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A B S T R A C T

We present an end-to-end deep learning model that can automatically detect epileptic seizures in multichannel
electroencephalography (EEG) recordings. Our model combines a Convolutional Neural Network (CNN) and a
Bidirectional Long Short-Term Memory (BLSTM) network to efficiently mine information from the EEG data
using a small number of trainable parameters. Specifically, the CNN learns a latent encoding for each one
second window of raw multichannel EEG data. In conjunction, the BLSTM learns the temporal evolution of
seizure presentations given the CNN encodings. The combination of these architectures allows our model
to capture both the short time scale EEG features indicative of seizure activity as well as the long term
correlations in seizure presentations. Unlike most prior work in seizure detection, we mimic an in-patient
monitoring setting through a leave-one-patient-out cross validation procedure, attaining an average seizure
detection sensitivity of 0.91 across all patients. This strategy verifies that our model can generalize to new
patients. We demonstrate that our CNN–BLSTM outperforms both conventional feature extraction methods and
state-of-the-art deep learning approaches that rely on larger and more complex network architectures.
1. Introduction

Epilepsy is a heterogeneous neurological disorder characterized by
spontaneous bursts of neuronal synchrony in the brain that manifest
as seizures [1]. Nearly 3.4 million people in the United States, or
1.2% of the population, are believed to have active cases of epilepsy
[2]. Worldwide estimates place the number of cases at 50 million,
making epilepsy one of the most common neurological disorders with
an associated increase in mortality of up to threefold. With its wide
prevalence and effect on premature death, epilepsy represents a large
and ongoing public health challenge [3]. While the disorder can often
be controlled with Anti-Epileptic Drugs (AEDs), and/or diet, roughly
20%–40% of epilepsy patients are medically refractory [4] and do not
respond to drug treatment. In these cases, resection or neurostimulation
can lead to good outcomes. However these treatments require precise
knowledge of the seizure onset zone.

Scalp electroencephalography (EEG) is the first and foremost modal-
ity used for epilepsy diagnosis. Determination of the seizure type (focal
or general), and the likely onset zone can be made by examining
the temporal evolution of a seizure in this modality [5]. To acquire
EEG recordings, patients are admitted to an epilepsy monitoring unit,
where surface electrodes are applied, typically in the 10/20 or 10/10
international system [6], and any prescribed AEDs are withdrawn.
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Multichannel EEG data is recorded continuously over several days in
order to capture roughly three to five seizures for each patient.

Identification of the seizure in scalp EEG is key for epilepsy diag-
nosis. However, epileptic activity may occur rarely, requiring days of
long term epilepsy monitoring. Analyzing these continuous scalp EEG
recordings is time consuming and requires extensive training. In addi-
tion, up to 30% of seizures are electrographic with no accompanying
behavioral signatures to facilitate seizure identification. As a result of
these difficulties, inter-rater agreement among clinicians can be low
[7,8] requiring labor-intensive review and discussion. Thus accurate
automatic seizure detection has the potential to save clinician time and
improve the diagnosis and management of epilepsy.

In this paper we present a deep learning model for accurate seizure
detection based on multichannel EEG that overcomes many of the
challenges of the current clinical workflow. Our model accurately
detects seizures in out of sample patients while maintaining a low num-
ber of false positive detections. This generalization ability makes our
method uniquely suited for clinical review of prospectively acquired
EEG recordings of new patients. Our model combines a Convolutional
Neural Network (CNN) encoder with a Bidirectional Long Short-Term
Memory (BLSTM) classifier to simultaneously extract predictive fea-
tures from the EEG data and learn the evolution of seizure presentations
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across time. We evaluate the CNN–BLSTM on EEG data from 34 patients
recorded at the Johns Hopkins Hospital. We evaluate our model using
leave-one-patient-out cross validation to ensure generalization to new
patients. The CNN–BLSTM outperforms baseline methods that rely on
hand-crafted features or larger deep neural architectures.

1.1. Machine learning and seizure detection

Seizure detection has been an active area of research for nearly
fifty years. While many techniques have been applied to the problem,
no standardized methodology has been adopted. Early work focused
on rule based systems with hand designed features and thresholding
[9]. As computational resources improved, research pivoted to applying
signal processing techniques to characterize ictal (e.g. epileptic) EEG
for seizure detection. For example, changes in the non-linear dynamics
of ictal EEG noted in [10] inspired many researchers to use features
derived from chaos theory to differentiate between seizure and baseline
EEG. In the past decade, machine learning methods have started to
dominate the automated seizure detection literature. In general, these
approaches follow a two-stage pipeline. First, feature extraction is
performed on windowed segments of EEG data. Second, a classifier is
trained to declare each segment as seizure or baseline depending on the
features extracted [11]. Below we detail common approaches in feature
extraction and classification.

Time frequency-domain features. Brain wave activity is typically ana-
lyzed within separate frequency bands, which correspond with normal
cognitive processes, such as wakefulness, relaxation, or drowsiness.
Changes in activity within these bands can also indicate epileptic
seizures [12]. Time–frequency analysis seeks to quantify these changes
to detect epileptic events. The Fast Fourier Transform (FFT) is the sim-
plest approach for time–frequency analysis. For example, the authors
of [13] and [14] use the FFT to compute power in the 2.5–12 Hz band
of each EEG channel. Thresholding techniques developed in [14] were
applied to find periods of seizure activity within long-term recordings.
In [15,16] components in the theta (1–4 Hz), delta (4–8 Hz), alpha
(8–13 Hz), beta (13-30 Hz), and gamma (≥ 30 Hz) brain wave bands
were summed for each EEG channel. These features were used within
a coupled hidden Markov model framework for tracking the evolution
of seizure activity across EEG channels.

A more sophisticated approach uses filter banks to compute the
spectral power in different frequency bands. In [17], the EEG signal
in each channel was separated into eight evenly spaced frequency
bands from 0.5–25 Hz using a filter bank. Patient specific seizure
onset detectors were trained using a Support Vector Machine (SVM)
classifier. Finally, the hierarchical nature of the wavelet transform
has made it a popular representation for seizure detection. In [18],
the energy in wavelet subbands from 1–30 Hz was used to create
histograms of seizure and non-seizure activity. Changepoint detection
was subsequently used to identify seizure onsets. In [19], energy and
spectral features were calculated for each wavelet subband and used
for classification in an array of classifiers. [20] follows a similar ap-
proach, extracting amplitude features for classification after performing
a multichannel empirical wavelet transform to the original EEG signal.
Similarly, [21] extracted features from non-linear signal processing for
each subband of the wavelet transform. An array of classifiers were then
compared for their efficacy in the seizure detection task. While these
works demonstrate that changes in the EEG frequency content reflects
seizure activity, FFT, wavelet, and filter bank based methods ignore
phase information between EEG channels. Phase reversals have been
long established in the EEG literature to indicate abnormal synchronous
firing [12] but cannot be captured by methods that focus on just the
2

power spectrum.
Time domain features. Time domain methods analyze the original EEG
signals. As noted above, features from non-linear signal processing and
chaos theory have received much attention, as in [22]. Non-linear
signal processing techniques quantify the predictability of the system.
For example, [22] uses approximate entropy, sample entropy, and
phase entropy to measure the similarity of the EEG to its past behavior.
It is noted that approximate and sample entropy are lower for non-
seizure intervals, indicating a more predictable signal than that of ictal
EEG.

