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Abstract

We propose a novel method for emotion conversion in speech

based on a chained encoder-decoder-predictor neural network

architecture. The encoder constructs a latent embedding of the

fundamental frequency (F0) contour and the spectrum, which

we regularize using the Large Diffeomorphic Metric Mapping

(LDDMM) registration framework. The decoder uses this em-

bedding to predict the modified F0 contour in a target emotional

class. Finally, the predictor uses the original spectrum and the

modified F0 contour to generate a corresponding target spec-

trum. Our joint objective function simultaneously optimizes the

parameters of three model blocks. We show that our method

outperforms the existing state-of-the-art approaches on both,

the saliency of emotion conversion and the quality of resynthe-

sized speech. In addition, the LDDMM regularization allows

our model to convert phrases that were not present in training,

thus providing evidence for out-of-sample generalization.

Index Terms: Emotion Conversion, Latent Variable Regular-

ization, Crowd Sourcing, Quality Score

1. Introduction

Automated speech synthesis has radically transformed our in-

teraction with machines. It is used in assistive technologies,

such as screen readers for the visually impaired, and hands-free

devices, such as Amazon’s Echo. Emotional speech synthesis

is the next milestone in this domain [1, 2]. For example, emo-

tional machines can be deployed in call centers, where customer

frustration is a regular occurrence, and it can provide a better

foundation for virtual companions for the elderly or impaired.

The quality of machine-generated speech has improved

phenomenally in the last decade, largely due to the representa-

tional power of deep neural networks [3, 4, 5], which are trained

on hundreds of hours of transcribed human speech. However,

controlling the expressiveness of synthetic speech remains an

open challenge. Recent works in emotional speech synthesis in-

clude [6], which generates singing voice conditioned on the in-

put rhythm, pitch and linguistic features. A disentangled model

for style and content is proposed by [7, 8] to infer the latent rep-

resentations responsible for expressiveness. While these models

represent seminal contributions to emotional speech synthesis,

the latent representations are learned in an unsupervised man-

ner, which makes it difficult for the user to control the output

emotion. Another problem is the poor rate of speech generation

due to the auto-regressive nature of these models [9]. These

challenges motivate the study of emotion conversion as an al-

ternative to end-to-end synthesis approaches. Notably, emotion

conversion methods provide controllability over the generated

affect, they require much less data to train, and the processing

speed is high enough for real-time applications.

Several interesting approaches for emotion conversion have

been proposed in the recent past. For example, the work of [10]

uses a Gaussian Mixture Model with global variance constraint

(GMM-GV) to modify the fundamental frequency (F0) con-

tour and the spectrum. A bidirectional long-short term mem-

ory (Bi-LSTM) based architecture has been proposed by [11]

to estimate the F0 contour and the spectral features of the tar-

get emotion utterance. Another approach by [12] converts the

pitch contour and energy contour of the source utterance using

a highway neural network which maximizes the error log like-

lihood in an expectation-maximization scheme. The same au-

thors further proposed a curve registration based method [13] to

modify only the F0 contour. Finally, a cycle-consistent gener-

ative adversarial network (cycle-GAN) proposed by [14] learns

to sample the pitch contour and the spectrum from the target

emotional class in an unsupervised manner. While these meth-

ods have been successful in single-speaker settings, many of

them fail on multispeaker dataset due to the larger overlap of

F0 and spectral features between emotional classes. In this pa-

per we propose a novel approach to model the relationship be-

tween the F0 contour and the spectral features, deriving it from

the basic knowledge of these two representations. Furthermore,

unlike other existing methods, our chained estimation also min-

imizes the mismatch between F0 and the corresponding spectral

harmonics. Our second contribution in this paper is to implic-

itly model the target pitch contour as a smooth and invertible

warping of source F0 contour. This is done by learning a la-

tent embedding based on the Large Diffeomorphic Metric Map-

ping (LDDMM) [15, 16] framework. In essence the embedding

serves as an intermediary between the source and target emo-

tions. We demonstrate that imposing this constraint improves

the prediction of the pitch contour significantly.

