
NeuroImage 206 (2020) 116314
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
A joint network optimization framework to predict clinical severity from
resting state functional MRI data

N.S. D’Souza a,*, M.B. Nebel b, N. Wymbs b, S.H. Mostofsky b,c,d, A. Venkataraman a

a Department of Electrical and Computer Engineering, Johns Hopkins University, USA
b Center for Neurodevelopmental & Imaging Research, Kennedy Krieger Institute, USA
c Department of Neurology, Johns Hopkins School of Medicine, USA
d Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, USA
A R T I C L E I N F O

Keywords:
Matrix factorization
Dictionary learning
Functional magnetic resonance imaging
Clinical severity
* Corresponding author.
E-mail address: Shimona.Niharika.Dsouza@jhu.e

https://doi.org/10.1016/j.neuroimage.2019.11631
Received 16 July 2019; Received in revised form 2
Available online 31 October 2019
1053-8119/© 2019 Published by Elsevier Inc. This
A B S T R A C T

We propose a novel optimization framework to predict clinical severity from resting state fMRI (rs-fMRI) data.
Our model consists of two coupled terms. The first term decomposes the correlation matrices into a sparse set of
representative subnetworks that define a network manifold. These subnetworks are modeled as rank-one outer-
products which correspond to the elemental patterns of co-activation across the brain; the subnetworks are
combined via patient-specific non-negative coefficients. The second term is a linear regression model that uses the
patient-specific coefficients to predict a measure of clinical severity. We validate our framework on two separate
datasets in a ten fold cross validation setting. The first is a cohort of fifty-eight patients diagnosed with Autism
Spectrum Disorder (ASD). The second dataset consists of sixty three patients from a publicly available ASD
database. Our method outperforms standard semi-supervised frameworks, which employ conventional graph
theoretic and statistical representation learning techniques to relate the rs-fMRI correlations to behavior. In
contrast, our joint network optimization framework exploits the structure of the rs-fMRI correlation matrices to
simultaneously capture group level effects and patient heterogeneity. Finally, we demonstrate that our proposed
framework robustly identifies clinically relevant networks characteristic of ASD.
1. Introduction

Resting State fMRI (rs-fMRI) is a non-invasive neuroimaging modality
that captures steady-state patterns of co-activation in the brain in the
absence of a task paradigm. It is believed that these correlation patterns
reflect the intrinsic communication between brain regions [FR07].
Consequently, rs-fMRI has become ubiquitous in the characterization of
neuropsychiatric disorders such as Autism Spectrum Disorder (ASD)
[MK10], Attention Deficit Hyperactivity Disorder (ADHD) [BVS05], and
schizophrenia [NKS03]. Traditional rs-fMRI analysis has concentrated on
comparing the statistics of the rs-fMRI data, or variations in these sta-
tistics, across individuals or between different cohorts. For example,
statistical differences in rs-fMRI features between a patient cohort and
neurotypical controls have been considered as biomarkers of a particular
disorder. However, the high dimensionality of rs-fMRI data, along with
the considerable inter-patient variability, make it extremely difficult to
reliably predict clinical manifestations on a patient-specific basis.

There has been considerable work in developing statistical methods
du (N.S. D’Souza).
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to analyze rs-fMRI data. A large number of these studies build on stan-
dardmultivariate [Wooþ17] or random effects models [HF98] to capture
population level differences in functional connectivity. Although these
studies identify functional connections affected by the disease, they often
fail to generalize on a patient-specific level. Additionally, these tech-
niques do not adequately characterize distributed impairments across
multiple brain systems, which is crucial for understanding the complex
pathologies associated with neuropsychiatric disorders [Kaiþ10;
Kosþ05; Ripþ07]. This limitation has warranted the development of
network-based models to study the inter and intra-subject variation
across populations.

Network-based rs-fMRI studies typically group voxels in the brain into
regions of interest (ROIs) using a standard anatomical or functional atlas.
Further, the synchrony between the average regional time courses is
summarized using a similarity matrix, which is the input for further an-
alyses. This extraction procedure is demonstrated in Fig. 1. The works of
[Spoþ04; RS10; BS09] use graph theoretic notions of connectivity based
on aggregate network measures, such as node degree, betweenness
tober 2019
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Fig. 1. We group voxels in the brain into ROIs defined by a standard atlas and compute the average time courses for each ROI. The correlation matrix captures the
synchrony in the average time courses.
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centrality, and eigenvector centrality to study the functional organization
of the brain. These measures are extremely useful to compactly sum-
marize the connectivity information onto a restricted set of nodes which
map to brain regions. A more global network property is
small-worldedness [BB06], which describes an architecture of sparsely
connected clusters of nodes. Changes in small-worldedness have been
implicated in many neurological disorders [Liuþ08] [Sanþ10]. These
characterizations are quite successful at capturing global connectivity
information, but often fail to illuminate the underlying etiological
mechanisms.

To address the limitations of aggregate graph theoretic notions,
recent focus has shifted towards mechanistic network models, which
incorporate hierarchy onto existing graph connectivity notions. Com-
munity detection techniques are a class of population-level models which
are used to identify highly interconnected subgraphs within a larger
network. These techniques have become popular for understanding the
organization of complex systems like the brain network architecture
[Barþ16]. An application of this approach to identify regions having
abnormal connectivity in schizophrenia patients can be found in
[VKG13]. Similarly, Bayesian community detection algorithms devel-
oped in [Venþ16] have provided valuable insights in characterizing the
social and communicative deficits associated with autism. An alternative
network topology is the hub-spoke model, which targets regions associ-
ated with a large number of altered rs-fMRI connections [VKG13],
[VKG12], [Venþ15]. However, the above methods focus on group
characterizations, and even studies that consider patient variability
[Venþ17] have little generalization power on new subjects.

Machine learning techniques cast the neuroimaging prediction
problem as a two stage procedure. Essentially, the first step is a feature
selection or a representation learning stage, while the second stage uses
the output of the first to predict the subject characteristics. A simple
representation learning framework entails a careful sub-selection of
specialized biomarkers [Ravþ16; Honþ17]. On a whole brain level,
data-driven approaches treat the patient connectivity information as a
feature map and estimate lower dimensional projections, typically
through PCA, kernel-PCA [Sidþ12] or ICA [Uddþ13]. From here, the
most popular classifier (i.e. a stage two algorithm) is a Support Vector
Machine (SVM) [Eckþ10], which optimizes the decision boundary be-
tween patients and neurotypical controls [Uddþ13]. SVMs have also
been shown to identify disease sub-types [Honþ17] from the lower
dimensional features with high accuracy. Along similar lines, the work of
[Hoyos-Idrobo, 2018] proposes an ensemble learning based
encoder-decoder model, that is able to provide competitive performance
on large fMRI datasets at discriminative tasks.

While this two stage pipeline has been successful in the classification
realm, characterizing finer-grained measures of clinical severity in the
fMRI literature has been restricted to associative analysis, as opposed to
an actual prediction on unseen data. For example, the work of [Nebþ16]
identifies key visual and motor ICA components, which are then used to
compute a visuo-motor measure that is significantly correlated with
social-communicative and motor deficit measures in ASD. In the context
of a continuous value prediction, [Rahþ17] develops a modified random
2

forest regression algorithm for stacked multi-output score estimation
from multiple ROI-voxel correlation maps. They demonstrate that it
outperforms single score prediction. This strategy, however, does not
permit a straightforward interpretation of the co-activation patterns
explaining an individual severity score. Rather, it identifies regions that
explain the complete set of scores jointly. Finally, deep learning methods
have become popular for several neuroimaging data analysis. These
models have the ability to efficiently learn complex abstractions of the
input data without requiring careful feature engineering. As a result, they
have been quite successful in a number of case/control classification
tasks [Pliþ14]. However, a downside to these models is the requirement
of large amounts of training data for adequate generalization, which is
rarely the case with clinical neuroimaging. Consequently, there has been
limited success in predicting behavior from rs-fMRI data using neural
networks. In summary, the unification of rs-fMRI and behavioral severity
prediction, remains an open challenge.

Dictionary learning [BTD12; Eavþ13] methods move away from the
pipelined representations, and have recently gained traction due to their
ability to simultaneously model both group level and patient specific
information. The work of [Eavþ15] proposed a correlation matrix
decomposition strategy, in which, multiple rank one outer products
capture an underlying generative basis. The sparse basis representation
identifies meaningful co-activation patterns common to all the patients,
while patient-specific coefficients combine the subnetworks and model
the individual variability in the dataset. An extension of their work
[Eavþ14] looks at classification of young adults versus children, again,
by the addition of an SVM like hinge loss. Our work builds on this rep-
resentation by using the discriminative nature of these coefficients to
predict their clinical severity via a linear regression penalty. This Joint
Network Optimization (JNO) framework combines both a generative and
discriminative term, as opposed to a pipelined hyperparameter search.
The generalizability of the model is indicated by the regression perfor-
mance on unseen data, instead of the correlation fit as used in [Eavþ15].
This refinement demonstrates the potential of our JNO framework in
identifying patient-predictive biomarkers of a given disorder.

We validate our framework on an rs-fMRI study of Autism Spectrum
Disorder (ASD). Patients with ASD are known to manifest a wide spec-
trum of impairments in terms of social reciprocity, communicative
functioning, and repetitive/restrictive behaviours [SW80]. This variation
is typically quantified by a clinical severity measure obtained from an
expert assessment. We find that our method outperforms several graph
theoretic and machine learning feature representation techniques in
predicting these severity scores on unseen data. Additionally, our model
automatically extracts key networks commonly associated with altered
functioning in the ASD literature. Finally, we quantify the merit of our
joint objective function by comparing the combined predictive perfor-
mance with that of a similarly defined two-stage decomposition and
regression. We demonstrate that the joint objective bridges the gap in the
two representative views of the data, thus aiding the resting state ASD
characterization.