Finally, many studies have combined time–frequency and time do-
main features to leverage advantages from each representation for
gains in detection performance. For example, [23] extracts kurtosis,
skewness, and correlations computed in the time domain, along with
amplitudes and correlations between frequency decompositions taken
from the spectral domain. Taking a different approach, the authors
of [24,25] and [26] extract non-linear features following the decom-
position of the original EEG signal into separate wavelet bands. Both
[24] and [25] compute the correlation dimension and largest Lyapunov
exponent for each subband after application of the wavelet transform.
Similarly, [26] uses the wavelet transform to isolate different frequen-
cies in the EEG signal and applies approximate entropy to each subband
to create features for classification. These ensembles of features are
borne out of necessity, as each feature on its own generally captures
only one signal phenomenon in the original signal. And in fact, there
is little evidence that these ensembles are stable across heterogeneous
seizure presentations.

Classification. Many classification strategies have been used for seizure
detection. SVMs are perhaps the most popular classifier, finding use in
[17,27,28]. By comparing each test sample to algorithmically selected
data points called support vectors, SVMs are capable of drawing com-
plex decision boundaries via representative samples of the positive and
negative classes [29].

The random forest classifier is another popular choice [23,30].
Random forests construct an ensemble of decision trees, such that
each tree is trained with a random subset of the input examples, and
each node is optimized using a random subset of the input features.
This dual randomization provides robustness to overfitting, particu-
larly when training data is limited [31]. Other classifiers for seizure
detection include adaptive thresholding [13], which updates a thresh-
olding parameter based on previous intervals, and k-nearest neigh-
bors [30], which computes similarity between an unknown sample
and known representatives of the positive and negative classes. While
powerful, these classifiers are limited by the discriminative power of
their input features. As seizure and baseline EEG morphologies vary
widely between patients, traditional approaches often lead to poor
generalization.

1.2. Deep learning for seizure detection

Driven by successes in domains such as computer vision and natural
language processing, deep neural networks have come to dominate
the machine learning field [32]. This interest in deep learning has
extended into EEG analysis, finding applications in brain computer
interfaces, sleep state analysis, and seizure detection [33]. Inspired by
the organization of the brain, deep learning methods use a cascade
of primitive functional units to learn arbitrarily complex functions.
The network is trained by repeatedly showing it labeled data and
updating the parameters according to some desired objective function.
Given enough training data and an appropriately designed network
architecture, deep methods will often surpass the performance of more
traditional machine learning techniques. However, the architecture
design of a deep network is a non-trivial problem.

The simplest deep learning architecture is the Multi-Layer Percep-
tron (MLP), which relies on fully connected neural network layers.

While MLPs can learn more complex classification functions than both
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SVMs and RFs, their performance is limited by the input features. This
behavior is evident in [30], where MLPs, random forests, and SVMs
are shown to achieve comparable results when using features extracted
from the EEG data. To over come this challenge [34] uses a separate
autoencoder to extract features from the raw EEG; the autoencoder
output is then fed into the MLP. However this technique ignores the
inherently temporal nature of the EEG signal, as each sample of the
EEG is analyzed as a separate feature and not an element of an evolving
sequence.

Convolutional Neural Networks (CNNs) are a more sophisticated
architecture that captures interdependencies between neighboring data
points across multiple scales. As such, they have found applications in
image and sequence processing, where local similarities are important.
Broadly, CNNs apply a set of convolutional kernels with a restricted
field of view to form local representations of the signal. By aggregat-
ing these local representations and applying subsequent convolutional
layers, information at larger and larger scales can be extracted. In this
way, CNNs can replace hand designed feature extraction methods with
representations learned directly from the data.

CNNs for EEG feature extraction can be divided into two classes,
those that use time–frequency representations as input images and
those that use the EEG signal as an input time series. Methods that use
time–frequency inputs rely on two dimensional convolutions, similar
to other computer vision applications. For example, [35] constructed a
CNN to operate on Short-Time Fourier Transform (STFT) spectrograms
for seizure detection. Similarly, in [36] the authors construct a 2D
image of spectrograms taken from each EEG channel and classify these
images using several popular CNN architectures from computer vision.
Other time–frequency representations have also been considered, such
as [37] where a wavelet decomposition was used to build a spectrogram
for the CNN input. [38] used a tensor decomposition to find common
components in the STFT of each EEG channel before input into a CNN.
While CNNs are undoubtedly powerful, applying 2D convolutions to
the EEG spectrogram imposes arbitrary structure between neighboring
FFT frequency bins that is not present in the original signal space. In
addition, as noted above, decomposition of the EEG signal using the
FFT disregards important cross-channel phase information that may be
indicative of seizure activity.

An alternative to the 2D CNN is to apply one-dimensional con-
volutions directly on the EEG signals, thus eliminating the need for
time–frequency preprocessing. This approach is exemplified by [39–
41], where short windows are fed directly into a five one-dimensional
CNN followed by fully connected layers for seizure detection. In [39],
single channels of intercranial EEG are classified using a one dimen-
sional CNN. In [42] one dimensional convolutions are applied to each
EEG channel individually while sharing the same parameters across
channels to exploit information from all channels when learning hidden
representations of the data. A similar approach was taken in [43],
where a one dimensional CNN was applied to each channel individually
while fusing information across channels using max pooling in the final
classification stage. However, as information across EEG channels is
not mixed until the final fully connected layers of the network, phase
synchrony between channels may again be lost.

Recurrent Neural Networks (RNNs) are popular architectures for
sequence analysis which maintain a hidden representation of the signal
at each point in time. This hidden representation is continually updated
based on its past value, thus fusing information from neighboring time
points. In [44], one second windows of EEG are fed directly into an
RNN analogous to the CNNs noted above. The output from the RNN
layers is classified using an MLP layer. In [45] a BLSTM network
was applied to continuous EEG recordings. The original EEG signal
was decomposed using the local mean decomposition applied to each
channel. Features were then extracted from each decomposition com-
ponent. The resulting sequence of features was then classified using a
BLSTM network. In addition RNNs can be combined with convolutional
3

networks as in [46] and [47]. In [47], a CNN and LSTM layer were
Table 1
Patient demographics and clinical attributes for our JHH evaluation dataset
(N = 34).

JHH Dataset

Seizure type Focal epilepsy
Number of patients 34
Average age 35 ± 16 years
Minimum/Maximum age 6/77 years
Number of Males/Females 16/18
Seizures per Patient 5.9 ± 5.8
Minimum/Maximum seizures per patient 1/24
Average EEG analyzed per patient 1.8 ± 1.8 h
Average seizure duration 112 s
Minimum/Maximum seizure duration 13/979 s

combined to perform seizure detection. Specifically, long windows
(101 s) of EEG signal were passed through a 1D CNN. The resulting
sequence of hidden representations was fed into a uni-directional LSTM.
The output of the LSTM at the final time step was used to detect seizure
activity for the entire 101 s sequence.

