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Abstract—Automated epileptic seizure detection has been an
active area of research for the last two decades. Yet few, if any,
of these methods are used in clinical practice because they fail
to generalize across different patient populations. We present
three simple Convolutional Neural Network (CNN) architectures
for seizure detection that are capable of generalizing across
sites. The convolutional layers automatically learn robust and
discriminative correlations directly from both the raw multi-
channel scalp electroencephalography (EEG) signal and its short-
time spectral representation. The models are trained on the
publicly available Children’s Hospital of Boston (CHB) data set
in a leave-one-patient-out cross validation strategy. The trained
model is then tested on a data set recorded at the University of
Wisconsin (UW). We demonstrate that our CNNs achieve higher
sensitivity than competing baselines, with only a minor increase
in false positive rate. To our knowledge, this is the first work to
achieve inter-hospital seizure detection without a significant drop
in performance, thus providing an important benchmark for the
seizure detection field.

I. INTRODUCTION

Epilepsy is a neurological disorder, characterized by bursts
of abnormal electrical activity in the brain that manifest as
seizures [1]. In 2015, more than 3.4 million people suffered
from epilepsy in the United States, which underscores its pub-
lic health relevance [2]. Scalp electroencephalography (EEG)
is the first modality used for epilepsy diagnosis and character-
ization. Scalp EEG is typically recorded in the hospital over
several days in order to capture only a handful of seizures.
These recordings are visually inspected for seizure activity
which is a time consuming and error-prone process.

While many automated seizure techniques have been in-
vestigated, the heterogeneity of epilepsy presentations adds
complexity to the problem. Furthermore, to deploy pre-trained
models at a new site, it is important to make sure that they
generalize and are robust to different patient populations.
Studies have shown that results suffer when models are used
on new clinical data sets [3], [4]. In this work, we use deep
learning to address the problem of cross-site generalization.
Namely, we propose a group of simple network architectures
based on Convolutional Neural Networks (CNNs).

Traditional machine learning approaches have applied many
classifiers to the problem of seizure detection. Support vector
machines are a popular classifier and have been used in [5]–
[8]. This method identifies representative data points and uses
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them to construct a boundary between seizure and non-seizure
data. Similarly, Random Forests (RFs) have been used in
seizure detection in [9], [10]. RFs use an ensemble of simple
decision trees using random subsampling of the training data
to train a classifier that is robust to overfitting.

As deep learning methods continue to mature, they have
been applied to the problem of seizure detection [11]. The
simplest deep learning architecture is the Multi-Layer Per-
ceptron (MLP) which uses successive fully connected neural
network layers to learn complex decision boundaries. Though
simple compared to other deep learning architectures, the MLP
has sufficient complexity to outperform traditional machine
learning classifiers. This is shown in [10], where MLP classi-
fiers outperform RF and support vector machines in detecting
seizures using time-frequency feature representations. While
typical MLP approaches rely on predetermined feature sets,
[12] uses the MLP architecture to learn features for classifi-
cation directly from the EEG signal.

Alternatively, CNNs have become popular due to their
success in various computer vision applications [13]. Ap-
plying ideas directly from visual perception, time-frequency
spectrogram images are often used as input for 2D CNNs
for seizure detection. Yuan et al. constructed spectrograms
to use in a seizure detection CNN [14]. The model used by
[14] integrates inter- and intra-channel information in an auto-
encoder structure. This is combined with a supervised seizure
classifier to learn decision boundaries. Another approach by
Khan et al. used wavelets to capture time-frequency structure,
using them as input to a CNN architecture [15].

The use of one-dimensional convolutions has also been
proposed, where convolutions are applied directly to short
windows of signals. These filters are capable of partitioning
the signals into discriminative frequency ranges, similar to a
filterbank. In this way, 1D CNNs automatically learn the bands
of interest from the data. This approach is used by Wei et al.
where a 5-layer convolutional network is used [16]. Zou et al.
applies a 1D CNN approach, sharing filters across channels to
learn more robust representations of the data [17]. Similarly,
[18] couples a 1D CNN with a recurrent neural network to
analyze seizure activity at short and long timescales.

In this paper, we introduce a set of simple CNN ar-
chitectures to address the challenges of generalization. The
convolution operations automatically learn important features
about the frequency and phase information from the data,



TABLE I
CLINICAL ATTRIBUTES OF THE CHB AND UW DATA SETS.