A preliminary version of our work appeared in [DSoþ18]. Here, we
provide a detailed analysis of our model. We demonstrate the predictive
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performance of our algorithm on three different clinical severity mea-
sures, which capture varied social, behavioral and cognitive deficits
associated with ASD. We evaluate our model on two clinical datasets to
demonstrate the reproducibility of the method. We identify resting state
networks explaining the different behavioral manifestations, and
accordingly discuss the robustness of our brain basis characterization
across behavioral measures. Lastly, we study hyperparameter sensitivity,
generalizability in a test-retest setting and include mitigation strategies
to improve the robustness of the framework.

2. Materials and methods

2.1. A joint model for connectomics and clinical severity

Fig. 2 presents a graphical overview of our model. The two inputs to
our model are the rs-fMRI similarity matrices (upper left) and the scalar
clinical severity scores for each patient (lower right). As mentioned
earlier, Fig. 1 illustrates the construction of the similarity matrix from the
data. These matrices quantify the Pearson’s Correlation Coefficient be-
tween the average time courses for each region of interest (ROI). The
clinical scores are obtained from an expert evaluation and quantify the
severity of the symptoms for the individual.

Notice that the correlation matrices in Fig. 2 have a dual represen-
tation. The generative part of the model is indicated in the purple box.
Here, we decompose the correlation matrix into a basis term and a pa-
tient coefficient term. The columns of the basis capture ROI co-activation
patterns common to the entire cohort, while the coefficients differ across
patients and quantify the strength of each basis column in the matrix
representation. The green box indicates the discriminative part of the
model. Here, we leverage the information from the patient-specific co-
efficients to estimate a given measure of clinical severity via a linear
regression model for each individual.

Rs-fMRI Data Representation. We define Γn 2 R P�P as the correla-
tion matrix for patient n, where P is the number of regions given by the
parcellation. As seen in Fig. 2, we model Γn using a group average basis
representation and a patient-specific network strength term. The matrix
Fig. 2. A two level joint model for connectivity and prediction. Purple Box: Depicts
decomposed into a group basis term and a patient specific coefficient term. The colum
the brain. We stack these coefficients into a matrix. Green Box: Prediction of symp
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B 2 R P�K is a concatenation of K elemental bases vectors bk 2 R P�1, i.e.
B :¼ ½b1 b2 … bK �, where K ≪ P. These bases capture steady state
patterns of co-activation across regions in the brain. While the bases are
common to all patients in the cohort, the combination of these sub-
networks is unique to each patient and is captured by the non-negative
coefficients cnk. We include a non-negativity constraint cnk � 0 on the
coefficients to preserve the positive semi-definite structure of the corre-
lation matrices fΓng. Our complete rs-fMRI data representation is:

Γn �
X
k

cnkbkbT
k s:t: cnk � 0 (1)

As seen in Eq. (1), we model the heterogeneity in the cohort using a
patient specific term in the form of cn :¼ ½cn1 … cnK �T 2 R K�1. Taking
diagðcnÞ to be a diagonal matrix with the K patient coefficients on the
diagonal and off-diagonal terms set to zero, Eq. (1) can be re-written in
matrix form as follows:

Γn �BdiagðcnÞBT s:t: cnk � 0 (2)

Overall, this formulation strategically reduces the high dimension-
ality of the data, while providing a patient level description of the cor-
relation matrices.

Modeling Behavioral Scores. As shown in the green box of Fig. 2, the
patient coefficients fcnkg from the representation term, are used to model
the clinical severity score yn using a linear regression vector w 2 R K�1

yn � cTnw (3)

Concatenating the vectors cn into a matrixC :¼ ½c1 … cN � 2 R K�N ,
and the severity scores into a vector y :¼ ½y1 … yN �T 2 R N�1, Eq. (3)
can be equivalently represented in matrix form:

y � CTw (4)

Joint Objective for Representation and Prediction. We combine the
two contrasting viewpoints described above into a joint optimization
function by summing the contributions of Eq. (2) and Eq. (4) below:
the functional data representation or ‘generative’ term. The correlation matrix is
ns of the basis matrix correspond to individual subnetworks when projected onto
tom severity via linear regression.
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J ðB;C;wÞ ¼
X������Γn � BdiagðcnÞBT

������2
F
n

þγ
����y� CTw

����2
2

s:t: cnk � 0;

(5)

Here,
P
n

������Γn � BdiagðcnÞBT
������2
F
is the total error in the representation of

the N patient correlation matrices, and
������y� CTw

������2
2
is the prediction

error for the behavioral data. Finally, γ is the trade-off between the rs-
fMRI data-representation and score prediction terms.

Regularization Penalties. Since we wish to capture a compact, yet
clinically informative subnetwork representations, we add an ℓ1 penalty
to encourage sparsity in B. Intuitively, this regularizer will sub-select a
small number of nonzero entries in B that explain the data. From an
optimization perspective, notice that scaled solution pairs fB;Cg and�
αB; 1α2 C

�
, as well as fC;wg and

�
βC; 1βw

�
give rise to equivalent data

representations. As a result, we introduce a quadratic penalty on C to act
as a bound constraint. Similarly, we add an ℓ2 regularization term to the
regression vector w analogous to ridge regression. Mathematically, the
three regularizers can be written as:

λ1
����B����

1
þ λ2

����C����2
F
þ λ3

����w����2
2

(6)

The penalty terms in Eq. (6) are added to themain objective in Eq. (5).
The final joint objective is as follows:

J ðB;C;wÞ ¼
X
n

������Γn � BdiagðcnÞBT
������2
F

þγ
����y� CTw

����2
2
þ λ1

����B����
1

þλ2
����C����2

F
þ λ3

����w����2
2

s:t: cnk � 0;

(7)

The parameter λ1 controls the number of nonzero elements in B by
scaling the contribution of the ℓ1 penalty. Similarly, λ2 and λ3 relate to
element wise bounds on the entries in C and w since they scale the
contribution of their respective ℓ2 norms.
2.2. Optimization algorithm

We employ an alternating minimization technique in order to infer
the set of latent variables fB;C;wg. Here, we optimize the JNO objective
function from Eq. (7) for each output variable, while holding the esti-
mates of the other unknowns constant.

Proximal gradient descent [Pþ14] is an attractive algorithm to handle
the non-differentiable sparsity penalty on B in Eq. (7), when the sup-
porting terms in the variable of interest are convex. However, from Eq.
(7), we see that the Frobenius norm terms expand to a biquadratic rep-
resentation in B, which is non-convex. We circumvent this problem by
introducing N constraints of the form Dn ¼ BdiagðcnÞ. We enforce these
constraints using the Augmented Lagrangian [BS15], denoting the set of
Lagrangian matrices by fΛng. The modified objective function in Eq. (7)
takes the form:

J ðB;C;w;Dn;ΛnÞ ¼
X
n

������Γn � DnBT
������2
F

þγ
����y� CTw

����2
2
þ
X
n

Tr
h
ΛT

n ðDn � BdiagðcnÞÞ
i

þ
X
n

1
2

����Dn � BdiagðcnÞ
����2
F
þ λ1

����B����
1

þλ2
����C����2

F
þ λ3

����w����2
2

s:t: cnk � 0

(8)

Such that Tr½M� is the trace operator, which sums the diagonal ele-
ments of the argument matrix M. The additional Frobenius norm terms
4

������Dn � BdiagðcnÞ
������2
F
act as regularizers for the trace constraints. Observe

that Eq. (8) is now convex in both B and the set fDng, which allows us to
optimize them via standard procedures.

Fig. 3 provides an overview of the alternating minimization strategy
employed. Each individual block in our optimization is described below.
We refer the interested reader to Appendix A, which systematically de-
lineates the supporting calculations from this section.

Proximal Gradient Descent on B. Given the fixed learning rate
parameter t, the proximal update for B is:

Bkþ1 ¼ sgnðLÞ:�ðmaxðjLj � t; 0ÞÞ

s:t: L ¼ Bk � ðt=λ1Þ ∂J∂B
(9)

Here, �∂J
∂B is a descent direction for the B update, and t controls the

magnitude of the step we take in this direction. In practice, we fix t at
10�4 for stable convergence. The derivative of J with respect to B, is
computed as :

∂J
∂B ¼

X
n

�
2
�
BDT

nDn � ΓnDn

�� DndiagðcnÞ
�

þ
X
n

�
BdiagðcnÞ2 � ΛndiagðcnÞ

�
At a high level, Eq. (9) performs an iterative shrinkage thresholding

operation to handle the non-smoothness of the
����B����1 using a locally

smooth quadratic model.
Optimizing C using Quadratic Programming. The objective is

quadratic inCwhen B andw are held constant. Furthermore, the diagðcnÞ
term decouples the updates for cn across patients. We use N quadratic
solvers of the form given below to estimate the vectors fcng :

1
2
cTnHncn þ fTn cn s:t: Ancn � bn (10)

The objective and constraint matrices for our quadratic programming
solvers are given by:

Hn ¼ I K ∘ ðBTBÞ þ 2γwwT þ 2λ2I K

fn ¼ �2
�
I K ∘

�
DT

n þ ΛT
n

�
B
�
1� 2γynw;

An ¼ �I K bn ¼ 0

Here, we use ∘ to denote the Hadamard product between two matrices
and 1 to denote a vector of all ones. This strategy helps us find the
globally optimal solutions for cn. The constraint matrices An and bn
project the solutions onto the K dimensional space of positive reals.

Closed Form Update for w. The global minimizer of w can be
computed by setting the gradient of Eq. (8) equal to zero. Thus, the closed
form solution for w is given by:

w¼
	
CCT þ λ3

γ
I K


�1
ðCyÞ (11)

This is analogous to a regularized linear regression, i.e. ridge
regression update for w.