In contrast the authors of [46] create STFT images that span 30 s
and analyzes them using a 2D CNN. This 2D CNN outputs a sequence of
hidden states representing small periods of the original STFT which are
subsequently fed into a RNN to classify the entire 30 s segment. [48]
takes a different approach, using interpolation between EEG channels
to create a 2D image of EEG features. A hidden representation for these
images is computed using a CNN and 5 s long sequences of hidden states
are classified using an LSTM network. While these methods allow for
accurate classification of segments of EEG signal, they label sequences
of EEG signal and thus have limited temporal resolution. As information
from the time of onset is critical to localizing possible seizure foci, rapid
and continuous seizure detection is necessary for clinical translation.

1.3. Our contribution

In this work we present a novel neural network architecture for
continuous seizure detection that addresses the critical need for high
accuracy with low onset latency. Our model combines a CNN en-
coding stage and a Bidirectional Long Short-Term Memory (BLSTM)
classification stage. The combined architecture contains a relatively
small number of trainable parameters, ensuring that our model is
computationally efficient. Furthermore, we evaluate our method in a
leave-one-patient-out setting in order to evaluate its performance on
previously unseen patients.

The CNN feature extraction uses one-dimensional convolutions si-
multaneously applied across all channels of the EEG recording to au-
tomatically learn discriminative representations from one-second win-
dows of the EEG signal. The use of 1D convolutions on the multichannel
data ensures that relevant phase information between channels is pre-
served. The BLSTM aggregates these fine grained CNN representations
to learn the longer temporal dependencies of an evolving seizure. The
bidirectional nature of our architecture leverages information from
both the past and future to perform a window level classification. This
learning process mirrors clinical practice, as clinicians generally take
into account the temporal evolution of the EEG signal when annotating
the beginning and end of a seizure.

While previous approaches have employed both CNNs and BLSTMs,
our combined architecture improves upon these approaches in several
important ways. First, prior studies have focused on one-dimensional
CNNs applied individually to each EEG channel [39–43]. This approach
ignores clinically relevant cross-channel phase information, as seizures
are often characterized by atypical synchronization between channels
[12,49]. Accordingly, our CNN operates on the multichannel EEG
recording, preserving this phase information. Prior work using RNNs
for seizure detection operates on long sequences of the EEG data,
typically on the order of 5–100 s [46–48]. The RNN then provides a
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Fig. 1. Distribution of EEG recording statistics by patient.
single classification for the entire sequence. Due to the large sequence
duration, this approach can only generate a coarse label for the seizure
onset and offset. In contrast, our approach uses the CNN encoding to
extract a compact representation for short (one second) windows of
the EEG data. We can leverage the bi-directionality of the BLSTM to
extract information from the entire recording and make predictions at
a fine-grained level.

We demonstrate the generalizability the CNN–BLSTM by performing
leave one patient out cross validation on a dataset of clinical EEG
recordings. This cross validation method ensures that our network gen-
eralizes to new patients with different clinical manifestations. Finally,
our CNN–BLSTM is simple with only four convolutional blocks and
two recurrent layers. Hence, our model requires less training data than
larger deep learning architectures for seizure detection such as [39],
and it can easily be integrated into the existing clinical infrastructure.

2. Materials and methods

2.1. EEG data and preprocessing

We validate our model on a dataset of 34 patients, all of whom have
focal epilepsy, acquired at the Johns Hopkins Hospital (JHH). The JHH
dataset contains a total of 201 multichannel EEG recordings across 34
patients. This dataset has been previously used in [15,16,40,41]. The
raw EEG is acquired at 200 Hz using the 10–20 common Ref. [6] and
is converted to the longitudinal bipolar montage [12] for this work.

Patient characteristics and seizure presentations are summarized in
Table 1. The JHH dataset was collected during clinical workup and
contains a high degree of variability in number of seizures collected
and duration of recording. Number of seizures collected, total recording
duration included, and total seizure duration for each patient is shown
in Fig. 1. On average, 5.9 seizures are included for each patient with a
minimum of one and a maximum of 24. For each seizure, we include
a maximum of 10 min of pre-seizure and post-seizure baseline. An
average of 1.8 h of total recording time was included for each patient
with a minimum of 4.7 min (patient 5, one seizure) and a maximum
of roughly 480 min (patient 11, 24 seizures). While this variety in
patient representation complicates model training, validating the model
on a diverse dataset ensures that our models generalize to the diversity
present in the clinical population.

Each recording is high-pass and low-pass filtered at 1.6 Hz and
30 Hz, respectively. High-pass filtering removes DC trends while low-
pass filtering removes physiological artifacts that confound seizure
detection. In order to ensure all recordings contain EEG signal of
a similar amplitude, we apply a normalization procedure to each
4

recording separately. Each recording was clipped to remove amplitudes
larger than two standard deviations from the mean intensity to remove
high intensity artifacts such as muscle artifact and electrode popping.
The recordings were then normalized to have mean 0 and standard
deviation 1 for each channel.

One second non-overlapping windows were extracted from each
recording for input into our model (and baselines). Seizure activity in
each recording is demarcated by a clinical annotation indicating seizure
onset and offset. Any one second window that overlaps this period is
considered a positive instance of the seizure class. Conversely, windows
containing no seizure activity are labeled as baseline.

2.2. An end-to-end detection framework

2.2.1. CNN–BLSTM architecture
Our model can be conceptualized as a multichannel feature extrac-

tor (CNN) followed by a temporal detector (BLSTM). A schematic of the
network is shown in Fig. 2. In the feature extractor stage, individual
windows 𝑋𝑡 ∈ 𝐶×𝐿, where 𝐶 is the number of EEG channels and
𝐿 is the number of time samples in the window, are fed directly into
the CNN. This process generates a sequence of hidden representations
{ℎ𝑡}𝑇𝑡=1, where 𝑇 is the length of a given recording, which encode
the relevant information for determining whether each window 𝑋𝑡 lies
within a seizure interval. The representations ℎ𝑡 are learned directly
from the data 𝑋𝑡, increasing their discriminative power.

The CNN is composed of four successive blocks containing two
layers each as shown in Fig. 2. Each layer includes a one dimensional
convolution with a length three kernel, with a stride and pooling of
one. After two repetitions of the convolution, LeakyReLu, and batch
normalization, a max pooling operation is applied with a kernel size
of two, effectively halving the length of the representation after each
block. This succession of convolutional layers distills information from
the EEG signal into higher order features. As in the VGGNet [50], we
double the number of channels in each block after each max pooling.
This process prevents an overall loss of information and ensures that
each convolutional block requires roughly the same amount of compu-
tation. The convolution and max pooling procedures are illustrated in
Fig. 3. As illustrated in the figure, the number of kernels doubles while
the length of the representation is halved after each convolution block

Global average pooling is applied to the representation generated
after the final convolution block. Effectively the output of each CNN
kernel is averaged across the EEG window, resulting in a single fea-
ture for each kernel. This procedure has a regularizing effect on the
network; broadly, it reduces overfitting, as the subsequent recurrent
layers receive information pooled across the entire one second window,
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Fig. 2. Our CNN–BLSTM architecture for inter-patient seizure detection. A convolutional encoder converts EEG signal 𝑋𝑡 to hidden representations ℎ𝑡. These representations are
classified by a two layer BLSTM to predict seizure labels 𝑦𝑡.
Fig. 3. The first two convolutional blocks of the CNN encoder. One second of preprocessed EEG signal is fed directly into the first layer of the CNN. An example input for each
convolution is shown in gray while the corresponding output of the convolution is shown in the next layer as a square. Each block contains two convolutional layers. Between
blocks, the number of convolutional kernels is doubled, while the length of the sequences is halved. LeakyReLU activations and batch norms not pictured.
thus mitigating overfitting to isolated data irregularities. As the final
CNN layer contains 40 kernels, the output of the CNN feature extraction
stage is reduced to a length 40 feature vector.