Our architecture consists of three separate convolutional

neural networks for predicting the embedding, the pitch con-

tour, and the spectrum, respectively. These networks are trained

in an end-to-end fashion from a unified objective function. We

compare our model against three state-of-the-art baseline meth-

ods using the multispeaker VESUS dataset [17]. We further

demonstrate that our model does well on sentences, which are

not part of the training set, establishing its generalization capa-

bility. Finally, in addition to emotion conversion, we show that

the proposed model generates better quality of speech than the

baselines from both supervised and unsupervised domain.

2. Method

Our novel method uses a chained encoder-decoder-predictor

network architecture to modify both the spectrum and the F0

contour of an utterance. The three components of the architec-

ture are jointly optimized through a unified loss function.

Fig. 1 describes the relationship between the random vari-
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Figure 1: Graphical model of our emotion conversion strategy.

mAB is the intermediary between emotion classes.

ables in our model. We use WORLD vocoder [18, 19] for the

analysis and synthesis of speech. Given a source-target pair of

emotional utterances denoted by UA and UB , respectively, the

source utterance is decomposed into its components: the spec-

trum (SA) and the F0 contour (pA). These components allow us

to estimate an intermediate parameter, known as the momenta

(mAB). From here, the target F0 contour (pB) is modeled

as a function of the source F0 contour (pA) and the momenta

(mAB). Next, we estimate the target spectrum (SB) given the

target F0 contour (pB) and the source spectrum (SA). Finally,

the estimated variables are used to synthesize the target emotion

utterance. The joint distribution shown in Fig. 1 factorizes as:

P (pA,SA,mAB ,pB ,SB) = P (pA) × P (SA|pA)

×P (mAB |pA,SA) × P (pB |pA,mAB) × P (SB |SA,pB) (1)

2.1. Regularization via latent representation

We use an explicit prior on the latent variable to improve the

prediction of F0 and spectrum. Specifically, we model the tar-

get F0 contour as a smooth and invertible deformation of the

source F0 contour. The idea of smooth deformations has been

used extensively for images [20], but here we use it for 2-D

curves. Mathematically, let pt
A and pt

B denote a pair of source

and target F0 contours, respectively. The variable t corresponds

to the location of the analysis window as it moves across a given

speech utterance. The objective of this deformation process is to

estimate a series of small vertical displacements vt(x; s) [15]

over frequency and time. The variable s ǫ [0, 1] controls the

evolution of these small displacements in the discrete setting.

The registration problem can thus be formulated as:

min
vǫV

1

2

∫

1

0

‖vt(·; s)‖
2

V ds+ λ

T
∑

t=1

‖φv
t (p

t
A; 1)− pt

B‖22 (2)

Here, ‖·‖V denotes the Hilbert norm which is implicitly defined

in our case by a Gaussian kernel. The variable φv
t denotes the

net displacement field i.e, φv
t =

∫
1

0
vt(·; s)ds.

Further, it has been theoretically shown in [21, 22] that the

objective in Eq. (2) can be reformulated in terms of variables

m0

t , known as the initial momenta, according to:

Γ(m0) =
1

2

T
∑

i,j=1

γijm
0

i m
0

j + λ

T
∑

t=1

‖φv
t (p

t
A; 1)− pt

B‖22 (3)

The variable γij is an exponential smoothing kernel evaluated

on pairs of time points of the source contour pt
A.

During training, we solve Eq. (3) for every pair of source

and target F0 contours to generate the ground truth momenta.

This variable summarizes the transformation between emotion

pairs. Since the momenta and source F0 contour uniquely spec-

ify the transformation, we use it as an intermediary between any

given pair of utterances. In comparison, [13] predicts a momen-

tum for every frame of the pitch contour and then warps it over

several iterations specified by variable s. It is a sub-optimal

strategy, as there is no temporal coherence constraint in pre-

dicting the momenta. Note that we do not have access to the

ground truth momenta during testing and run the network in an

open loop fashion without intermediate regularization.