CHB Training data set UW Generalization data set
Total Recording Time 3527743 s (980 hours) 35164s (9.8 hours)
Number of Recordings 683 53
Average Seizure Duration 60 s 68 s
Minimum/Maximum Seizure Duration 6 / 752 s 13 / 212 s
Average Seizures per Patient 5.75 4.4
Minimum/Maximum Number of Seizures per Patient 3 / 14 1 / 18
Average Recording Time per Patient 40.7 hrs 0.8 hrs
Minimum/Maximum Recording Time 19 hrs / 156 hrs 0.1 hr / 3.1 hrs
Average Seizure Time per Patient 7.7 min 6.9 min
Minimum/Maximum Seizure Time per Patient 1.4 min / 33.2 min 0.83 min / 42 min

and the low complexity of the proposed models reduces the
likelihood of overfitting to a single site. The CNNs capture
time-frequency information in different ways. For the 2D CNN
this information is obtained directly from the spectrogram
input, and for the 1D CNN it is learned from the signal
itself. We address the problem of cross-site generalization by
training the models on a data set acquired from Children’s
Hospital Boston (CHB), [5], [19] and evaluating it on a data
set from the University of Wisconsin, Madison (UW). We
compare our models to baselines that cover a representative
range of machine learning and neural network approaches. In
particular, we show that the CNN architectures outperform
the Multi-Layer Perceptron (MLP) and Random Forest (RF)
based approaches. We demonstrate that our proposed CNN
architectures retain higher sensitivity on the UW data set. To
our knowledge, this is the first demonstration of inter-patient
cross-site generalizations in the seizure detection literature.

II. METHODS

A. EEG Data

To evaluate cross-site generalization, we use two disjoint
data sets for training and testing. Patient characteristics are
summarized in Table I. For training we use the publicly avail-
able Children’s Hospital of Boston (CHB) data set [5], [19].
This data set contains EEG recordings of 24 pediatric patients
from the entire multi-day recording period. Importantly, it con-
tains a large amount of both baseline and seizure EEG activity
from a diverse group of patients. EEG files are provided in the
longitudinal bipolar montage and were sampled at 256 Hz.
This data set consists of 683 EEG files and approximately
980 hours of recordings. Each file is approximately 1 hour
long and there are on average 5.75 seizures per patient.

The generalization data set was acquired at the University
of Wisconsin (UW) and contains seizure recordings extracted
from longer continuous monitoring recordings. This data set
contains a diverse set of patients but is smaller and contains far
less baseline EEG than the CHB data set. While its smaller size
and prominence of seizure complicates training, the data set
is still appropriate for validating generalization performance.
This data set includes 12 pediatric patients with an average
of 4.4 seizures per patient. The data was recorded at 256 Hz
using the 10-20 common reference and was converted to the
longitudinal bipolar montage for this work. In total, we have 53

Fig. 1. Rhythmic seizure activity. Corresponding peaks and troughs indicating
a phase reversal localize this activity to the T8 electrode.

EEG recordings, each containing at least one seizure, totalling
approximately 9.8 hours worth of recordings.

For each data set, the EEG signals were low-pass filtered at
30 Hz, as higher frequencies carry significant artifact activity
and little relevant information for seizure detection. In addi-
tion, the signals were high-pass filtered at 1.6 Hz to remove
DC trends and physiological artifacts. Since the data can be
variable across patients and hospitals, it was normalized to
mean zero and standard deviation one for each channel in each
EEG file individually. One second, non-overlapping intervals
were extracted and each second was labeled as seizure or
baseline using annotations made by clinicians.

B. CNN Architectures

In this work we evaluate three different CNN architectures
designed to encode time-frequency information. Motivated
by the abnormal rhythmic, highly correlated EEG activity
indicative of seizure, our first architecture is a 1D CNN. Figure
1 illustrates this activity, as rhythmic signal is observed in the
difference channels F8-T8 and T8-P8. The change in polarity
between the two difference channels, termed a phase reversal
in the clinical literature, indicates that the rhythmic activity
is maximal in the T8 channel [20]. 1D CNN architectures
offer a natural way to capture both the rhythmicity of seizure
activity and the correlation of neighboring channels. Each 1D
convolution layer applies a set of filters to the input signal with
access to cross-channel signals to capture correlated activity.
Through hierarchical application of these layers, a filterbank-
like representation that can be learned directly from the multi-



Fig. 2. The models used for seizure detection. (a) 1D CNN, (b) 2D CNN-Spectrogram, (c) CNN-Combined, (d) MLP baseline.

channel EEG signal is constructed. Taken together, the 1D
CNN architecture is capable of learning to extract both relevant
frequency and correlation information for seizure detection
from the raw multi-channel EEG input signal.