Following the CNN feature extraction stage, the sequence of hidden
vectors {ℎ𝑡}𝑇𝑡=1 is classified into a sequence of binary predictions {𝑦𝑡}𝑇𝑡=1.
The BLSTM architecture concatenates the output of two LSTMs, one
operating on the sequence in the forward direction, and the other
operating backward. Thus the BLSTM hidden state at any given time
point includes information from both the past and the future of that
time point. The bidirectional architecture allows the network to learn
the temporal evolution of a seizure. By using the entire recording in
the network at one second intervals, we learn the full progression from
baseline to seizure and back, ensuring high temporal resolution and low
latency. Two BLSTM hidden layers are used before outputting a final
prediction 𝑦𝑡.

2.2.2. Postprocessing
To combat the noisy seizure versus baseline classification, we apply

temporal smoothing to the sequence of predictions. Specifically, we
average the network outputs 𝑦 over a 20 sample window to enforce
5

𝑡

temporal contiguity in seizure detections. Near the beginning and end
of the recording, any indices outside the data window are ignored when
computing this average. As the output of our models is a continuous
value between 0 and 1, it is important to establish a threshold at which
to declare a positive (seizure versus baseline) detection. The setting of
this threshold effectively controls the trade off between false positives
and the sensitivity of our model. In this work, we opt to calibrate the
CNN–BLSTM to a seizure detection threshold based on a user-specified
duration of false seizure detection. For the experiments presented here,
the seizure detection threshold was set such that each model is allowed
only 2 min of false positives per hour. This threshold is computed from
the training set after training. The computed threshold is subsequently
applied to the test set.

2.2.3. Training and implementation
The flexibility and expressiveness of our CNN–BLSTM network

makes it prone to overfitting. When trained in an end-to-end fashion,
we observe the network to be able to exactly learn the presentation of
specific seizures in the training set while failing to generalize to new
data. In addition, RNNs can be notoriously difficult to train due to the
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Fig. 4. Wei–CNN baseline Architecture.

vanishing and exploding gradient problem [32]. Furthermore, while
our dataset contains hours of EEG recordings, we have in total only
201 seizure presentations. As the BLSTM operates on full recordings,
this limits the number of examples in our dataset to a relatively small
number for deep learning.

To address these concerns, we adopt a two stage training strategy to
combat both overfitting and the difficulties in RNN training. In the first
stage, the CNN is pre-trained by appending a simple fully connected
MLP (two layers of 20 hidden units). To classify individual one second
windows, we train the CNN for 10 epochs using a batch size of 32
windows, a learning rate of 0.01, and the ADAM optimizer [51]. In
the pre-training stage, we train using the cross entropy loss. As the
dataset contains a high imbalance between seizure and non-seizure
classes, each class is weighted according to the inverse proportion of
its prevalence in the dataset. In this fashion we leverage the large
recording time of EEG signal in our dataset while sidestepping the
limited number of total seizures. Thus, this pre-training ensures that
the CNN learns discriminative feature representations from the raw
EEG signal prior to the training of the BLSTM network for temporal
classification.

In the second stage of training, the MLP is removed and the BLSTM
layers are appended to the network. The full CNN–BLSTM is then
trained in an end-to-end fashion. As the CNN has already learned to
extract discriminative features, this stage of training focuses on learning
the temporal evolution of seizures in the BLSTM layers. During this
phase, entire seizure recordings are used as samples and fed to the
CNN–BLSTM in their entirety. When training the BLSTM, we use the
cross entropy loss applied to each individual window of the recording
with the same weighting as applied in the pre-training stage. Thus each
window contributes to the loss for the entire recording. We use a batch
size of 2, indicating that a gradient step is taken after two recordings
are passed through the network. The network is trained with a learning
rate of 0.005 using the ADAM optimizer [51]. As the computational
power of the BLSTM greatly increases the chance of overfitting to the
limited number of total seizures in the training data, we adopt an early
stopping strategy and only train the combined model for a single epoch.
Using this training technique, we are able to fully utilize the data in our
dataset to train the BLSTM–CNN.
6

Fig. 5. CNN–2D FFT image baseline architecture.

2.3. Baseline comparison methods

2.3.1. Feature based classification
Our first set of baseline methods employs the two-stage feature

selection and classification pipeline discussed in Section 1.1. While
many approaches to seizure detection have been presented in the
literature, variations in implementation, datasets used, and experiment
design make direct comparisons difficult. As such, we opt to construct
our baseline comparisons using feature extraction techniques repre-
sentative of the major approaches in the field of seizure detection as
discussed in Section 1.1. From the time domain, we compute total
signal power, sample entropy, Largest Lyapunov Exponent (LLE), and
line length on a channel-wise basis. The features are extracted indepen-
dently for each one second window of raw EEG data. Mathematically,
let 𝑋𝑗

𝑡 [𝑖] denote sample 𝑖 of channel 𝑗 at time 𝑡. We calculate power in a
single channel using the expression 1

𝐿
∑𝐿

𝑖=1(𝑋
𝑗
𝑡 [𝑖])

2. Line length is com-
puted using the expression ∑𝐿

𝑖=2|𝑋
𝑗
𝑡 [𝑖] −𝑋𝑗

𝑡 [𝑖− 1]|. Sample entropy and
LLE computations are performed following [22] and [24,25], respec-
tively. Intuitively sample entropy measures the degree to which similar
trajectories remain similar to previously observed paths. Likewise, LLE
measures the rate at which similar trajectories diverge from each other.
We calculate these features using the freely available Python nolds
package [52]. These time domain features contribute a single scalar
for each channel, resulting in a total of 54 time domain features for
each one second window. In the time–frequency domain, we compute
the filter bank power in each channel by passing 𝑋𝑗

𝑡 through a set of
10 evenly spaced order four Butterworth bandpass filters from 0 to 30
Hz. This results in a total of 180 time–frequency domain features.

The variety of classifiers used in the seizure detection literature
mirrors the variety of feature extraction techniques. We limit our base-
line investigations to MLP classifiers, as these classifiers have shown
high seizure detection efficacy in recent literature and lead to com-
plementary comparisons with our CNN–BLSTM models. We construct
a MLP classifier to determine whether or not each EEG window 𝑋𝑡 lies
within a seizure interval. This classification is done based on (i) time–
domain only, (ii) time–frequency domain only, and (iii) the combined
feature set. Features extracted for each channel are concatenated and
fed directly into the MLP classifier. The MLP baseline includes two
layers of ten hidden units each. During training, dropout of 0.5 is
applied after each layer. Due to the noisiness of classifications made on
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Fig. 6. Cross validation procedure, in which one patient is left-out for testing while the rest of the dataset is used for training. This procedure is repeated for each patient and
the performance is averaged across all N folds.
single seconds of EEG signal, we apply the same temporal smoothing
and calibration described in 2.2.2 to limit false positives.