Optimizing the Constraint Variables Dn and Λn. Similar to the case of
w, each of the primal variables fDng has a closed form solution given by:

Dn ¼ðdiagðcnÞBT þ 2ΓnB�ΛnÞðI K þ 2BTBÞ�1 (12)

We update the dual variables fΛng via gradient ascent:

Λkþ1
n ¼Λk

n þ ηkðDn �BdiagðcnÞÞ (13)

The updates for Dn and Λn ensure that the proximal constraints are
satisfied with increasing certainty at each iteration. The learning rate
parameter ηk for the gradient ascent step of the augmented Lagrangian is
chosen to guarantee sufficient decrease for every iteration of alternating



Fig. 3. Our Optimization Strategy, we iterate through four main steps until global convergence.
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minimization. In practice, we initialize this value to 10�3, and scale it by
0.5 at each iteration.

2.3. Prediction on an unseen patient

In order to estimate the coefficients bc for a new patient, we re-solve
the quadratic program in Eq. (10) using the fB�;w�g computed from
the training data via the procedure outlined in Section 2.2. We explicitly
set the contribution from the data term in Eq. (5) to 0, since the corre-
sponding value of by is unknown for the new patient. We also implicitly
assume that the conditions for the proximal operator hold, i.e. the
constraint bD ¼ B�diagðbcÞ is exactly satisfied. The estimation of the un-
seen patient’s coefficients are thus mathematically formulated as follows:

bc ¼ arg min
c

����Γn � BdiagðcÞBT
����2
F
þ λ2

����c����2
2

s:t: ck � 0
(14)

Once again, Eq. (14) can be formulated as a quadratic program. The
parameters from Eq. (10) correspond to:

Hn ¼ 2ðBTBÞ ∘ ðBTBÞ þ 2λ2I K

fn ¼ �2½I K ∘ ðBTΓnBÞ�1;
An ¼ �I K bn ¼ 0

The estimate for the behavioral score for the test patient is given by
the vector product by ¼ bcTw�.

2.4. Baseline comparison techniques

We evaluate the performance of our method against a set of well
established statistical, graph theoretic, and data-driven frameworks that
have been used to provide rich feature representations. Fig. 4 describes a
general two stage pipeline for our task. The first stage is a representation
learning step used for feature extraction. Stage 2 is a regression model to
map the learned features to behavioral data. We evaluate our method
against several choices of linear and non-linear algorithms for Stage 1.
These are combined with a regularized linear regression in Stage 2,
similar to our method. Additionally, we evaluate the performance ob-
tained by omitting a Stage 1 and training a deep neural network end-to-
end on the input correlation features. Lastly, we demonstrate the
advantage provided by combining the neuroimaging and behavioral
representations in the JNO framework. For this, we present a comparison
where the feature learning and prediction stages are decoupled, similar
to the baselines.

2.4.1. Machine learning approach (PCA)
We start with the P� P correlation matrix Γn for each patient. Since

this matrix is symmetric, we haveM ¼ P�ðP�1Þ
2 distinct rs-fMRI correlation

pairs between various communicating sub-regions. Accordingly, the
features from every individual are composed into a descriptor matrix X 2
R M�N . We further concentrate these feature into a small number of
representative bases. The basis extraction procedure in Stage 1 corre-
sponds to a linear mapping in the original correlation space via a
5

Principal Component Analysis (PCA). In Stage 2, we construct a
regularized linear regression (ridge regression) on the projected
features to predict the clinical severity. PCA projects the observations
onto a set of uncorrelated principal component basis by means of an
orthogonal linear decomposition. Mathematically, PCA poses the
following dimensionality reduction problem:

F ðU;Z; μÞ ¼ arg min
μ;U;Y

����X� μ1T � UZ
����2
F

s:t: UTU ¼ I d; Z1 ¼ 0
(15)

Here, U 2 R N�d is the d dimensional subspace basis which best ap-
proximates the information from X in the Frobenius norm sense,
computed by calculating the eigenvectors of the sample covariance ma-
trix XXT . Consequently, Z 2 R d�N is a compact d dimensional repre-
sentation of X, where d ≪ M. 1 is a d dimensional vector of ones. The
constraint Z1 ¼ 0 centers the representation Z.

2.4.2. Statistical approach (ICA)
Here, we use Independent Component Analysis (ICA) as the Stage

1 algorithm combined with ridge regression. ICA operates on the raw
time series data to extract representative spatial patterns that explain rs-
fMRI connectivity. ICA has become ubiquitous for identifying group level
as well as individual-specific connectivity signatures. It decomposes a
multivariate signal into ‘independent’ non-Gaussian components based
on the statistics of the data. Mathematically, ICA models the components
fykg of the observed signal y ¼ ½y1;…; ym� as a sum of n independent
components S ¼ ½s1;…; sn� combined via the mixing matrix
A ¼ ½a1;…; an�

y¼
Xn

i¼1

siai i:e: Y ¼ AS (16)

s can be recovered by multiplying the observed signalsYwith the inverse
of the mixing matrix W ¼ A�1. We adaptively estimate both the mixing
matrix A and the components s by setting up a cost function that maxi-
mizes the non-gaussianity of si ¼ wT

i y or minimizes the mutual
information.

Group ICA extends this algorithm to a multi-subject analysis for
extracting independent spatial patterns common across patients, but
combined via individual time courses. We use the GIFT [CLA09] software
in order to perform Group-ICA to derive independent spatial maps for
each patient. The correlation values between the identified components
are fed to the regression model.

2.4.3. Graph theoretic approach (node degree)
Each correlationmatrix Γn can be thresholded and considered a graph

adjacency matrix, which we denote by Ψ 2 R P�P. The element Ψij gives
the strength of association between two communicating sub-regions i and
j. The underlying graph topology can be summarized using node/edge
based importance measures [Spoþ04] [BB06]. Again, we use a regular-
ized linear regression technique to estimate the severity score from the
reduced representation. This treatment closely parallels the machine



Fig. 4. A typical two stage baseline. We input the correlation matrices to Stage 1, which performs Feature Extraction on the raw correlations. This step could be a
technique from machine learning, graph theory or a statistical measure. Stage 2 fits an associative regression model to the output representation of Stage 1.
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learning approach, as we can view the graph measures as a dimension-
ality reduction. We compute Node Degree (DN) from the adjacency
graph followed by a ridge regression on the features.

Given the adjacency matrix Ψ, the degree of region v is equal to the
number of edges incident on v, with loops counted twice. Mathemati-
cally, the degree DNðvÞ is computed as follows:

DNðvÞ¼
X
j 6¼v

1
�
Ψjv > 0

�
(17)

where, 1ð:Þ is the indicator function, which takes the value 1 if the
condition is satified, and 0 otherwise. This metric captures the impor-
tance of each node in explaining the graph, which in our case, corre-
sponds to the average connectivity strength of each region in the brain.

2.4.4. A neural network approach
Recently, there has been an upsurge in using neural networks to

investigate neuroimaging correlates of developmental disorders
[Kaiþ10]. Here, we test the efficacy of a simple Artificial Neural
Network (ANN) for predicting the severity score from the correlation
feature matrix X defined above. The network architecture encodes a
series of non-linear transformations of the input correlations to approx-
imate the severity score. Recall that the size of the input is dependent on
our choice of parcellation, which could be of considerable width (of the
order of � 5000 connections for P ¼ 100). After evaluating several ar-
chitectures, we employ a two hidden layer network with widths 8000
and 10 respectively. We use a Rectified Linear Unit (ReLU) non-linearity
after the first hidden layer and a Tanh non-linearity after the second
hidden layer. We used the ADAM optimizer with an initial learning rate
of 10�4, scaled by 0.9 per 10 epochs, and a momentum of 0.9 to train the
network.

3. Experiments

3.1. Validation on synthetic data

As a sanity check, we first sample data from the generative model in
Eq. (7) and use the optimization outlined in Section 2.2 to estimate the
unknowns fB;C;wg. This procedure helps us analyze the performance of
the algorithm under different noise scenarios. The inputs to our model
are the correlation matrices fΓng and the clinical scores fyng. We note
that the model gives a complete description of each Γn in terms of the
basis vectors fbkg and the patient coefficients fcng. Since the data rep-
resentation terms for each patient are coupled solely through the basis
representation, the coefficient descriptors are independent of each other.
In a similar observation, each score yn is explained by the corresponding
cn, independent of the remaining subjects, when we fix the regression
vector w. We use this information to describe the observed data fΓn; yng
using a generative model with the likelihood model based on the hidden
variables fB;C;wg.

Notice that, when treated as a Bayesian log-likelihood (i.e. taking a
negative exponent of the objective), the ℓ2 norms in Eq. (7) translate into
Gaussian distributions, and the ℓ1 norm is equivalent to a Laplacian prior.
6

The corresponding graphical model is shown in Fig. 5. The observed
variables are indicated by the shaded circles. The white circles contain
the hidden variables. The distribution parameters for the hidden vari-
ables are indicated in the corresponding rectangle pointing to the vari-
able. The Laplacian parameter σB controls the overlap in the patterns of
sparsity in B, which relates to λ1. C and w are described by Gaussians
with means zero (i.e. ℓ2 norm offset). The variances σ2C and σ2w are related
to the penalty parameters λ2 and λ3 respectively. The non-negativity
constraint on cn is handled by folding (i.e. taking the absolute value of)
the normal distribution to restrict the cn values to be positive reals. The
observed variable fyng, translates to a Gaussian with mean μyn ¼ cTnw,
and variance parameters σyn . This is again folded to reflect positive values
of yn. The correlation matrices fΓng are drawn from a Gaussian distri-
bution with mean μΓn

¼ BdiagðcnÞBT (which is positive semi-definite by
construction) and variance σΓn .

There are two sources of noise for the observed variables, which
include the error in the correlation matrices Γn, and the error in the
severity scores yn. These scenarios can be directly related to controlling
the variance parameters σΓn and σyn respectively. Additionally, we are
interested in the performance of the algorithm under varying levels of
overlap in the sparsity patterns in B.