2.2. Encoder-Decoder-Predictor Network

Current methods in emotion conversion modify the F0 and spec-

trum without imposing any explicit relationship between the

features. As a result, there are significant residual harmonics

present in the spectrum, which results in the poor quality of

resynthesised speech. Our approach overcomes this limitation

via the conditional relationships modeled in Fig. 1. Here, the

conditional spectrum estimate is given by:

ŜB = argmax
SB

P (SB |SA,pA) (4)

Using rules of probability, we can rewrite Eq. (4) as:

ŜB = argmax
SB

∫
pB

P (SB ,pB |SA,pA) dpB

= argmax
SB

∫
pB

P (SB |SA,pB)P (pB |SA,pA) dpB

= argmax
SB

∫
pB

P (SB |SA,pB) ×

∫
mAB

P (pB |mAB ,pA)

× P (mAB |SA,pA) dmAB dpB

= argmax
SB

∫
mAB

P (mAB |SA,pA) ×

∫
pB

P (pB |mAB ,pA)

× P (SB |SA,pB) dpB dmAB ,

where we have used Eq. (1) to derive the above expression. The

first term term we encounter is P (mAB |SA,pA) which is the

probability density of the intermediate latent representation i.e.,

momenta. It is conditioned on both, the source F0 contour and

the spectrum. The second term, P (pB |mAB ,pA) is the den-

sity over the target F0 contour given the momenta and the source

F0 contour. Finally, P (SB |SA,pB) is the target spectrum con-

ditioned on the target pitch contour and the source spectrum.

Note that the expression requires multiple integrations, and is

hence, intractable. However, we can make point estimates for

each density function using a deep convolutional neural net-

work [23] (CNN) thereby, allowing us to write:

m̂AB = arg max
mAB

P (mAB |SA,pA; θe)

p̂B = argmax
pB

P (pB |m̂AB ,pA; θd)

ŜB = argmax
SB

P (SB |SA, p̂B ; θp) (5)

The CNN approximating P (mAB |SA,pA; θe) is called an

encoder because it distills information about the input data. The

CNN modeling P (pB |mAB ,pA; θd) is called the decoder be-

cause it estimates the output pitch from the latent embedding

and source pitch contour. The encoder-decoder portion is a ba-

sic sequence-to-sequence model for pitch contours. Finally, the

CNN modeling P (SB |SA,pB ; θp) is called a predictor as it

generates the spectrum for the converted speech.

The architecture of these CNNs is shown in Fig. 2. We

adapt the architecture from [24] by reducing the number of

residual layers in each block. The entire sequence of three neu-

ral networks is trained together from a unified objective. The

loss function for optimizing the parameters is given by:

L = − log
(

P
(

mAB ,pB ,SB |SA,pA; θe, θd, θp
))

= λe‖m̂AB − m̄AB‖1+λd‖p̂B − p̄B‖1+λp‖ŜB − S̄B‖1 (6)
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Figure 2: Block model representation of the encoder-decoder-predictor. Encoder and decoder use the same architecture whereas

predictor has an extra residual block. GLU in the model stands for the gated linear unit. We use instance normalization due to small

mini-batch size and pixel shuffling for up-sampling. The size and number of kernels are indicated below each convolution block.

During training, we minimize the negative log likelihood of

momenta and the target features with respect to θ. We model

the conditional distribution of each variable by Laplace density

function. The corresponding ground truths (m̄AB , p̄B , S̄B) are

used as the mean while the variances are assumed to be con-

stant. This in turn is equivalent to minimizing the mean absolute

error of each target variable with an appropriate scaling, defined

by λe, λd and λp, which are the hyperparameters in our model.

One benefit of coupling the neural networks is that the en-

coder and the decoder become aware of the downstream task

of spectrum prediction. We train the neural network [25] us-

ing Adam optimizer [26] with a learning rate of 1e-5 and a

mini-batch of size one. 23 dimensional MFCC features are

used as spectrum representation extracted by an analysis win-

dow of length 5ms. During training, the context size is fixed

at 640ms which results in dimensionality of 128 × 1 for F0

contour and 128 × 23 for spectrum. The dimensions of mo-

menta are same as the F0 contour. The hyperparameters, λe,

λd and λp are set to 0.01, 1e-4 and 1e-4, respectively. We

do not normalize the input and output features during train-

ing to preserve their scale. Code can be downloaded from:

https://engineering.jhu.edu/nsa/links/.