In addition, we implement the wavelet-based feature extraction
and SVM classifier from Kaleem et al. [19] (Kaleem–SVM). Using this
classification pipeline, the authors report a sensitivity, specificity, and
accuracy of 99.7, 99.2, and 99.4, respectively, on the CHB-MIT dataset
in a patient specific seizure classification task. A five level DWT is
performed on 4 s windows of EEG signals. Energy, sparsity of the ampli-
tude spectrum, and the sum of the derivative of the amplitude spectrum
are calculated for each subband. These features are concatenated and
classified using a linear SVM.

2.3.2. Convolutional models
We implement the CNN network from Wei et al. [39] (Wei–CNN).

This architecture has been shown to perform well in the literature,
achieving a sensitivity, specificity, and accuracy of 0.7211, 0.9589,
and 0.8400, respectively, on the publicly available CHB-MIT pediatric
epilepsy dataset [53,54]. While this work trained the CNN models
by leaving out a single test patient, recordings from this left out
patient were used as a validation set for early stopping. As such these
results represent performance under less restrictive conditions than
the leave-one-patient-out cross validation paradigm considered in this
work. The architecture of this network, as shown in Fig. 4, contains
five convolutional and max pooling layers before two fully connected
layers. Each layer of the Wei–CNN uses a one-dimensional CNN kernel
with a stride of 1. The first through fifth layers of the network use
decreasing kernel sizes of 21, 11, 3, 3, and finally 3. Zero padding
of 11, 6, 2, 2, and 2, respectively, is used. Due to the larger size
of the network, max pooling in the Wei–CNN uses a kernel size and
stride of 3. Designed for windows five seconds in length, this network
is accordingly much bigger. This baseline will assess the performance
when using longer time windows, as opposed to a temporal evolution
model. We also evaluate results using the CNN–MLP network in our pre-
training section. By comparing our model to this network, the increase
in performance from the BLSTM is directly quantifiable. Again, we
apply temporal smoothing and calibration as described in Section 2.2.2.

Finally, we implement a two dimensional CNN model (CNN–2D)
that operates on the FFT features in an image format. The CNN–2D
architecture is detailed in Fig. 5. The EEG signal is windowed into
one second non-overlapping segments and an FFT is calculated. FFT
amplitudes from 0 to 30 Hz are arranged into an 2D image with channel
along one axis and frequency along the other. These 2D images are
input into a 4 layer CNN, where the number of kernels is doubled after
each layer. ReLU operations are applied at each layer, and max pooling
is applied after the second and fourth layers. Each convolution uses a
kernel of size 3 with stride 1 and no padding. In addition, each max
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pooling operation uses a kernel size and stride of 2. Finally, global av-
erage pooling is applied, followed by frame-wise classification using a
single fully connected layer. This approach was inspired by [35,37,38]
where time–frequency decompositions are used in conjunction with 2D
convolutions.

2.4. Cross validation

Most studies optimize patient-specific seizure detectors, in which
a single recording is set aside for testing, and a detector is trained
on the remaining recordings. This method of evaluation assumes that
seizure recordings for a given patient are available a priori [55]. This
patient specific approach is appropriate for settings such as responsive
neurostimulation or in developing seizure alert systems for a particular
patient. However, during clinical review, a clinician would like to
prospectively detect seizures with no a priori EEG data from the pa-
tient. During this phase of the clinical workflow, long continuous EEG
recordings are retrospectively analyzed for seizure content by trained
neurologists, requiring considerable time.

Patient agnostic or inter-patient seizure detection trains detectors
based at the population level. This leave-one-patient-out procedure is
shown in Fig. 6. To ensure that trained models generalize to new
patients, we perform cross validation by removing a single patient from
the dataset. This patient is used as a test subject while models are
trained on the remaining patients. In this way we mimic a clinical
review setting, where previously trained models are applied to newly
admitted patients on-the-fly. A similar cross validation was used in
[56] to reduce bias in estimating the generalization error of a neonatal
seizure detection algorithm. We emphasize that leave-one-patient-out is
a far more challenging paradigm than the patient-specific evaluations
used in prior work due to the variable seizure presentations across
individuals. Hence, the performance metrics are expected to be lower.

2.5. Evaluation

We evaluate performance of our detectors both at the level of
individual EEG windows 𝑋𝑡 and at the level of seizures. At the win-
dow level, each snippet 𝑋𝑡 is labeled as belonging to the seizure or
baseline class 𝑦𝑡 ∈ {0, 1}. We evaluate the Area Under the Receiver
Operating Curve (AUC-ROC) and the Area Under the Precision–Recall
Curve (AUC-PR). These metrics provide summary scores that capture
behavior at a range of detection thresholds. In addition, we include
the sensitivity and specificity of computed based on the thresholds
computed during the calibration phase. While these metrics are less
clinically relevant than those evaluated at the seizure level, they offer
a convenient illustration of each model’s overall performance.
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Fig. 7. Violin plots depicting seizure level (a) sensitivity (b) false positives per hour (c) latency for each model. Horizontal lines indicate single datapoints from each trial of
leave-one-patient-out cross validation. Width of the violin shows the smoothed distribution of each metric.
Table 2
IID window level results.

AUC-ROC AUC-PR Sensitivity Specificity Number of parameters

CNN–BLSTM 0.9042 0.6491 0.6304 0.9295 30k
CNN–MLP 0.8624 0.6031 0.5370 0.9555 11k
Wei–CNN 0.7642 0.4880 0.4048 0.9209 174k
CNN–2D 0.8243 0.5268 0.4695 0.9491 1.5k
MLP–All 0.8448 0.5895 0.5138 0.9532 8k
MLP–Time 0.8380 0.5614 0.5096 0.9540 2k
MLP–Filterbank 0.7135 0.3761 0.3371 0.9148 6k
Kaleem–SVM 0.7054 0.4304 0.3643 0.9454 –
At the seizure level, we consider contiguous seizure classifications
produced by each model. Namely, if the model prediction exceeds
the threshold determined in Section 2.2.2, a seizure onset is marked.
This seizure classification continues until the model output once again
falls below the threshold. Any detections of this kind that fall within
an annotated seizure are considered true positives. Conversely, any
contiguous detections that do not overlap with an annotated seizure
are considered false positives. We quantify the sensitivity (true positives
divided by total number of seizures), latency of seizure detection, and
False Positive Rate (FPR) of each model. The goal in a clinical setting
is to achieve high accuracy with low FPR.

3. Experimental results

3.1. Window level accuracy

Table 2 reports the window-level detection performance along with
the number of trainable parameters for each model. We observe that
the CNN–BLSTM model outperforms all competing models achieving an
AUC-ROC and AUC-PR of 0.9042 and 0.6491, respectively. This model
is followed by the CNN–MLP (AUC-ROC 0.8620, AUC-PR 0.6017) and
CNN–2D (AUC-ROC 0.8243, AUC-PR 0.5268). The Wei–CNN baseline
performs the worst of all end-to-end models with an AUC-ROC of
0.7642 and AUC-PR of 0.4880. Of the feature-based MLP baselines,
the network trained using all features performs best with an AUC-
ROC of 0.8448 and an AUC-PR of 0.5895. The MLP trained with time
domain features achieves slightly lower but still comparable perfor-
mance measures. The network trained using only filter bank features
performs significantly worse, with an AUC-ROC and AUC-PR of 0.7135
and 0.3761, respectively. While the MLP–All model achieves decent
performance with roughly 8 k parameters, the CNN–MLP model out-
performs it while increasing the parameter count by only roughly 3 k.
The addition of the BLSTM network enlarges the model to roughly 30
k parameters with an accompanying increase in AUC-ROC and AUC-
PR. This threefold increase in parameters between the CNN–MLP and
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CNN–BLSTM is justified by this gain in performance, while the CNN–
BLSTM remains significantly smaller than the much larger Wei–CNN
model. The Kaleem–SVM performed worst of all, achieving AUC-ROC
and AUC-PR of 0.7054 and 0.4304, retrospectively.

