two pooling layers.
The first of these constructs the max pooled output Ut

max ∈
R1×T , while the second performs a mean pool to give Ut

mean ∈
R1×T . The two vectors are then concatenated along the row.
From here, they feed into a convolutional layer with a sigmoid
activation to learns the attention weights. Mathematically,

Mt = σ(Fconv([U
t
max;U

t
max])), (4)

Here, Fconv parametrizes a convolution layer with tunable filter
weights learned via backpropagation.

LSTM-ANN for Classification: Referring to Fig. 1, S ∈
RF×T represents the attention-weighted data embedding ob-
tained from the CNN. We feed this representation into a
recurrent neural network (RNN) that models the temporal
evolution. We chose the Long Short-Term Memory (LSTM)
variant, which is known for its improved convergence proper-
ties, while faithfully modeling temporal trends [14]. We opted
for an LSTM with 2 hidden layers of size h = 30. This
hidden representation H ∈ Rh×T ′

from the LSTM is further
input to a three layered fully connnected network with ReLU



Fig. 2. Feature attention to select and amplify important features.

Fig. 3. Temporal attention to select and amplify important time points.

activations and batch normalization and output dimension
T” to obtain Ŝ ∈ Rh×T ′′

. At this stage, we introduce the
pre-operative data features by appending them to a flattened
version of Ŝ. Finally, the augmented representation is passed
to a fully connected classifier comprised of three hidden layers
with ReLU activations and batch normalization. The resulting
final output is a two dimensional vector ŷ which encodes
probabilities that a patient develops AKI vs not.

Implementation Details: The model was trained to minimize
a weighted cross entropy loss with weight ratio of 0.05 : 0.95
for patients characterized as non-AKI vs AKI. The entire
deep network was trained end-to-end with the ADAM [15]
algorithm using a learning rate of 8 ∗ 10−4, a weight decay of
0.0001, and a batch size of 32 on a NVIDIA 2070 GPU. The
intraoperative dataset was modified such that static clinical
variables were appended to each time point to simultaneously
provide historical and intraoperative context to the network.

C. Baseline Methods

We compare the RF and CNN-LSTM models to two classi-
cal machine learning methods: support vector machine (SVM),
and logistic regression (LR). Both methods operate on just the
static variables. Once again, the task was binary classification
of AKI versus no AKI, denoted as “1” and “0”, respectively.

1) SVM: The Support Vector Machine (SVM) classifier
constructs hyperplanes in a potentially complex feature space
to separate input points into its constituent classes. Formally,
these hyperplanes are constructed such that the separation
between the two classes is maximized [16]. We opt for a linear
kernel, which we found empirically to be more robust than
nonlinear variants along with a hinge loss penalty C=1.

2) Logistic Regression: Logistic regression is a popular
statistical technique used to model a binary dependent variable
using the ‘logistic’ function [10]. This procedure constructs
a line of best fit through the input data points to estimate a
probability measure for developing AKI vs not. Finally, for our
implementation, we add an `2 regularization on the regression
coefficients with a penalty factor of C = 1

D. Evaluation Strategy

We use 5-fold cross validation, run across 10 different
data splits, to quantify the performance of each model. The
validation metrics are averaged across all testing folds.

Most prior work on AKI prediction report just the area under
the receiving operator curve (AUROC), which evaluates the
true positive rate (TPR) versus the false positive rate (FPR) as
the detection threshold is varied. Mathematically,

TPR =
TP

TP + FN
and FPR =

FP

FP + TN
(5)

where TP (true positive) is the number of times the classifier
correctly classifies a patient with a true label of 1, TN
(true negative) is the number of times the classifier correctly
classifies a 0, FN (false negative) is the number of times the
classifier predicts 0 when the true label is 1, and FP (false
positive) is when the classifier predicts 1 when the true label
is 0. However, AUROC is an overly optimistic metric in cases
with extreme class imbalance, such as our VitalDB dataset.
For example, an algorithm can generate several false positive
predictions in an attempt to “guess” the true positive. Since the
majority class is large, this trade off will have minimal impact
on the FPR, resulting in a high overall AUROC. Hence, we
argue for the area under the precision recall curve (AUPRC)
to be the standard metric for this application [17]. Precision



TABLE II
QUANTITATIVE PERFORMANCE OF ALL MODELS USING REPEATED 5-FOLD CROSS VALIDATION. HIGHER AUROC AND AUPRC INDICATE BETTER

PERFORMANCE; LOWER STANDARD DEVIATION INDICATES ROBUSTNESS.

Model AUROC AUPRC F1-Score Sensitivity Specificity Accuracy
Logistic Regression 0.83 ±.007 0.34 ±.008 0.33 ±.088 0.43 ±.119 0.95 ±.016 0.91 ±.008

SVM 0.83 ±.008 0.33 ±.010 0.31 ±.055 0.40 ±.077 0.95 ±.012 0.91 ±.007
CNN-LSTM 0.84 ±.013 0.44 ±.018 0.39 ±.055 0.38 ±.057 0.97 ±.008 0.94 ±.005

RF 0.87 ±.006 0.54 ±.011 0.55 ±.009 0.50 ±.018 0.98 ±.003 0.95 ±.002

Fig. 4. Top: Boxplots of different models’ AUROCs evaluated over 10, 5-
fold cross validation runs. Bottom: Boxplots of different models’ AUPRCs
evaluated over 10, 5-fold cross validation runs.

captures the ratio of true positive to false positive detections,
thus disabmiguating the previous situtaion. Formally,

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
(6)

Finally, we report the F1 score, which is the harmonic mean
of Precision and Recall. For metrics requiring a threshold (e.g.,
TPR and FPR), we pick the threshold based on the value that
results in the maximum f1-score, discussed in [18].