We evaluate the performance using an average inner-product mea-

sure of similarity S between each recovered network, bbk, and its corre-
sponding best matched generating network, bk, both normalized to unit
norm, i.e.:

S¼ 1
K

X
k

��bT
k
bbk

������bk

����
2

����bbk

����
2

: (18)

Fig. 6 depicts the performance of the algorithm in these three cases.
The x-axis corresponds to increasing the levels of noise, while the y-axis
indicates the similarity metric S computed for the particular setting. In
the leftmost plot, an x-axis value close to 0 indicates high percentage of
sparsity in B, while increasing values correspond to denser basis
matrices. Throughout this experiment, the values of the other free pa-
rameters in the generative model were held constant. The middle plot
evaluates subnetwork recovery when the noise in the scores, i.e. σyn is
increased. The x-axis reports normalized values of σyn while the
remaining free parameters were held constant. Similarly, the rightmost
plot in Fig. 9 indicates performance under varying noise in the correla-
tion matrices Γn. Again, normalized σΓn values are reported on the x-axis.
All numerical results have been aggregated over 100 independent trials.

As expected, increasing the noise in the correlation matrices and
scores worsens the recovery performance of the algorithm. This is indi-
cated by the decay in the similarity measure with increasing noise pa-
rameters as well as an increase in the corresponding variance.
Additionally, the algorithm performs better when there is lesser overlap
in the columns of B, i.e. when the generating basis is sparse. However, we
observe that our algorithm is robust in the noise regime estimated from
the real-world rs-fMRI data ð0:01�0:2Þ and recovered sparsity levels
ð0:1 � 0:4Þ. In addition, we identify the stable parameter settings for the
algorithm which guide our real world experiments.



Fig. 5. The graphical model for the joint objective. For our synthetic experi-
ments, we fix the model parameters. σC ¼ 2; σw ¼ 0:2
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3.2. A population study of autism

We evaluate the efficacy of our JNO framework on two separate co-
horts. Our first dataset consists of 58 children with high functioning ASD
acquired at the Kennedy Krieger Institute in Baltimore, USA. We refer to
this as the KKI dataset. The age of the subjects ranged from 10:06 	 1:26
and the IQ as 110	 14:03. The second cohort is a subset of the publicly
available Autism Brain Imaging Data Exchange (ABIDE I) [þDi þ14þ]
acquired at the New York University (NYU) site consisting of 63 patients.
Social and communicative deficits in autism are believed to arise from
abnormal interactions between functionally linked regions in the brain
[PYM14]. Therefore, identifying long-range correlative patterns in the
brain directly linked to clinical severity is an important stepping stone to
understanding and quantifying the neural underpinnings of the disorder.

Neuroimaging Data. For the KKI dataset, rs-fMRI scans were acquired
on a Phillips 3T Achieva scanner using a single shot, partially parallel
gradient-recalled EPI sequence with TR/TE¼ 2500=30 ms, flip angle 70,
res ¼ 3:05� 3:15� 3mm, having 128 or 156 time samples. The children
were instructed to relax with eyes open and focus on a central cross-hair
while remaining still for the duration of the scan.

Slice time correction, rigid body realignment, and normalization to
the EPI version of the MNI template was performed as a part of pre-
processing using SPM [Penþ11]. The time courses were temporally
detrended in order to remove gradual trends in the data. From here, we
used a CompCorr [Behþ07] strategy for the estimation and removal of
spatially coherent noise from the white matter and ventricles, along with
the linearly detrended versions of the six rigid body realignment pa-
rameters and their first derivatives. We performed a spatial smoothing
with a 6mm FWHM Gaussian kernel followed by a temporal filtering
using a 0:01� 0:1 Hz pass band. Lastly, we removed spikes from the data
via tools from the AFNI package [Cox96] as an alternative to motion
scrubbing.

For the NYU cohort, the rs-fMRI data was pre-processed using the
configurable pipeline for the analysis of connectomes, that has been in-
tegrated with ABIDE. The pre-processing steps involved are skull-
stripping, global mean intensity normalization, spatial normalization to
the MNI template, nuisance regression and CompCorr, followed by
bandpass filtering, but without global signal regression.

This work relies on the Automatic Anatomical Labelling (AAL) atlas
[Tzoþ02], which defines 116 cortical, subcortical and cerebellar regions.
We compute a 116� 116 correlationmatrix for each patient based on the
Pearson’s Correlation Coefficient between the average time series for
these regions. Empirically, we observed a consistent noise component
with nearly constant contribution from all brain regions and low pre-
dictive power for both datasets. Therefore, we subtracted out the first
eigenvector contribution from each of the correlation matrices and used
the residuals as the inputs fΓng to the algorithm and the baselines.

Behavioral Data. We analyzed three independent measures of clin-
ical severity. These include:

1 Autism Diagnostic Observation Schedule, Version 2 (ADOS-2) total
raw score

2 Social Responsiveness Scale (SRS) total raw score
3 Praxis total percent correct score

ADOS and SRS are standard assessments and are available for both
the KKI and NYU datasets, while the Praxis has been collected for the KKI
dataset only.

The ADOS consists of different sub-scores which quantify the social
and commumunicative deficits of the patient along with the restrictive/
repetitive behaviors [Lorþ00]. The test is administered by a trained
clinician who evaluates the child against a set of guidelines. The total
score is computed by adding the individual sub-scores. The dynamic
range for ADOS is between 0 and 30, with higher score indicating greater
impairment.

The SRS scale characterizes the social responsiveness of an individual
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[BPC08]. Typically, a parent/care-giver or teacher completes out a
standardized questionnaire assessing various aspects of the child’s
behavior. SRS reporting tends to be more variable across patients
compared to ADOS, since the responses are heavily biased by the
parent/teacher attitudes. The SRS dynamic range is between 70� 200
for ASD patients, with higher values corresponding to higher severity in
terms of social responsiveness.

Praxis was assessed using the Florida Apraxia Battery (modified for
children) [Mosþ06], which assesses ability to perform skilled motor
gestures to command, to imitation, and with actual tool use. Several
studies [Mosþ06], [Dziþ07], [DMM09], [Nebþ16], etc) reveal that
children with ASD show marked impairments in Praxis i.e., develop-
mental dyspraxia, and that impaired Praxis correlates with impairments
in core autism social-communicative and behavioral features. Perfor-
mance is videotaped and later scored by two trained research-reliable
raters, with total percent correctly performed gestures as the depen-
dent variable of interest. Scores therefore range from 0� 100, with
higher scores indicating better Praxis performance. This measure was
available for 52 of the total patients in the KKI dataset.
3.3. Evaluating predictive performance

Wewish to compare the performance of our JNO framework against a
wide class of algorithms described in Section 2.4. In this paper, we use
regularized linear regression (i.e. ridge regression) for all baselines,
except the ANN. Our Supplementary Results document includes further
comparison with a non-linear (Random Forest) regression model. We
emphasize that the baseline performance is nearly identical for both the
linear and the non-linear models.

We characterize the performance of each method using a 10 fold cross
validation strategy as illustrated in Fig. 7. For a given parameter setting,
we first split the data set into 10 training and test folds. For each of the
folds, we train the models on a 90 percent training set split of the data.
We report the score prediction on the held out 10 percent, which con-
stitutes the testing set for that fold. Note that each datapoint is a part of
the test set in exactly one of the 10 folds.

We report two quantitative measures of performance. Median Abso-
lute Error (MAE) quantifies the absolute distance between the measured



Fig. 6. Performance on synthetic experiments. (L): Varying the level of sparsity (σΓn ¼ 0:4, σyn ¼ 0:2), (M): Varying the level of noise in yn (σB ¼ 0:2, σΓn ¼ 0:4),
(R): Varying the level of noise in Γn under (σB ¼ 0:2, σyn ¼ 0:2) Values on the x-axis have been normalized to reflect a ½0�1� range by dividing by the maximum value
of the variable. Deviations from the mean recovered similarity for each parameter setting is indicated in the figure and have been reported as a standard error value.
The reported x-axis range reflects the regimes within which the algorithm converges to a local solution.

Fig. 7. A ten-fold cross validation for evaluating performance.

Fig. 8. Scree Plot of the correlation matrices to corrobrate the selected values
for K. (L) KKI Dataset (R) NYU Dataset.
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and predicted scores:

MAE¼medianðjby� yjÞ;

where the median is computed across the set of patients. We report MAE
values with the standard deviation of the error. Lower MAE indicates
better testing performance.

Normalized Mutual Information (NMI) assesses the similarity in the
distribution of the predicted and observed score distributions across test
patients. NMI is computed as follows:

NMIðy; byÞ¼HðyÞ þ HðbyÞ � Hðy; byÞ
minfHðyÞ;HðbyÞg

where HðyÞ denotes the entropy of y and Hðy; byÞ is the joint entropy
between y and by. NMI ranges from 0� 1 with higher values indicating a
better agreement between predicted and measured score distributions,
and thus characterizing improved performance.

Along with MAE and NMI, we perform a statistical test on the error
distribution to evaluate the performance gain of our framework. We first
calculate the Cumulative Distribution Function (CDF) of errors and then
8

report the Kolmogorov-Smirnov statistic on the CDF. This statistic helps
us quantify the differences in the error distributions of each baseline
compared to our algorithm. A Kolmogorov-Smirnov statistic lower than
α ¼ 0:05 is widely accepted in literature as statistically significant. We
indicate comparisons which fall within this threshold in bold and near
misses using an underline.

3.3.1. Parameter settings
Our method has five user-specified parameters fγ;λ1;λ2;λ3;Kg. Recall

that K is the number of basis networks, γ is the penalty tradeoff between
the representation and regression terms, λ1 is the sparsity penalty, while
λ2 and λ3 are the regularization penalties on the coefficients C and
regression weights w respectively.