In addition, Table 2 includes sensitivity and specificity measures
for each model computed on a window-wise basis. We observe that
the CNN–BLSTM model outperforms all other baselines in sensitivity,
achieving a sensitivity of 0.6304. The CNN–MLP, Wei–CNN, and CNN–
2D all exhibited lower sensitivities, with 0.5370, 0.4048, and 0.4695,
respectively. Again we observe that the MLP–All model achieves a
decent performance in these metrics, with a sensitivity and specificity
of 0.5138 and 0.9532. All models exhibit specificities above 0.9, with
the CNN–MLP achieving the highest specificity of 0.9555.

3.2. Seizure level results

Fig. 7 depicts violin plots for sensitivity, false positive rate, and
latency for each model. In these plots, metrics computed from each
left-out patient are indicated by horizontal lines within the violin.
The width of the violin represents the distribution of the computed
metrics across all patients. In Fig. 7(a) we see that the CNN–BLSTM
maintains high sensitivity across the dataset, while baseline models
fail to generalize to some patients. In addition, Fig. 7(b) shows that
CNN–BLSTM false positive rates cluster near 3 false positives per hour.
In contrast, the baselines exhibit higher false positive rates in some
patients. Tables A.3 and A.4 in the appendix report the patient-specific
performance metrics. Table A.3 shows performance for the CNN-based
models (CNN–BLSTM, CNN–MLP, Wei–CNN, CNN–2D) while Table A.4
shows results for MLP-based models (MLP All Features, MLP–Time
Domain Features, and MLP–Filterbank Features). When averaged across
left-out patients the CNN–BLSTM achieves an average sensitivity of
0.91 while allowing an average of 3.3 FPs/h. The CNN–MLP, Wei–
CNN, and CNN–2D all exhibit lower sensitivities at 0.90, 0.77, and
0.84, respectively, and FPs/h of 9.6, 7.5, and 10.2, respectively. Thus
the CNN–BLSTM achieves the highest sensitivity with the lowest false
positive rate. Finally, Fig. 7(c) shows the spread of onset latencies for
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Fig. 8. Sensitivity versus false positive rate curves for each model. The metrics are calculated as the seizure detection threshold is swept from 0 to 1 for each patient. The
threshold sweep is performed globally and not calibrated separately for each patient.

Fig. 9. Model outputs for a representative seizure recording. Seizure prediction scores for each window of the EEG recording are pictured for the duration of the recording. Time
proceeds along the x-axis while seizure prediction certainty is shown on the y-axis. 0 indicates non-seizure baseline while 1 denotes seizure, while higher values indicate increasing
model confidence in seizure activity. Seizure prediction thresholds for each model calculated during calibration are shown as a horizontal dashed line. Any predictions crossing
this threshold are considered positive seizure predictions and are shown in blue. True labels are shown in orange, where 0 indicates baseline and 1 indicates seizure.
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Fig. 10. EEG recording and CNN–BLSTM classification corresponding to Fig. 9(a). Seizure onset annotation is depicted by the vertical dashed line at 600 s. CNN–BLSTM seizure
classification is shown shaded in light blue. The CNN–BLSTM declares the onset of a seizure at 599 s, in accordance with the clinical annotation.
each model. In the CNN–BLSTM onset latency is distributed around 10 s
while other models report a higher average latency.

Sensitivity versus FPR plots are shown in Fig. 8, grouped according
to the baseline model type. In this plot we sweep the threshold globally
across each left-out patient and compute the overall sensitivity and
the number of false positive intervals per hour across all testing runs.
As optimal calibration points differ for each model, these plots do
not correspond directly averaged metrics given in Tables A.3 and A.4.
Despite this fact, we observe several important trends. The CNN–BLSTM
achieves much higher sensitivities at lower FPRs when compared to
baseline methods. Only when false positives are increased to much
higher levels do baseline methods achieve the level of sensitivity of the
CNN–BLSTM method at lower FPR.

Fig. 9 shows the classifications for a representative seizure record-
ing. In each figure, time proceeds along the x-axis while the model
output is shown on the y-axis. This output ranges continuously from
0 (baseline) to 1 (seizure). The calibration threshold for each model
is indicated by the horizontal dashed black line. Regions containing
positive seizure detections are shaded blue. As seen the CNN–BLSTM
exhibits a high degree of certainty in the seizure label throughout
the entire seizure, activating slightly after the annotated onset and
continuing past its annotated duration. This extension past the end of
the seizure is less clinically relevant than accurate onset detection and
is likely due to artifact in the EEG recording occurring past the offset
annotation.

The prediction output of baseline methods are shown in Fig. 9(b)–
(h). While most baselines correctly detect seizure activity during the
seizure interval, this detection generally occurs much later than the
onset. Also notable is the presence of false positive detections, such as
in Fig. 9(c), where the Wei–CNN makes three spurious false positive
detections throughout the recording. Fig. 9(i) shows the unsmoothed
prediction output for the CNN–MLP model. When comparing this image
to the smoothed CNN–MLP output in Fig. 9(b), the effect of temporal
smoothing is clear. After smoothing, the temporally contiguous positive
seizure classification during the true seizure event remains with high
certainty, while the more sporadic deviations away from baseline are
averaged resulting in a lower certainty of seizure.

The raw EEG signal and CNN–BLSTM classification for a repre-
sentative seizure is shown in Fig. 10. In this image, EEG signals in
10
the longitudinal bipolar montage are arranged vertically while time
proceeds horizontally. Annotated onset in this recording corresponds
to a patient push button alarm occurring 600 s after the start of the
recording, in the figure indicated by the vertical dashed black line.
The CNN–BLSTM detects the seizure at 599 s, one second prior to the
push button alarm annotation. Thus the onset time detected by the
CNN–BLSTM corresponds closely to the annotated onset of the seizure.

4. Discussion

We have developed a novel CNN–BLSTM network for robust inter-
patient epileptic seizure detection in long windows of continuously
acquired EEG. Our model uses a CNN to extract discriminative hidden
representations directly from the EEG signal. These representations are
then classified using a recurrent BLSTM network, which learns the
temporal evolution of seizure presentations by fusing information from
the past and future. The combination of these two elements yields a
detection performance with high sensitivity and low error. We vali-
date our model on a challenging dataset of focal epilepsy patients, in
which the seizures exhibit a high degree of heterogeneity. To evaluate
the clinical utility of our model, we train and test our CNN–BLSTM
network using leave-one-patient-out cross validation. Thus we ensure
that our model can generalize to new patients in a continuous epilepsy
monitoring setting.