3. Experiments and Results

We carry out an ablation study for the momenta mAB and a

qualitative evaluation of emotional salience and quality.

3.1. Emotional Speech Dataset

We evaluate our algorithm on the VESUS dataset [17] collected

at Johns Hopkins University. VESUS contains 250 parallel ut-

terances spoken by 10 actors (gender balanced) in neutral, sad,

angry and happy emotional classes. Each spoken utterance has a

crowd-sourced emotional saliency rating provided by 10 work-

ers on Amazon Mechanical Turk (AMT). These ratings repre-

sent the ratio of workers who correctly identify the intended

emotion in a recorded utterance. For robustness, we restrict our

experiments to utterances that were correctly and consistently

rated as emotional by at least 5 of the 10 AMT workers. As a

result, the total number of utterances used are as follows:

• Neutral to Angry conversion: 1534 utterances for train-

ing, 72 for validation and, 61 for testing.

• Neutral to Happy conversion: 790 utterances for train-

ing, 43 for validation and, 43 for testing.

• Neutral to Sad conversion: 1449 utterances for train-

ing, 75 for validation and, 63 for testing.

Our subjective evaluation includes both an emotion perception

test and, a quality assessment test. These experiments are car-

ried out on Amazon Mechanical Turk (AMT); each pair of

speech utterances is rated by 5 workers. The perception test

asks the raters to identify the emotion in the converted speech

sample, and the quality assessment test asks them to rate the

quality of speech sample on a scale of 1 to 5. We include both

the neutral and converted utterances to account for the speaker

bias. Further, the samples were randomized to mitigate the ef-

fects of non-diligent raters and to identify bots.

3.2. Baselines

We compare our encoder-decoder-predictor model to three

state-of-the-art baseline methods. The first approach learns a

Gaussian mixture model using concatenated source and target

features [10]. During inference, a maximum likelihood estimate

of target features is made given the source features. A global

variance constraint ensures that the estimate is not over-smooth,

which is a common problem in joint modeling techniques.

The second baseline is a Bi-LSTM supervised learning ap-

proach [11]. Since Bi-LSTMs generally require considerable

data to train, we adopt the strategy in [11] of training the model

on a voice conversion task [27] and then fine-tuning it for emo-

tion conversion. This method encodes the prosody features via

a Wavelet transform to represent both short-term and long-term

trajectory information of F0 and energy contours.

The third baseline is a recently proposed unsupervised

method for emotion conversion [14]. This algorithm uses cycle-

GANs to inject emotion into neutral utterances. A set of cycle-

GAN transforms the spectrum while the other set transforms the

prosody features. Once again, prosodic features are parameter-

ized using Wavelet basis similar to the Bi-LSTM.

3.3. Experimental Results

As a sanity check, we carry out an ablation study to understand

the effect of latent variable regularization via the LDDMM mo-

menta. Fig. 3 shows the resulting mean absolute error in pitch

prediction for each emotion pair. As seen, the F0 prediction

is statistically significantly better in two emotional pairs. Neu-

tral to happy conversion is an exception to this general trend,

but we conjecture that this is due to the smaller training dataset

(∼800 samples compared to >1400 for angry and sad). The er-

ror bars in all three emotion pairs are however, tighter than the
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* *

*

Figure 3: Effect of latent variable regularization on the pre-

diction of fundamental frequency (F0) for each emotion pair.

Marker ∗ indicates p < 10−2 for paired t-test scores.

* * * * * * * * *

* * * * * * * * *

* - p < 0.01

Figure 4: Confidence of emotion conversion (top) and the qual-

ity of reconstruction (bottom) for VESUS test samples.

un-regularized model, indicating that it is more robust.