We use the knee point of the eigenspectrum of the correlation
matrices Γn to select the number of bases (K ¼ 8 for both datasets). For
reference, we have included the scree-plots in Fig. 8. Empirically, the
JNO model is insensitive to the choice of λ3 and γ, so we fix both at one.
Effectively, we are left with two free parameters, which we optimize by
performing a bivariate grid search. We note that the generalization ac-
curacy is dependent on the dynamic range of the scores and is sensitive to
λ1 and λ2. As described in Section 3.6, we have identified a stable range of
operation across a single order of magnitude for these parameters. Based
on the cross validation results, we finally use the following settings in our
experiments: For the KKI dataset, fλ2 ¼ 0:2; λ1 ¼ 30g for ADOS,
fλ2 ¼ 0:9; λ1 ¼ 50g for SRS and fλ2 ¼ 0:6; λ1 ¼ 20g for Praxis; for the
NYU dataset, fλ2 ¼ 0:1; λ1 ¼ 20g for ADOS, fλ2 ¼ 0:9; λ1 ¼ 40g for SRS.

To provide a fair comparison with our JNO framework, we use a joint
grid search on the Stage 1 hyperparameters and the Stage 2 ridge penalty
to optimize these values for every baseline method. Again, we report the
best performance in a ten fold cross validation setting.

We select 10 PCA components for the KKI dataset, and 15 for the NYU
dataset. For ICA, we obtained good performance for 35 spatial maps
obtained from GIFT [CLA09]. For the graph theoretic baseline, we
threshold the correlation matrices fΓng at 0.2 to obtain valid adjacency
matrices fΨng. In conjunction with these, the ridge penalty parameter
was swept across four orders of magnitude.

As described in Section 2.4.4, we fixed the network architecture to be
a two hidden layer network with widths 8000 and 10 respectively,
having a Rectified Linear Unit (ReLU) non-linearity after the first hidden
layer and a Tanh non-linearity after the second hidden layer. We use a
standard weight decay regularizer, with the regularization parameter
varied over three orders of magnitude for each baseline comparison. We
trained the network using the ADAM optimizer with an initial learning
rate of 10�4, scaled by 0.9 per 10 epochs, and a momentum of 0.9.

Finally, we include the performance upon decoupling the ridge
regression and the matrix decomposition in Eq. (5) as a sanity check. This
is akin to the two stage treatment in the baselines where the two terms
are not explicitly coupled as in the JNO objective.



Fig. 9. KKI dataset: Prediction performance for the ADOS score for Black Box: JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange Box: ANN on correlation features Blue Box: Decoupled matrix cactorization and
ridge Regression.
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3.4. Performance on real world data

Fig. 9� 11 compare the performance of our method against the
baselines described in Section 2.4 for the prediction of ADOS, SRS and
Praxis respectively for the KKI dataset. Similarly, Fig. 12 and Fig. 13
illustrate the performance comparison on the NYU dataset for ADOS and
SRS respectively. We plot the score predicted by the algorithm on the y-
axis against the measured ground truth score on the x-axis. The bold x ¼
y line indicates ideal performance. The red points correspond to training
data, while the green points represent the held out testing data for all the
folds in the cross validation. Ourmethod is indicated at the top left corner
in each plot. We observe that, although the training performance of the
baselines is good (i.e. the red points follow the x ¼ y line), the JNO
achieves the best training performance in all cases. Furthermore, we
notice that all the two stage baseline testing performances track the mean
value of the held out data (indicated by the black horizontal line). Our
method clearly outperforms the baselines and is able to capture a trend in
the data, beyond a mean value estimation in case of both datasets for all
scores. This can be observed by the spread of the green points about the
x ¼ y line in the case of the JNO method. Through our experiments, we
noticed that the testing performance of the ANN is dependent on the
choice of architecture. For example, the architecture chosen in Sec-
tion 2.4 performs well on predicting ADOS for the KKI dataset, but per-
forms poorly on all other comparisons. Our empirical evaluations could
not identify a single architecture that performed well in all cases, like our
JNO framework. The failure of the two stage decomposition in the bot-
tom right comparison figures strengthens our hypothesis that a joint
modeling of the neuroimaging and behavioral data is necessary in the
context of generalization onto unseen data.

The lackluster generalization performance of the baselines is testa-
ment to the difficulty of the task at hand. The number of connections or
features available to us are of the order of a 6670 dimensional vector
representation for 58 or 63 patients. Both the machine learning and
graph theoretic techniques we selected for a comparison are well known
in literature for being able to robustly provide compact characterizations
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for high dimensional datasets. However, we see that PCA and ICA are
unable to estimate a reliable projection of the data that is particularly
indicative of clinical severity. Similarly, the node degree measure heavily
rely on being able to accurately identify informative network topologies
from the observed correlation matrices. However, its aggregate nature
captures general trends and is not successful in characterizing subtle
patient level differences. The failure of the decoupled matrix factoriza-
tion and ridge regression makes a strong case for including the regression
term as a part of our JNO objective. The basis directions obtained in this
case are not indicative of clinical severity, due to which the regression
performance suffers. Despite sweeping parameters across several orders
of magnitude, we observe that the baselines are only good at capturing
group level information, as is indicated by the training fit. However, they
fail to characterize patient level differences for an unseen subject and
simply predict the mean of the given cohort.

On the other hand, the generalization power of the ANN is contingent
on the model order choice. This is demonstrated by its inability to
perform well on comparisons outside of ADOS for the KKI dataset. Said
another way, we have to change the network architecture for different
severity measures across datasets. This is a major computational disad-
vantage when compared with our method.

A key difference between the JNO framework and the baselines is that
we utilize the structure of the correlation matrices to guide the predictive
model. In essence, we optimize for the tradeoff between the neuro-
imaging and behavioral data representations jointly, instead of posing it
as a two stage problem. The matrix decomposition we employ explicitly
models the group information through the basis, and the patient differ-
ences through the coefficients. The limited number of basis elements we
employ to decompose the data provides us with compact representations
which explain the connectivity information well. The regularization
terms and constraints ensure that the problem is well posed, while
providing clinically meaningful and informative representations about
the data. We also quantify the performance indicated in these figures in
Table 1 (KKI dataset) and Table 2 (NYU dataset) based on the validation
metrics mentioned earlier.



Fig. 10. KKI dataset: Prediction performance for the SRS score for Black Box: JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange Box: ANN on correlation features Blue Box: Decoupled matrix factorization and
ridge regression.

Fig. 11. KKI dataset: Prediction performance for the Praxis score for Black Box: JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange Box: ANN on correlation features Blue Box: Decoupled matrix factorization and
ridge regression.
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Fig. 12. NYU dataset: Prediction performance for the ADOS score for Black Box: JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange: ANN on correlation features Blue Box: Decoupled matrix factorization and
ridge regression.

Fig. 13. NYU dataset: Prediction performance for the SRS score for Black Box: JNO Framework. Red Box: PCA and ridge regression Purple Box: ICA and ridge
regression Green Box: Node degree centrality and ridge regression Orange: ANN on correlation features Blue Box: Decoupled matrix factorization and
ridge regression.
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Table 1
KKI Dataset: Performance evaluation usingMedian Absolute Error (MAE) and Normalized Mutual Information (NMI) fit, both for testing & training. Lower MAE&
higher NMI score indicate better performance. We have highlighted the best performance in bold. The CDF-KS column indicates the Kolmogorov-Smirnoff statistic on
the CDF comparison against our method. The instances highlighted in bold indicate that the performance is within the accepted 0.05 threshold. Near misses have been
underlined.

Score Method MAE Train MAE Test NMI Train NMI Test CDF-KS

ADOS PCA & ridge 2.18	 2.2 2.99	 1.71 0.22 0.18 0.06
ICA & ridge 2.13	 1.1 3.01	 1.90 0.31 0.23 0.027
DN & ridge 1.22	 0.91 3.68	 2.53 0.45 0.39 0.015
ANN 2.68	 2.21 2.28	1.30 0.91 0.58 0.088
Decoupled 2.36	 2.33 2.63	 1.90 0.15 0.30 0.083
JNO Framework 0.088	0.13 2.53	 1.86 0.99 0.52 �

SRS PCA & ridge 12.92	 10.48 19.09	 12.48 0.64 0.39 0.032
ICA & ridge 7.96	 6.35 20.8	 17.3 0.83 0.63 0.041
DN & ridge 5.77	 4.88 19.63	 17.23 0.85 0.59 0.089
ANN 4.77	 4.09 21.25	 14.63 0.81 0.56 0.093
Decoupled 12.06	 10.04 18.5	 16.4 0.74 0.37 0.014
JNO Framework 0.13	0.07 13.27	10.85 0.99 0.78 �

Praxis PCA & ridge 9.44	 6.83 12.83	 8.84 0.64 0.37 0.17
ICA & ridge 4.79	 4.17 13.08	 13.07 0.73 0.63 0.035
DN & ridge 4.78	 3.24 13.93	 8.14 0.68 0.56 0.017
ANN 9.34	 7.21 14.90	 10.06 0.69 0.39 0.01
Decoupled 10.17	 7.96 13.24	 10.38 0.68 0.29 0.10
JNO Framework 0.11	0.065 10.18	6.58 0.99 0.79 �

Table 2
NYU Dataset: Performance evaluation usingMedian Absolute Error (MAE) andNormalizedMutual Information (NMI) fit, both for testing& training. Lower MAE&
higher NMI score indicate better performance. We have highlighted the best performance in bold. The CDF-KS column indicates the Kolmogorov-Smirnoff statistic on
the CDF comparison against our method. The instances highlighted in bold indicate that the performance is within the accepted 0.05 threshold. Near misses have been
underlined.