Our model achieves higher sensitivity than numerous baseline com-
parison methods, correctly classifying 0.955 of seizures averaged across
patients. This performance is mirrored in the AUC-ROC and AUC-PR
scores, where our model again outperforms competing methods. At the
patient level, we see in Table A.3 that our model correctly detects
all seizures for many patients. The lowest patient sensitivity is 0.5,
indicating that one half of the seizures are still correctly classified.
By calibrating the model’s detection threshold on the training set, we
restrict the amount of false positive to two minutes per hour. This low
FPR generalizes across patients, as the average number of FPs/h during
testing was 3.3.

When examining the output of an individual model in Fig. 9(i),
we observe a high degree of noise. This behavior can be effectively
ameliorated by applying temporal smoothing to the output of each
model, as seen in Fig. 9(b). However, we note that our BLSTM network
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Table A.3
JHH CNN seizure results by patient.

Patient CNN–BLSTM CNN–MLP Wei–CNN CNN–2D

FPs/h Sensitivity Latency (s) FPs/h Sensitivity Latency (s) FPs/h Sensitivity Latency (s) FPs/h Sensitivity Latency (s)

Patient 1 2.5 1.00 22.00 9.1 1.00 30.75 11.6 1.00 12.00 14.0 1.00 28.00
Patient 2 1.5 1.00 3.50 1.5 1.00 11.50 13.5 1.00 12.50 3.0 1.00 12.00
Patient 3 1.0 1.00 3.33 2.0 1.00 24.00 0.0 1.00 22.67 6.0 1.00 25.00
Patient 4 7.1 0.50 −3.00 14.9 0.50 5.00 12.6 0.50 9.00 18.1 0.50 29.00
Patient 5 0.0 1.00 −24.00 0.0 1.00 −8.00 0.0 1.00 3.00 0.0 1.00 −4.00
Patient 6 0.0 1.00 15.00 3.0 1.00 24.00 0.0 1.00 62.00 6.0 1.00 27.00
Patient 7 4.7 0.89 −7.12 7.0 1.00 16.89 19.3 1.00 −30.89 5.3 1.00 27.67
Patient 8 1.5 1.00 22.00 9.0 1.00 34.00 13.5 1.00 3.50 22.5 1.00 29.00
Patient 9 0.0 0.67 7.50 0.0 0.67 18.50 0.0 0.67 17.00 0.0 0.67 22.00
Patient 10 0.0 1.00 34.00 0.0 1.00 39.33 14.4 1.00 20.33 9.6 1.00 41.00
Patient 11 2.1 1.00 5.21 2.5 1.00 14.00 0.0 0.00 0.00 3.0 0.71 25.41
Patient 12 1.7 0.64 12.29 5.5 0.91 15.90 0.9 0.91 18.70 6.9 0.91 16.70
Patient 13 5.2 0.60 10.00 5.5 0.50 33.40 8.3 0.50 88.60 12.6 0.70 54.14
Patient 14 3.0 1.00 14.00 12.0 1.00 19.89 14.3 0.89 21.12 31.3 0.89 24.88
Patient 15 0.0 1.00 13.50 3.0 1.00 18.00 4.5 1.00 10.50 3.0 1.00 22.00
Patient 16 1.7 0.86 13.83 3.5 0.86 14.83 0.9 0.14 23.00 8.3 0.86 12.17
Patient 17 4.4 1.00 4.00 6.6 0.67 23.50 8.8 0.67 27.50 24.2 1.00 −11.00
Patient 18 4.0 1.00 13.67 15.9 1.00 37.67 7.9 0.67 62.50 9.9 0.33 36.00
Patient 19 9.6 1.00 16.00 15.5 1.00 16.75 5.2 1.00 13.25 14.0 1.00 18.00
Patient 20 1.4 1.00 −10.50 1.4 1.00 12.00 0.0 1.00 27.50 5.8 1.00 16.50
Patient 21 3.7 1.00 33.33 11.0 1.00 38.67 2.7 1.00 51.33 5.5 1.00 35.00
Patient 22 4.5 1.00 17.00 20.0 1.00 10.00 25.4 1.00 7.00 2.7 1.00 28.75
Patient 23 3.4 0.58 −3.50 6.5 0.58 25.21 6.5 0.67 21.44 9.3 0.75 34.06
Patient 24 1.1 1.00 −14.80 5.0 1.00 6.40 1.7 1.00 5.00 5.5 1.00 0.60
Patient 25 4.1 1.00 −27.00 13.3 1.00 12.67 5.1 1.00 12.33 24.6 1.00 14.33
Patient 26 1.8 0.75 11.33 17.6 0.75 8.33 21.9 0.75 1.33 12.3 0.75 13.33
Patient 27 2.3 1.00 70.33 2.7 1.00 79.00 2.3 1.00 82.67 2.7 1.00 52.17
Patient 28 5.3 1.00 5.80 8.8 1.00 18.60 6.4 0.80 13.00 4.7 0.80 22.75
Patient 29 7.4 1.00 −6.83 13.4 1.00 16.50 0.0 0.67 27.50 12.4 1.00 19.17
Patient 30 5.6 0.50 −50.00 11.3 1.00 −18.00 4.2 0.00 0.00 8.5 0.00 0.00
Patient 31 0.9 1.00 33.75 4.6 1.00 57.12 21.0 1.00 27.50 8.2 1.00 54.38
Patient 32 10.3 1.00 −6.00 68.9 0.33 21.00 3.4 0.00 0.00 27.5 0.00 0.00
Patient 33 2.9 0.84 33.81 9.7 0.79 34.87 17.2 1.00 14.26 11.4 0.79 53.93
Patient 34 6.7 1.00 −23.50 17.3 1.00 −13.50 2.7 0.50 36.00 9.3 1.00 83.50

Average 3.3 0.91 7.03 9.6 0.90 20.55 7.5 0.77 21.27 10.2 0.84 25.39
further suppresses this classification noise by directly learning the
evolution of a seizure over time. This temporal suppression is especially
evident when comparing results between the CNN–MLP and CNN–
BLSTM, as the former includes the discriminative feature extraction
of the CNN architecture without the temporal element granted by the
BLSTM. When calibrated identically, the CNN–MLP achieves a similar
sensitivity of 0.90 with a much higher rate of 9.6 false positives per
hour. This behavior is evident in Fig. 9(b), where the CNN–MLP cor-
rectly identifies the seizure but exhibits less confidence in non-seizure
and makes a spurious false positive detection.

As is evident in Fig. 7(c), the average onset latency for the CNN–
BLSTM is evenly distributed around 10 s. Comparison methods exhibit
higher positive latencies, indicating that the seizure detection occurs
after the annotated onset. While these later detections can still be useful
for identifying seizure in long recordings, often the seizure onset is most
important for diagnosis. As seen in Fig. 10, the CNN–BLSTM responds
to electrographic signatures of epilepsy prior to the push button alarm
seizure annotation. Thus we observe that the CNN–BLSTM is capable
of recognizing clinically relevant epileptic and detecting seizures with
low latency.

Table 2 shows the approximate number of trainable parameters for
each of the networks used. With roughly 30k parameters, the CNN–
BLSTM network is nearly an order of magnitude smaller than the
Wei–CNN, which contains roughly 174k trainable parameters. Smaller
still is the CNN–MLP, which contains only 11k. It is notable that the
CNN–MLP and the Wei–CNN perform comparably in summary statistics
AUC-ROC and F1 given that the CNN–MLP model is roughly 15 times
smaller. Smaller still, the feature based MLP network contains only
approximately 2.5k trainable parameters. However, when comparing
the pre-computed features to the end-to-end CNNs it is clear that
11

extracting encodings directly from the multichannel EEG time series
results in performance gains. As such the CNN–BLSTM achieves the best
tradeoff between number of trainable parameters and performance.