3.3.1. Mixed Speaker Evaluation

Fig. 4 illustrates crowd-sourcing results on the VESUS test

dataset. Our proposed method has the highest emotional

saliency rating in comparison to the baselines. The GMM did

not produce intelligible speech when trained in a multi-speaker

setting, as the F0 and spectral features do not exhibit distinct

clusters when aggregated across speakers. Hence, the results

in Fig. 4 correspond to single-speaker training/testing. We note

that our GMM evaluation is unfairly optimistic, and yet, the

performance is worse than our method and the cycle-GAN. The

Bi-LSTM model which simultaneously predicts the wavelet co-

efficients for F0 and energy, along with the spectrum has very

poor conversion results for angry and happy. It is likely that

the Bi-LSTM focuses on a subset of the features to minimize

the overall loss. The cycle-GAN, on the other hand does pro-

duce reasonable results even though it is unsupervised. This

is likely due to the implicit regularization produced by cyclic

consistency and identity loss [28]. Lastly, our proposed model

has the best conversion score for all three emotion pairs and the

tightest error bars in comparison to the baselines. Thus, our

approach of combining the local and global task in a chained

model works extremely well by allowing the individual pieces

to train efficiently without losing oversight of the end goal.

The bottom plot in Figure 4 shows the subjective quality of

speech reconstruction after emotion conversion measured us-

ing mean opinion score (MOS). The chained neural network is

* * * * * * * * *

* * * * * * *

* - p < 0.01

Figure 5: Confidence of emotion conversion (top) and the qual-

ity of reconstruction (bottom) on unseen samples.

uniformly better than the baseline algorithms on the VESUS

dataset. It means that the proposed approach not only converts

the emotion with a high degree of confidence but also manages

to keep the quality of speech intact after conversion.

3.3.2. Out-of-Sample Generalization

We further conduct an out-of-vocabulary emotion conversion

experiment. Here, we set aside 7 randomly selected phrases per

speaker from each emotion category. These phrases are not part

of the training set to simulate unseen utterances during testing.

Fig. 5 shows the results of this experiment. The GMM results

are based on single-speaker evaluation. Once again, the pro-

posed model has the best conversion performance with narrow

error bounds. The Bi-LSTM does worse on unseen utterances

demonstrating a lack of generalization capability. On the other

hand, the cycle-GAN degrades a little but the saliency stays

above 0.5 for all three emotion pairs. This is mainly due to

the non-parallel nature of the Cycle-GAN model which makes

no assumption on the speakers or the utterances. Our approach

achieves this by not normalizing the input features using cohort

statistics. Taken together, conditioning the spectrum estimation

on the pitch can learn a complex relationship between the two

which can be efficiently exploited as in our case.

The MOS in Fig. 5 show that Bi-LSTM has the best qual-

ity of reconstruction among the three. Empirically, it does not

modify the speech at all, thereby, making it sound more nat-

ural by default. There is a tie for the second place between

Cycle-GAN and the proposed model. Our proposed approach

has much smaller error bars than Cycle-GAN due to training

with un-normalized features and momenta regularization.

4. Conclusions

We have proposed a novel method for emotion conversion that

modifies pitch and spectrum using a chained neural network.

Our proposed approach used a latent variable to regularize the

F0 estimation, which in turn affects the spectrum prediction.

We showed that using a diffeomorphic prior on the F0 contour

and conditioning of spectrum on it leads to better generaliza-

tion on unseen utterances. The experiments were carried out on

the VESUS dataset and results on converted test samples were

statistically significant. We finally conclude that our proposed

algorithm did not degrade the quality of speech during conver-

sion, thereby, exhibiting its all-round performance.
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large deformation metric mappings via geodesic flows of diffeo-
morphisms,” International journal of computer vision, vol. 61, no.
139-157, 2005.

[16] S. C. Joshi and M. I. Miller, “Landmark matching via large defor-
mation diffeomorphisms,” IEEE transactions on image process-

ing, vol. 9, no. 8, pp. 1357–1370, 2000.

[17] J. Sager, R. Shankar, J. Reinhold, and A. Venkataraman, “VESUS:
A Crowd-Annotated Database to Study Emotion Production and
Perception in Spoken English,” in Proc. Interspeech 2019, 2019,
pp. 316–320.

[18] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné,
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