Score Method MAE Train MAE Test NMI Train NMI Test CDF-KS

ADOS PCA & ridge 1.68	 1.53 3.46	 2.21 0.30 0.28 0.0019
ICA & ridge 2.75	 1.88 3.41	 2.34 0.15 0.17 0.068
DN & ridge 1.18	 1.19 3.17	 3.05 0.50 0.39 0.0025
ANN 1.40	 1.39 3.36	 2.89 0.31 0.28 0.081
Decoupled 2.62	 2.54 3.32	 2.27 0.21 0.12 0.07
JNO Framework 0.10	0.088 2.63	2.51 0.99 0.54 �

SRS PCA & ridge 10.64	 12.60 18.22	 12.43 0.87 0.54 0.24
ICA & ridge 16.88	 15.71 18.11	 13.9 0.71 0.49 0.19
DN & ridge 7.32	 5.76 23.18	 18.44 0.87 0.66 0.081
ANN 1.50	 1.39 19.04	 17.69 0.85 0.08 0.009
Decoupled 16.42	 15.66 22.43	 18.79 0.80 0.42 0.06
JNO Framework 0.46	0.36 16.61	12.43 0.96 0.72 �

Fig. 14. Subnetworks estimated to predict the ADOS score by the JNO. Regions having negative contributions are anti-correlated with areas having positive values.
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Fig. 15. Subnetworks estimated to predict the SRS score. Regions having negative contributions are anti-correlated with areas having positive values.

Fig. 16. Subnetworks estimated to predict the Praxis score. Regions having negative contributions are anti-correlated with areas having positive values.
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3.5. Subnetwork identification

Figs. 14–16 illustrate the subnetworks in B, as trained on the ADOS,
SRS and Praxis in the KKI dataset, respectively. Since each column of the
basis corresponds to a set of co-activated subregions, we plot the
normalized values stored in these columns onto the corresponding AAL
ROIs. The colorbar indicates subnetwork contribution to the AAL regions.
Regions colored as negative values are anticorrelated with regions stor-
ing positive ones. We rank the 8 subnetworks obtained from SRS and
Praxis according to their overlap with the subnetworks from ADOS. As
seen from these figures, corresponding subnetworks show considerable
overlap in regional co-activation patterns. The individual variations can
arise from the fundamental differences in the behavioral traits that each
score is trying to capture.

From a clinical standpoint, Subnetwork 7 includes competing i.e.
anticorrelated contributions from regions of the default mode network
(DMN) and somatomotor network (SMN). Abnormal connectivity within
13
the DMN and SMN has been previously reported in ASD [Lynþ13;
Nebþ16]. Subnetwork 5 comprises of competing contributions from
SMN regions. Additionally, it includes higher order visual processing
areas in the occipital and temporal lobes, which is consistent with
behavioral reports of reduced visual-motor integration in the ASD liter-
ature [Nebþ16]. Subnetwork 1 has competing from prefrontal and
subcortical contributions, mainly the thalamus, amygdala and hippo-
campus. The thalamus is responsible for relaying sensory and motor
signals to the cerebral cortex in the brain. The hippocampus is known to
play a crucial role in the consolidation of long and short term memory,
along with spatial memory to aid navigation. Altered memory func-
tioning has been shown to manifest in children diagnosed with ASD
[WGM06]. Along with the amygdala, which is known to be associated
with emotional responses, these areas may be crucial for social-emotional
regulation in ASD. Finally, Subnetwork 2 is comprised of competing
contributions from the central executive control network and the insula,
which is thought to be critical for switching between self-referential and



Fig. 17. Representation learned from the prediction of ADOS by Node degree
centrality þ ridge regression. The colorbar indicates the weight of the ROI
assigned by the ridge regression.

Fig. 18. Top two subnetworks identified by the prediction of the ADOS score by
PCA þ ridge regression. The colorbar indicates the weight of the connection.

Fig. 19. Connectivity patterns identified as important in the prediction of the
ADOS score by ICA þ ridge regression. Each plot displays 2 spatial components
contributing to the correlation feature. The colorbar indicates the weight of
the connection.

Fig. 20. Connectivity patterns identified in the prediction of the ADOS score by
the ANN. The colorbar indicates the weight of the connections. The narrow
range of values are indicative that the ANN assigns equal weighting to most
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goal-directed behavior [SLM08].

3.5.1. Robustness in subnetwork recovery
Notice that we estimate a different basis matrix B for each cross

validation fold. Therefore, one important property to verify is that these
subnetworks are similar across different cohorts of the data.

We observed an average similarity of 0:79	 0:06 for the ADOS net-
works, 0:86	 0:04 for the SRS networks, and 0:76	 0:06 for the Praxis
networks across their cross validation runs. Additionally, upon a cross
comparison between the ADOS and SRS networks, we obtained an
average similarity of 0:82	 0:07. Similarly, the overlap between ADOS
and Praxis is 0:79	 0:04, and between SRS and Praxis is 0:77	 0:06. For
a convenient visual inspection, we have arranged the networks in Fig. 15
(SRS) and Fig. 16 (Praxis) in the order of their inner product similarity
with the ADOS networks in Fig. 14. This finding strengthens the hy-
pothesis that our model is successful at capturing the stable underlying
mechanisms which explain the different sets of deficits of the disorder.

3.5.2. Comparing subnetwork representations
In this section, we compare the subnetworks identified by the JNO to

the representations learned by the baseline methods. Recall that we have
used a regularized linear regression as the Stage 2 predictor for the
baselines. Therefore, we can probe the learned regression weights to
characterize the baseline network representations.

Degree centrality looks at the relative importance of each brain region
or ‘node’ to the overall representation. To visualize the pattern identified
by the degree centrality þ ridge regression baseline, we display the
regression weights on the brain surface plots in Fig. 17, normalized to
unit norm. The colorbar indicates the strength of co-activation. Regions
storing negative values are anticorrelated with regions storing positive
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weights. We again observe patterns from the DMN in the subnetwork
plot. Note that the DMN was also a key connectivity pattern identified by
the JNO. However, several other subnetworks identified by the JNO do
not figure in this representation.

On the other hand, for the PCA þ ridge regression baseline, the
regression weights inform us of the relative importance of the principal
components in prediction. Since the features fed into PCA are the
M ¼ ðP�ðP�1ÞÞ=2 correlation values, we are left with a 6670 dimen-
sional edge connectivity representation for the AAL per component. We
first examine the absolute value of the regression weights learned, and
then display the connectivity in the top 2 basis components in Fig. 18. We
render this connectivity measure using the BrainNet Viewer [XWH13]
software. For clarity, we have chosen to display the top 5 percent of the
connections obtained. The solid edges signify retained connections,
while the blue spheres correspond to nodes of the AAL regions. The
colorbar to the right indicates the strength of the connections. We notice
that the components consist of several crossing connections spread across
different regions of the brain. As compared to our model, which pinpoints
key subnetworks already known to be associated with ASD, the repre-
sentation obtained is not immediately interpretable.

In the ICA þ ridge regression baseline, the input to the regression
model are the correlation values between the components identified by
ICA. After the model is fit, we sort the input correlations based on the
learned regression weights. This helps us identify the features important
for prediction. In Fig. 19, we display the spatial maps of the top 2 con-
nections identified by the algorithm. We again, observe patterns from the
DMN and visual areas. However, it fails to capture several other sub-
network patterns that the JNO identifies as important for ASD.

For the ANN, we use the weight matrix learned at the input layer to
connections on an average.



Fig. 21. Subnetworks estimated to predict ADOS score by decoupling the matrix decomposition and ridge regression. Regions having negative contributions are anti-
correlated with areas having positive values.
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inform us of the subnetwork connectivity. Recall that this matrix is of
dimension M� D, where M ¼ ðP�ðP�1ÞÞ=2 ¼ 6670 for the AAL atlas.
For our application, D is of width 8000. We first take the absolute values
of these weights, and then normalize the columns of this matrix to unit
norm. We then average across the rows to obtain a single 6670 dimen-
sional edge-edge connectivity vector. Again, we use the BrainNet con-
nectivity plots to display this information in Fig. 20. We have chosen to
display the top 1 percent of the connections obtained. The solid edges
signify retained connections, while the blue spheres correspond to nodes
of the AAL regions. The colorbar to the right indicates the strength of the
connections. We observe several overlapping connectivity patterns
spread across the entire brain despite applying a stringent threshold.
Additionally, the narrow range of values indicates that the ANN assigns
Fig. 22. Comparing the sensitivity of the JNO framework with the modified objectiv
and Praxis Bottomλ2 for (L–R): ADOS, SRS and Praxis.
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nearly equal weight to all connections on an average. Similar to the PCA
baseline, this representation is unable to capture interpretable connec-
tivity patterns which explain behavior.

Finally, we examine the representation learned by performing the
matrix decomposition and prediction separately, i.e. the decoupled case.
Note that the learned basis matrix B follows the same interpretation as
that of the JNO. We display the corresponding co-activation patterns in
Fig. 21. Again, the colorbar indicates the strength of activation of the AAL
ROIs. Negative regions are anticorrelated with the positive regions. For
convenience, we have ordered the 8 subnetworks according to their
similarity with the ADOS subnetworks identified in Fig. 14. Since we use
the same matrix decompotion as the JNO, we observe several similarities
in the learned representations. We also notice subtle differences in the
e in Eq. (19). Prediction performance with varying Topλ1 for (L–R): ADOS, SRS



Fig. 23. Brainetome Parcellation: A performance comparison for ADOS pre-
diction by the JNO using the (L) Optimal Settings for Brainetome (R) Trans-
ferring AAL settings.

Fig. 24. Brainetome Parcellation: A performance comparison for SRS pre-
diction by the JNO using the (L) Optimal Settings for Brainetome (R) Trans-
ferring AAL settings.

Fig. 25. Brainetome Parcellation: A performance comparison for Praxis pre-
diction by the JNO using the (L) Optimal Settings for Brainetome (R) Trans-
ferring AAL settings.
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patterns on account of the coupling with the predictive term in the JNO.
We conjecture that these learned differences are what gives the JNO the
leverage to generalize to unseen data.