The 1D CNN architecture is shown in Figure 2 (a). The
model consists of 6 1D convolutional layers with kernels of
size 5, stride of 1 and padding of 2, each followed by a 1D
max pooling layer with kernels of size 2 and a stride of 2. 1D
batch normalization was used after the max pooling layers.
This was followed by 2 fully connected layers with 200 nodes
each and the binary output layer.

The second approach, shown in Figure 2 (b), uses a 2D
CNN operating on spectrogram images. Spectrograms use the
fast Fourier transform to analyze frequency content of the EEG
signal. Spectrograms were extracted from each channel over
1 second windows and images were formed with frequency
bands from 0 to 30 Hz on one axis and channel on the
other for an image size of 30 × 18. The spectrogram images
were first passed through a single 2D convolutional layer
with a 5 × 5 kernel. Following the convolutional layer are
two fully connected layers, each with 100 nodes, and a final
fully connected layer which outputs a binary seizure detection
prediction for the input image.

The third CNN model, shown in Figure 2 (c), concatenates
the outputs from both the 1D and 2D CNNs to form an
aggregated encoded representation. This concatenated hidden
representation was classified using two fully connected layers
with 200 nodes each and an output layer for classification.
All networks used LeakyReLU for all activations and dropout
with probability 0.2 between each fully connected layer.

The networks were trained for 20 epochs using ADAM
with a learning rate of 0.001 and batch size of 512. The loss
function was Cross Entropy Loss. Due to the prominence of
baseline activity, weighted sampling was used to over-sample
the seizure instances during training. In addition, the models

were trained only on files that contain at least one seizure.
Model outputs of seizure versus baseline can be noisy,

so predictions are smoothed over 20 second windows to
encourage contiguous predictions during evaluation. As this
is a binary classification problem, outputs are between 0
and 1. The threshold to determine what is seizure versus
baseline represents a trade off between sensitivity and false
positives. This threshold was calibrated on the training set by
maximizing sensitivity while keeping the total false positive
detections below 120 seconds per hour. The threshold obtained
on the training data was used on test data. Calibration was
performed separately on the UW data to obtain new thresholds,
but the parameters and architecture were not tuned in any way.

C. Baselines

In addition, we compare our proposed CNN networks
to two MLP classifiers. Where the use of the convolution
operation in CNN networks make implicit assumptions about
the underlying structure of the input data, MLP classifiers treat
each dimension of the input data as a separate feature. Here we
use two time-frequency features, spectrogram and bandpass, to
compare the time-frequency type extraction used by the CNN
models. The former concatenates the spectrograms used in the
2D CNN-Spectrogram model into a single vector for input
into the MLP. The latter was used in [21] and compresses
the information in the spectrograms according to clinically
observed brain wave frequencies in the theta (1–4 Hz), delta
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) bands. Both
the MLP-Spectrogram and MLP-Bandpass baselines use two
fully connected layers with 100 hidden nodes before a fully
connected binary classification layer. Finally, RFs are used
on the same bandpass and spectrogram features in the RF-
Spectrogram and RF-Bandpass baselines.



(a) 1D CNN (b) 2D CNN-Spectrogram (c) CNN-Combined

(d) MLP-Spectrogram (e) MLP-Bandpass (f) RF-Spectrogram (g) RF-Bandpass
Fig. 3. Model outputs from the generalization experiment. The 1D CNN identifies two seizures while alternative methods identify the fourth seizure only.

D. Cross-Site Generalization Experimental Design

The models were trained on the CHB data set using a
leave one patient out cross validation strategy. Specifically,
all files from a single patient were used for validation while
the network was trained on the data from the remaining 23
patients. This procedure was performed for each patient to
evaluate the ability of the model to generalize to unseen
patients recorded at the same site. The best performing training
model was then scored on the UW generalization data set to
evaluate cross-site generalization.