The increase in discriminative power when using a CNN feature
extractor comes with little, if any, extra computational requirement. To
heuristically evaluate computational load, we timed feature extraction
on a roughly 4 min sample of EEG. Bandpass, FFT, line-length, and
power features combined could be computed in less than 5 s. However,
using a freely available Python package, the non-linear features sample
entropy and LLE took roughly 60 and 320 s, respectively, far too long
for use in a clinical environment. By comparison, the CNN–BLSTM
took roughly 0.15 s to classify this recording when running on the
CPU (i.e. without GPU acceleration), indicating that the computa-
tional complexity is on par with the least expensive feature extraction
techniques.

Extensions to the work presented here could further leverage ad-
vances in deep learning to provide greater translational benefits. As
in all deep learning research, increases in dataset size lead directly to
performance gains. Collecting more annotated continuous EEG record-
ings promise to facilitate the development of more powerful models.
While accurate seizure detection is important in clinical practice, this
task is only an intermediate step in diagnosing epilepsy subtypes and
identifying possible focal onset zones. Future extensions could provide
onset localization alongside detection to further assist the clinician.
In addition, specific EEG morphologies, such as rhythmicity, slowing,
and phase reversals, are often useful in diagnosis. Models capable of
annotating EEG for this content could provide further utility in long
term epilepsy monitoring.

5. Conclusions

We have presented a CNN–BLSTM network for inter-patient seizure

detection that is optimized for use in the epilepsy monitoring unit. Our
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Table A.4
JHH MLP seizure results by patient.

Patient MLP–All MLP–Time Domain Features MLP–Filterbank Features KaleemSVM

FPs/h Sensitivity Latency (s) FPs/h Sensitivity Latency (s) FPs/h Sensitivity Latency (s) FPs/h Sensitivity Latency (s)

Patient 1 9.1 1.00 28.50 8.3 1.00 29.00 13.2 1.00 25.75 13.2 1.00 19.50
Patient 2 4.5 1.00 11.50 10.5 1.00 10.50 6.0 1.00 9.00 0.0 1.00 110.00
Patient 3 3.0 1.00 24.33 1.0 1.00 25.33 5.0 1.00 23.00 3.0 1.00 45.67
Patient 4 15.7 0.50 10.00 14.9 0.75 9.67 14.9 1.00 9.75 0.8 0.00 0.00
Patient 5 0.0 1.00 −8.00 0.0 1.00 −5.00 0.0 1.00 −10.00 12.7 1.00 −12.00
Patient 6 6.0 1.00 24.00 9.0 1.00 25.00 6.0 1.00 23.00 0.0 1.00 21.00
Patient 7 6.0 1.00 6.78 6.0 1.00 7.33 9.3 1.00 3.56 11.0 0.89 23.75
Patient 8 16.5 1.00 25.00 13.5 1.00 29.50 13.5 1.00 23.00 1.5 0.50 25.00
Patient 9 0.0 0.67 19.50 0.0 0.67 19.50 0.0 0.67 16.50 8.4 0.00 0.00
Patient 10 4.8 1.00 39.67 4.8 1.00 40.67 4.8 1.00 37.67 0.0 1.00 39.67
Patient 11 0.6 0.96 17.78 1.0 0.92 14.73 1.5 0.96 15.61 0.6 0.88 11.43
Patient 12 5.7 1.00 11.55 11.8 1.00 11.82 6.9 1.00 10.45 6.3 0.82 9.11
Patient 13 5.2 0.70 60.86 9.2 0.90 50.00 10.1 0.80 45.00 1.8 0.20 11.00
Patient 14 34.7 1.00 22.44 29.3 0.89 26.88 36.3 1.00 6.11 18.0 0.78 36.57
Patient 15 4.5 1.00 18.00 7.5 1.00 19.00 13.5 1.00 17.00 0.0 1.00 62.00
Patient 16 5.2 0.71 12.00 4.4 0.71 13.60 8.3 0.86 11.33 6.1 0.57 5.50
Patient 17 12.1 1.00 12.33 16.5 1.00 11.67 25.3 1.00 11.00 9.9 0.67 42.00
Patient 18 10.9 1.00 37.67 16.9 1.00 47.33 12.9 1.00 33.33 6.9 0.67 81.00
Patient 19 12.6 1.00 20.25 8.1 1.00 20.75 14.8 1.00 18.75 9.6 1.00 20.25
Patient 20 1.4 1.00 15.00 4.3 1.00 19.00 1.4 1.00 12.50 0.0 1.00 52.00
Patient 21 9.2 1.00 34.33 10.1 1.00 37.67 14.7 1.00 31.67 6.4 1.00 40.33
Patient 22 3.6 1.00 23.50 6.4 1.00 23.75 10.9 1.00 20.25 7.3 1.00 3.50
Patient 23 10.5 0.75 25.50 5.9 0.83 29.20 14.4 0.79 23.00 3.9 0.29 41.29
Patient 24 4.4 1.00 10.20 3.9 1.00 12.40 8.3 1.00 8.00 11.0 1.00 25.20
Patient 25 7.2 0.67 14.50 8.2 0.67 19.00 14.4 0.67 13.00 14.4 0.67 17.50
Patient 26 3.5 0.75 14.33 3.5 0.75 13.33 8.8 0.75 13.00 3.5 1.00 41.25
Patient 27 2.3 1.00 84.00 0.9 1.00 22.33 5.9 1.00 75.83 18.7 1.00 −0.67
Patient 28 13.4 1.00 19.00 11.7 1.00 21.00 20.4 1.00 17.20 9.9 0.40 48.00
Patient 29 10.9 1.00 13.67 9.9 1.00 9.67 13.4 1.00 11.33 7.4 0.67 28.50
Patient 30 2.8 0.00 0.00 9.9 0.50 7.00 8.5 0.50 8.00 12.7 1.00 4.00
Patient 31 5.9 1.00 61.25 6.4 0.88 75.57 9.6 1.00 56.00 4.1 0.88 105.43
Patient 32 13.8 0.00 0.00 8.6 0.00 0.00 22.4 0.00 0.00 0.0 0.00 0.00
Patient 33 13.1 0.84 43.00 11.8 0.84 46.38 13.7 0.89 38.35 11.7 0.68 61.31
Patient 34 13.3 1.00 −11.00 10.7 1.00 −11.00 14.7 1.00 −13.00 6.7 1.00 −20.00

Average 8.0 0.87 21.81 8.4 0.89 21.55 11.3 0.91 18.97 6.7 0.75 29.38
model uses a CNN network to learn a discriminative representation EEG
data on one-second windows. These representations are scored using a
BLSTM which analyzes the entire seizure recording. The CNN–BLSTM
network contains a relatively small number of trainable parameters,
making it appropriate for clinical applications.

We show that even when limiting false positives, the CNN–BLSTM
provides clinically useful sensitivity. We further show that our method
generalizes to new patients via leave-one-patient-out cross validation.
Finally, our CNN–BLSTM outperforms larger models with more param-
eters. Taken together, our CNN–BLSTM has the potential to facilitate
clinical review of multichannel scalp EEG.
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