3.6. Evaluating model generalizability

We have shown both predictive power and interpretabilitiy of our
model thus far. Furthermore, characterizing model generalizability is
important for future application of our framework. Here, we first
examine the sensitivity of our prediction results with respect to themodel
hyperparameters. Then, we show robustness of our formulation to two
common obstacles in generalizabilitiy for rs-fMRI analysis, namely
choice of parcellation scheme and test-retest reliability. Lastly, we show
mitigation strategies to handle hyperparameter sensitivity that make our
framework more robust.

3.6.1. Hyperparameter sensitivity
As initially described in Section 3.4, our JNO framework is insensitive

to the regression tradeoff γ and ridge penalty λ3. We also have a natural
way to set the number of subnetworks K. However, we observe that our
JNO framework is fairly sensitive to the sparsity on B and the ridge
penalty on the coefficients cn, i.e. λ1 and λ2 respectively. Fig. 22 repre-
sents the MAE recovery performance of the algorithm for varying settings
of λ1 and λ2, holding the remaining parameter settings constant when
evaluated on the KKI dataset. The red plots in each case indicate the
performance of the JNO framework. The green plots allude to our miti-
gation strategy which we will present later in Subsection 3.6.3. The x-axis
denotes the parameter value, while the y-axis quantifies the MAE from
cross validation. Observe that the best λ1 and λ2 settings for the indi-
vidual scores are different, i.e ADOS-fλ1 ¼ 30; λ2 ¼ 0:2g, SRS-fλ1 ¼ 50;
λ2 ¼ 0:9g, and Praxis-fλ1 ¼ 20;λ2 ¼ 0:6g. Additionally, the kinks in the
plots (shown by the black arrow) also indicate that small changes in the
sparsity and coefficient regularization lead to a dramatic change in per-
formance, i.e. the operating points for these two parameters are narrow.
We suspect that the hyperparameter differences can be partially attrib-
uted to the different dynamic range of each clinical score. Specifically,
these differences impact the tradeoff between the representation learning
and prediction terms in the JNO optimization. This in turn affects the
generalization performance at a particular hyperparameter setting. These
observations further illustrate the difficulty of the problem we are trying
to address. Keeping these subtleties in mind, the next subsection focuses
exclusively on studying the generalization performance of the JNO and
the baselines at the optimal hyperparameter settings we obtained in
Section 3.4.

3.6.2. Examining test-retest performance
Based on the observations above, we design two experiments to

characterize the generalizability of the JNO with regards to its free pa-
rameters, i.e. λ1 and λ2, in a test-retest setting. The first of these experi-
ments investigates the impact of varying the rs-fMRI parcellation scheme,
which not only changes the dimensionality of the input correlation
matrices, but also changes the distribution of correlation measures. The
second experiment is a cross site comparison between KKI and NYU
where the same parcellation (i.e. AAL) is maintained. However, site
differences like acquisition protocol and pre-processing, impact the dis-
tribution of the input correlations. Overall, these two experiments vali-
date generalizabilitiy and robustness of our model, as we show good
performance under sub-optimal parameter settings.

For the first experiment, we compute correlation matrices for the KKI
rs-fMRI dataset using the Brainetome-246 atlas. Note that the Brainetome
[Fan, 2016] provides a much finer ROI resolution as compared to the
AAL-116 atlas used previously. We then predict the clinical scores from
the new correlation matrices using the AAL hyperparameter settings.
This is repeated for all the baselines along with the JNO. The plots in
Figs. 23–25 illustrate the prediction of ADOS, SRS and Praxis respectively
by the JNO. In each figure, the left plots denote the Brainetome
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performance using the hyperparameter selection outlined in Section 3.4,
while the right plots indicate the performance after transferring the
hyperparameter settings from the AAL experiments. Notice that the
performance is slightly worse than the case where they were explicitly set
by cross validation (left plots). This is expected since we have not
explicitly optimized for the new data characteristics. Table 3 provides the
corresponding quantitative metrics. We emphasize that the performance
trends are very similar to those in Section 3.4, namely, we outperform
nearly all the baselines, while retaining the interpretability of the sub-
network decomposition. Since the ROI resolution differs here, we can
treat this comparison as a surrogate for out of sample generalization.
Additionally, this experiment suggests that the JNO is agnostic to the
parcellation scheme used. We have included additional baseline com-
parisons in the supplementary results document. We believe that the joint
optimization helps us balance the tradeoff between the representation
learning and prediction terms. Said another way, the matrix factorization
term regularizes the problem and helps provide stability while handling
the changes in the input data distribution. As a result, we are able to



Table 3
KKI Dataset on Brainetome parcellation: Performance evaluation using Median Absolute Error (MAE) and Normalized Mutual Information (NMI) fit, both for
testing & training. Lower MAE & higher NMI score indicate better performance. We have highlighted the best performance in bold. The CDF-KS column indicates the
Kolmogorov-Smirnoff statistic on the CDF comparison against our method. The instances highlighted in bold indicate that the performance is within the accepted 0.05
threshold. Near misses have been underlined. The parameter settings used were the same as those for the KKI dataset from the main manuscript.

Score Method MAE Train MAE Test NMI Train NMI Test CDF-KS

ADOS PCA & ridge 1.19	 1.54 3.11	 2.99 0.30 0.22 0.061
ICA & ridge 1.48	 1.11 3.13	 3.01 0.58 0.43 0.08
DN & ridge 2.26	 1.88 2.41	2.69 0.53 0.33 0.059
Decoupled 1.44	 1.33 3.15	 2.96 0.41 0.32 0.23
JNO Framework 0.10	0.096 2.72	 2.34 0.99 0.50 �

SRS PCA & ridge 6.73 	 5.94 19.62	 14.30 0.84 0.46 0.19
ICA & ridge 8.44	 7.19 17.43	 11.17 0.80 0.55 0.02
DN & ridge 7.11	 6.24 24.43	 19.18 0.85 0.62 0.083
Decoupled 8.19	 7.95 19.16	 14.13 0.84 0.46 0.08
JNO Framework 2.11	1.19 16.03	14.58 0.91 0.72 �

Praxis PCA &ridge 6.91	 6.04 13.67	 8.36 0.79 0.51 0.063
ICA & ridge 7.96	 5.99 13.12	 9.36 0.80 0.51 0.012
DN & ridge 6.41	 5.99 13.21	 7.96 0.81 0.49 0.09
Decoupled 11.56	 11.78 17.96	 16.11 0.69 0.48 0.068
JNO Framework 0.36	0.27 11.93	9.05 0.95 0.74 �
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transfer the learned hyperparameter settings, yet outperform the base-
lines at severity prediction.

In our second experiment, we again use the hyperparameter settings
learned from the KKI dataset, but this time, predict clinical scores from
the NYU rs-fMRI correlation matrices. The parcellation scheme i.e. AAL,
is maintained for both datasets. Figs. 26 and 27 compare these pre-
dictions (right sub-plots) with those from Section 3.4 (left sub-plots) for
ADOS and SRS respectively. Table 4 delineates the quantitative com-
parisons against the baselines. Again, we observe that the JNO still
outperforms the baselines, though there is a slight reduction in quanti-
tative performance. This reduction is expected, especially given the dif-
ferences in scanning protocols across sites. As in the previous experiment,
we are able to use the transferred parameter settings, and still optimize
Fig. 26. A performance comparison for ADOS prediction on the NYU Dataset by
the JNO using the settings learned from cross validation on the (L) NYU (R)
KKI dataset.

Fig. 27. A performance comparison for SRS prediction on the NYU Dataset by
the JNO using the settings learned from cross validation on the (L) NYU (R)
KKI dataset.
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for a representation which is predictive of clinical severity. The cross
dataset comparison is a good indicator of the robustness of the JNO to its
hyperparameters. The observations from both experiments suggest that
the JNO has the potential to capture robust and interpretable phenom-
enon related to the neurological disorder of interest.

Lastly, both the test-retest experiments study the overall generaliz-
ability of the method by examining a form of out of sample prediction,
either by varying the parcellation scheme, or via a cross dataset com-
parison. This is very similar to the principles of nested cross validation,
which aims to reduce bias in parameter selection.

3.6.3. Mitigating parameter sensitivity
Finally, we propose two main modifications to tackle the observed

hyperparameter sensitivity in λ1 and λ2. Given that the dynamic ranges of
the scores are quite different and potentially impact generalization, our
first mitigation strategy is to rescale the measures to a fixed interval.
Since ADOS is the most widely accepted observational measure of clinical
autism severity, we have scaled and offset the remaining scores to have a
range of 0–30 (similar to ADOS). To mitigate the narrow ‘operating
point’, we include an extra template average correlation term in Eq. (5).
We now model the residual outer-product terms as deviations around a
mean template correlation matrix Bavg . The rationale behind this addi-
tional term is that it encourage sparsity in the basis matrix along with the
explicit ℓ1 penalty. The modified objective is as follows:

J
�
B;Bavg;C;w

� ¼ X
n

������Γn � Bavg � BdiagðcnÞBT
������2
F

þγ
����y� CTw

����2
2
þ λ1

����B����
1

þλ2
����C����2

F
þ λ3

����w����2
2

s:t: cnk � 0;

(19)

Notice that Bavg has a closed form update, which does not add much
computational overhead. The updates for the remaining variables follow
the same procedure as described in Section. 2.2, except that the term,
fΓng is replaced with fΓn �Bavgg in every update.

The green plots in Fig. 22 illustrate the cross validated performance of
the modified JNO framework from Eq. (19). The operating point fλ1; λ2g
for the modified framework is fairly consistent across the scores. More-
over, the green plots exhibit a larger stable range (highlighted in yellow)
compared to the red plots. Accordingly, we identify the settings fλ1 ¼
10� 30; λ2 ¼ 0:08–0:6g as the operating range for the modified JNO
objective, which is roughly an order of magnitude larger than the original
formulation and does not exhibit any kinks. Fig. 28 and Fig. 29 illustrate
the best generalization performance for SRS and Praxis using the two
algorithms.