E. Evaluation

We evaluate metrics at the level of independent EEG win-
dows and seizure sequences. Window level metrics treat each
1 second window as an independent sample and as such do
not consider the seizure as a contiguous time interval. Here
we evaluate sensitivity, false positive rate, and area under the
receiver operating characteristic (AUC-ROC) curve. Seizure
level metrics evaluate the performance of each model by
treating the entire seizure as one unit. At the seizure level,
seizure detection sensitivity, detection latency, and false posi-
tive count per hour were computed. Predictions are considered
to be seizure if the prediction is above the calibrated detection
threshold and baseline if it is below. False positives per hour
calculates the number of times each model incorrectly predicts
a seizure per hour. Seizure level sensitivity considers each
seizure prediction within an annotated seizure interval as a
correct classification. Latency time is computed by taking
the time difference between the first seizure prediction in the
seizure interval and the clinically annotated onset.

In addition to our cross-site generalization experiment, we
report these same metrics on models trained and tested on

Fig. 4. An EEG recording from the UW data set. The 1D CNN classification
is shaded in blue. The model finds the seizure onset shown by the dashed line
at 151 seconds, in accordance with the clinical annotation.

a single site. By comparing cross-site generalization perfor-
mance to models trained in the original data sets, we can
determine the performance loss due to generalization.

III. EXPERIMENTAL RESULTS

A. Intra-Site Results

Table II reports the intra-site and cross-site seizure detection
performance. When trained on the UW data set, the 1D CNN
achieves the highest window level AUC-ROC with the lowest
false positive rate. Although the RF classifiers have the highest
seizure level sensitivity, this performance comes at the cost of
greatly increased false positive rates. While exhibiting worse
overall performance, in the UW intra-site experiment the MLP



TABLE II
WINDOW AND SEIZURE LEVEL RESULTS FOR BOTH THE CHB AND UW DATA SETS.

Sensitivity
(Seizure)

Latency (s) False Positives
(Count / hr)

Sensitivity
(Window)

False Positive
Rate

(Seconds / hr)

AUC-ROC

Cross-site Generalization, CHB → UW
1D CNN 0.893 -3.25 8.12 0.584 91.00 0.850
2D CNN-Spectrogram 0.796 -11.42 5.70 0.524 127.37 0.836
CNN-Combined 0.783 -10.98 5.98 0.530 161.83 0.841
MLP-Spectrogram 0.564 7.03 6.94 0.255 134.68 0.753
MLP-Bandass 0.469 9.81 7.20 0.226 229.22 0.685
RF-Spectrogram 0.871 18.70 4.52 0.476 88.87 0.873
RF-Bandpass 0.707 1.13 6.29 0.421 354.10 0.782

Single Site Training, UW
1D CNN 0.967 -11.60 16.80 0.796 215.05 0.884
2D CNN-Spectrogram 0.981 -21.77 45.14 0.823 595.41 0.836
CNN-Combined 0.972 -17.15 27.84 0.822 361.41 0.867
MLP-Spectrogram 0.938 -22.69 41.24 0.707 632.74 0.746
MLP-Bandpass 0.992 -65.68 24.66 0.752 825.38 0.644
RF-Spectrogram 1.0 -44.70 26.10 0.909 565.97 0.870
RF-Bandpass 0.997 -108.54 13.55 0.916 293.93 0.847

Single Site Training, CHB
1D CNN 0.957 0.06 9.54 0.881 131.47 0.989
2D CNN-Spectrogram 1 -6.34 8.21 0.998 127.26 0.998
CNN-Combined 1 -5.03 7.54 0.998 117.46 0.998
MLP-Spectrogram 0.477 16.21 4.54 0.227 53.79 0.864
MLP-Bandpass 0.768 1.27 7.71 0.533 120.18 0.863
RF-Spectrogram 0.803 2.87 6.17 0.694 113.17 0.902
RF-Bandpass 0.850 -139.74 8.79 0.72 312.71 0.893

baselines show seizure detection efficacy, achieving AUC-
ROCs of 0.814 and 0.721 for the MLP-Spectrogram and MLP-
Bandpass, respectively.

In the intra-site CHB experiment, all CNN models perform
comparably with the combined network exhibiting the best
performance across most metrics. Notably, the 1D CNN shows
lower window level sensitivity (0.881) than the 2D CNN-
Spectrogram and CNN-Combined models (0.998 and 0.998),
while all three networks have similar seizure level sensitivity
(0.957, 1, and 1) and AUC-ROC (0.989, 0.998, and 0.998).
When compared to the CNN methods, the MLP and RF
methods show a similar decrease in performance as in the
intra-site UW experiment. Most methods show false positive
rates close to 120 seconds per hour, indicating that the models
misclassify false positives at the original calibration rate.