IV. RESULTS

Table II reports the quantitative performance of all four
models across repeated 5-fold cross validation runs. As seen,
the RF achieves the highest AUROC and AUPRC values,
indicating that the static clinical variables carry most of
the information for AKI prediction. We note that the CNN-
LSTM achieves also achieves significantly higher AUPRC than
logistic regression (p < 0.0001) and the SVM (p < 0.0001).

TABLE III
RF FEATURE IMPORTANCE SCORES

Feature Mean Std (10−3)
Operation type 0.130 6.26

Preoperative albumin 0.049 3.20
Preoperative hemoglobin 0.044 3.54
Preoperative creatinine 0.031 2.17

Age 0.028 2.55
Preoperative blood urea nitrogen 0.027 2.73

Intraoperative estimated blood loss 0.027 2.32
Preoperative platelet count 0.027 1.87

While the CNN-LSTM achieves higher mean AUROC than
both baselines, the difference is not significant for SVM. The
CNN-LSTM also had a significantly higher F1 score than the
SVM (p < 0.0018) and logistic regression (p < 0.041) and
a significantly higher specificity and accuracy compared to
both models (p < 0.0001 for all comparisons). These statistics
highlight the weakness of AUROC as a holistic evaluation
metric when the CNN-LSTM, with similar AUROC to the LR
and SVM, produces only two thirds of the errors.

Table III lists the top clinical variables selected by the RF,
along with the corresponding Gini Importance. It is noteworthy
that the majority of the top features are patient risk factors,
such as age and preoperative laboratory values. Only one
intraoperative value (estimated blood loss) was included in the
model. These results suggest that baseline patient risk factors,
to a greater degree than intraoperative events, are primary
risk factors for AKI. These results support the importance
of patient selection and/or preoperative strategies that might
improve optimization prior to surgery.

Fig. 5 displays the attention weights learned by the CNN-
LSTM for 100 representative patients. The first 50 rows
correspond to patients who developed AKI and the last 50
rows correspond to patients who did not develop AKI.

The feature attention weights (top of Fig. 5) are designed
to select the relevant clinical variables for each patient. They
are organized such that the intraoperative time series features
are to the left of the black line, and the (static) preoperative
and demographic variables are to the right. Although the
feature attention is slightly different for each patient, we note
that the most consistently highlighted features are fraction
of inspired oxygen, heart rate, and remifentanil rate for the
time series variables, and preoperative albumin, case duration,
and preoperative creatinine for the static variables. Notice
that they are consistently selected in both the AKI and non-



Fig. 5. Top: Feature attention weights, where clinical variables are organized
along the x-axis and patients along the y-axis. Warmer colors indicate a greater
weight that the model puts on the corresponding feature. Red arrows point
to intraoperative remifentanil volume, Preoperative diabetes, and preoperative
creatinine as examples of commonly selected features. Bottom: Temporal
attention weights, where time proceeds along the x-axis and patients are
organized on the y-axis. Warmer colors indicate a greater weight that the
model puts on the corresponding time step.

AKI cohorts, which suggest that the groupwise classification
is based heavily on these values. Interestingly, most of the
top static features overlap with the RF, which boosts our
confidence about their relevance for AKI prediction.

The temporal attention weights (bottom of Fig. 5) identify
the intraoperative intervals that are deemed most relevant
for AKI prediction. While the long and complicated surgical
procedures make it difficult to pinpoint specific influences, we
note that the attention is generally higher at the beginning and
end of surgery, which coincide with the administration and
withdrawal of anesthesia. This period can also reveal underly-
ing issues, such as vascular stiffness. Hence, the results suggest
that anesthetic strategies may be viable targets for optimization
and that physiologic responses should be monitored closely
during this time, as they may help to mitigate AKI.

V. CONCLUSION

We have presented two machine learning models to predict
postoperative AKI: a random forest and a CNN-LSTM hybrid.
Both models performed significantly better than our baseline
methods, which are also commonly used in the AKI literature.
While the random forest achieves the highest AUPRC, the

CNN-LSTM goes one step beyond conventional frameworks
by integrating intraoperative data and generating interpretable
patient-specific feature weights via a dual attention mecha-
nism. We also report multiple performance measures, which
presents a more complete picture of model generalizability
than the single AUROC metric reported in prior work. Lastly,
our frameworks make minimal assumptions about the dis-
tribution of the data, thus allowing them to generalize in a
cross-validated setting. From a clinical perspective, our models
provide valuable benchmarks for AKI prediction and pave the
way for future exploration on richer multimodal datasets.
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