B. Cross-Site Generalization Results

In the cross-site generalization experiment, the 1D CNN
achieves the highest seizure level and window level sensitivity.
At the seizure level, the model correctly identifies 0.893 of
seizures with a window level sensitivity of 0.548. In addition,
the 1D CNN maintains a false positive rate below the calibra-
tion point. The 2D CNN-Spectrogram and CNN-Combined
models achieve seizure level sensitivities of only 0.796 and
0.783, respectively. However, we note that the sensitivity
performance in the 1D CNN comes at the cost of increased
false positive count per hour, with 8.124. Comparatively the
2D CNN-Spectrogram and CNN-Combined models show false
positives per hour of 5.703 and 5.982. With the exception
of false positive rate, the MLP baselines show drastically
worse performance across all metrics. This indicates that

these baselines fail to identify seizure activity when applied
cross-site. Overall, the CNN models have significantly higher
window level sensitivities than the MLP or RF baselines.

Figure 4 shows a seizure prediction from the 1D CNN
model in a seizure from the UW data set. In the figure,
windows labeled seizure are shaded blue. The 1D CNN
model correctly predicts seizure activity corresponding to the
clinically annotated seizure onset occurring at 151 seconds.
Figure 3 shows model outputs from a patient with seizures
that are difficult to identify. Although these seizures were not
as well identified by any of the models, the 1D CNN identified
the second and last seizure, and the other two CNN models
identified parts of the final seizure, whereas the MLP and RF
baselines only partially identify the last seizure.

IV. DISCUSSION

In this work we propose 3 simple CNN architectures for
seizure detection and successfully show performance in a
cross-site generalization experiment. To our knowledge, this
experiment is the first in the seizure detection literature to
show generalization between data sets recorded at differ-
ent sites. Our first model uses 6 1D convolutional layers
to encode the multi-channel EEG directly from the signal
itself. Effectively, this method extracts representations from
hierarchical filtering operations. As phase information between
channels is preserved through the 1D convolution layers, we
hypothesize that the 1D CNN encoder structure is uniquely
able to learn filterbank type representations that encode cross-
channel correlations as well. This structure encodes robust
hidden representations capable of detecting seizures across
different recording sites and patient populations.



Comparatively, the 2D CNN approach relies on spectrogram
extraction as a preprocessing step. While spectrograms are a
natural way to encode time-frequency information, they fail
to encode cross-channel correlations which may be preserved
by the 1D CNN. In the 2D CNN-Spectrogram and CNN-
Combined models we see similar performance on intra-site
experiments, however these models exhibit a slight drop in
performance when applied across sites. As shown in Figure
3, the CNN models are able to identify seizures that the RF
and MLP baselines miss. This can be explained by the higher
seizure level sensitivity of the CNN models.

The CNN models have negative latency in the generalization
task. As false positive rate remains near the calibration point in
this task, this phenomena is likely due to a combination of low
detection threshold and temporal smoothing, resulting in early
detections. This phenomena is likely responsible for the low
negative latencies in the intra-site CHB experiment as well.
However, the high false positive rates in the UW intra-site
experiment indicate the calibration point set during training
does not generalize to the left out test patient. This highlights
the difficulty of training and calibrating in to the same data in
a small data set where overfitting is likely.

While showing efficacy in the intra-site seizure detection
task, the MLP-Spectrogram and MLP-Bandpass baselines fail
in cross-site generalization. Notably, the MLP-Spectrogram
and 2D CNN-Spectrogram share the same inputs. However,
the 2D CNN-Spectrogram significantly outperforms the MLP-
Spectrogram approach. This is likely due to the 2D CNN en-
coding local similarities between neighboring frequencies and
channels in the spectrogram image. Thus despite containing
only one convolutional layer, the 2D CNN approach more
easily captures relevant cross-channel and cross-frequency
information in the spectrogram.

V. CONCLUSION

We have evaluated 3 CNN approaches for seizure detection
which generalize both to new patients within the data set on
which it is trained on as well as patients on an unseen data
set. To our knowledge, this is the first work to observe inter-
hospital generalization performance, where other studies have
noted significant drops in cross-site performance. We compare
the CNN approaches to MLP and RF approaches using time-
frequency decompositions and observe superior generalization
in the CNNs. Extensions to this work include training on
larger and more diverse data sets in order to boost performance
and further improve generalization. This work explores how
models can be applied to different data sets and different
patient cohorts, but further work is needed to further develop
robust models that can be transferred across hospitals, epilepsy
types, and patient populations.
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