Table 4
NYU Dataset: Performance evaluation usingMedian Absolute Error (MAE) andNormalizedMutual Information (NMI) fit, both for testing& training. Lower MAE&
higher NMI score indicate better performance. We have highlighted the best performance in bold. The CDF-KS column indicates the Kolmogorov-Smirnoff statistic on
the CDF comparison against our method. The instances highlighted in bold indicate that the performance is within the accepted 0.05 threshold. Near misses have been
underlined. The parameter settings used were the same as those from the KKI dataset in the main manuscript.

Score Method MAE Train MAE Test NMI Train NMI Test CDF-KS

ADOS PCA & ridge 1.51	 1.49 3.52	 3.21 0.41 0.23 0.039
ICA & ridge 2.15	 2.16 3.52	 2.91 0.17 0.11 0.07
DN & ridge 2.16	 2.39 3.91	 3.05 0.39 0.31 0.052
ANN 1.40	 1.39 3.36	 2.89 0.31 0.28 0.001
Decoupled 2.61	 2.13 3.51	 3.17 0.29 0.09 0.21
JNO Framework 0.08	0.06 2.90	2.18 0.99 0.41 �

SRS PCA & ridge 11.19	 14.16 16.25	14.11 0.89 0.52 0.16
ICA & ridge 16.98	 16.62 18.90	 15.14 0.73 0.43 0.041
DN & ridge 8.91	 6.51 23.52	 16.10 0.88 0.51 0.054
ANN 1.50	 1.39 19.04	 17.69 0.85 0.08 0.072
Decoupled 15.11	 14.36 24.19	 19.17 0.75 0.39 0.059
JNO Framework 0.59	0.47 17.91	 14.15 0.95 0.65 �

Fig. 28. A performance comparison for SRS prediction after modifying the
objective according to Eq. (18). (L) Original Method (R) After re-scaling and
average template addition.
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Notice that the modified JNO has a slight tradeoff in regression per-
formance at the expense of the gain in parameter stability. We highlight
the importance of this exploration, as future applications of our work
include applying our method to rs-fMRI and severity scores from a variety
of neurological disorders. Our modified formulation provides additional
flexibility in this sense, and extends the overall generalizability of our
model.

4. Discussion

Our JNO model cleverly exploits the structure intrinsic to rs-fMRI
correlation matrices through an outer product representation. The
regression term further guides the basis decomposition to explain the
group level and patient specific information. The compactness of our
Fig. 29. A performance comparison for Praxis prediction after modifying the
objective according to Eq. (18). (L) Original Method (R) After re-scaling and
average template addition.
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representation serves as a dimensionality reduction step that is related to
the clinical score of interest, unlike the pipelined treatment commonly
found in the literature. As seen from the results, our JNO framework
outperforms a wide range of well established baselines from the machine
learning and graph theoretic methods ubiquitous in fMRI analysis on two
separate real world datasets.

We conjecture that the baseline techniques fail to extract represen-
tative patterns from the correlation data, and learn only the group level
representation for the cohort. Consequently, they overfit the training set,
despite sweeping the parameters across several orders of magnitude. Any
patient level symptomatic and connectivity level differences are lost due
to the restrictive pipelined procedure and the group level confounds.

Our Joint Network Optimization Framework is agnostic to the choice
of parcellation scheme. This was demonstrated by our additional ex-
periments on the KKI dataset, where we chose the 246 region Brainne-
tome parcellation to extract correlation matrices (Section 3.6). We
emphasize that our framework makes minimal assumptions on the data.
Provided we have access to a valid behavioral and network similarity
measure, this analysis can be easily adapted to other neurological dis-
orders and even predictive network models outside the medical realm.
This greatly broadens the scope of the method to numerous potential
applications.

Finally, notice that the training examples (red points) in Fig. 9-13
follow the x ¼ y line nearly perfectly. Here, we explain this (potentially
misleading) phenomenon in terms of the parametrizatization of our joint
objective in Eq. (7).

Recall that Section 2.3 describes the procedure for calculating the
coefficients for an unseen patient cn from the training solution set fB�;
w�g. Recall that we explicitly set the contribution from the data term in
Eq. (5) to 0. Since the patient is not a part of the training set, the cor-
responding value of by is unknown. In contrast, the training performance
is computed based on the estimated coefficients cn, which have access to
the severity scores. Here, we examine the effect of removing the severity
information when calculating the coefficients for the training patients. In
other words, we estimate the corresponding severity y excluding the
ridge regression term. Accordingly, Fig. 30 highlights the differences in
training fit with and without this term is not included in estimating cn.
Notice that in the latter, the training accuracy has the same distribution
as the testing points in Fig. 9-13. Taken together, we conclude that, the
linear predictive term overparamterizes the search space of solutions for
cn to yield a near perfect fit. We use this observation to emphasize that
the subnetworks and regression model learned by our JNO framework
are capturing the underlying data distribution and not simply ‘over-
fitting’ the training data.



Fig. 30. Prediction Performance of the JNO for ADOS on training data when (L)
The data term is included in computing cn (R) The data term is excluded from
the computation of. cn
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5. Conclusion

We present an elegant matrix decomposition strategy to combine
neuroimaging and behavioral data information. As opposed to generic
prediction frameworks, our model directly captures key representative
information from the correlation matrices. In contrast, conventional
analysis methods dramatically fall short of unifying the two data view-
points reliably enough to implicate predictive functional patterns in the
brain. Our joint optimization framework robustly identifies brain net-
works characterizing ASD and provides a key link to quantifying and
interpreting the clinical spectrum of manifestation of the disorder across
patients. Moreover, our evaluation on two separate real world dataset
supports the reproducibility of the framework.

We are working on a multi-score extension which can incorporate
data from different behavioral domians. In the future, we will explore
19
extensions of this model that learn a patient versus controls distinction in
addition to predicting symptom severity. A potential extension of this
model includes replacing the linear regression term in Eq. (5) with its
non-linear counterpart, thus providing us with the flexibility to model
more complex decision functions which can better map the behavioral
space.

Another avenue for refinement is to incorporate structural connec-
tivity information in the form of anatomical priors. Typically, structural
modalities such as Diffusion Tensor Imaging (DTI) are used to define and
track existing anatomical pathways in the brain. Incorporating this in-
formation into the network optimization model could be an important
step towards unifying anatomical, functional and behavioural domains to
better understand altered brain functioning in the context of neurological
disorders such as Autism, ADHD, and Schizophrenia.

Our experiment on the KKI dataset using the Brainetome parcellation
supports the observation that the method can be tuned with different
connectivity and behavioral information, which is an added flexibility.
Thus, it could be used to characterize the efficacy of behavioral therapies
for neuropsychiatric disorders, as well as, for the development of patient-
specific disease biomarkers. We believe that the all of benefits offered by
our JNO framework could make it an important diagnostic tool for
personalized medicine in the future.
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Appendix A

In this section, we derive the alternating minimization updates from Section 2.2:
Optimizing B via Proximal Gradient Descent. We first write out the optimization problem with respect to B when the estimates of fC;wg are held

constant:

Bkþ1 ¼ arg min
B
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X
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We see that the proximal gradient iteration is the solution to the following fixed point problem:
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The derivative of G with respect to B, is computed as:
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Given the fixed learning rate parameter t, the proximal update for B is easily computed as:
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Bkþ1 ¼ sgnðXÞ ∘ ðmaxðjXj � t; 0ÞÞ
X¼Bk � ðt = λ1Þ ∂G∂B
This step first estimates a locally smooth quadratic model at each iterate Bk and applies a step of iterative shrinkage thresholding to the compute the

local solution of B. The resulting iterative algorithm is computationally efficient compared to the counterpart sub-gradient based descent methods and
arrives at a good local solution for an appropriate choice of the learning rate.

Optimizing C using Quadratic Programming. The objective is quadratic in C when B, and w are held constant. Furthermore, the diagðcnÞ term
decouples the updates for cn across patients. Each cn is the solution to the a separate optimization problem of the following form:
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Hence, we use N quadratic programs (QP) of the form below to solve for the vectors fcng :

1
2
cTnHncn þ fTn cn s:t: Ancn � bn

The QP parameters for our problem are given by:

Hn ¼ I K ∘ ðBTBÞ þ 2γwwT þ 2λ2I K

fn ¼ �2
�
I K ∘

�
DT

n þ ΛT
n

�
B
�
1� 2γynw;

An ¼ �I K bn ¼ 0

The non-negativity constraint requires us to project the quadratic programming solution to the space of positive reals in K dimensions for each cn
through An and bn. Since the Hessians fHng for our problem are positive definite, there exist polynomial time algorithms for solving the bound con-
strained QPs to the global optimum value. The decoupling of the fcng allows us to solve for each coefficient vector in parallel.

Closed Form Update for w. The global minimizer of w is computed at the first order stationary point of the convex objective, which is:

J ðwÞ¼ λ3
����w����2

2
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����CTw� y
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∂J
∂w ¼ 0¼ 2λ3wþ 2γðCCTw�CyÞ

The closed form update can be expressed as:

w¼
	
CCT þ λ3

γ
I K


�1
ðCyÞ

Thus, the ratio λ3
γ acts as a regularizer for the matrix inversion in our estimate, ensuring that the update for w is well defined at each iterate.

Optimizing the Constraint VariablesDn andΛn. A closed form solution for the primal variables fDng can be obtained by setting their first derivatives
to zero:

∂J
∂Dn

¼ 0 ¼ diagðcnÞBT þ 2ΓnB

�Λn � Dn � 2DnBTB

Dn ¼ ðdiagðcnÞBT þ 2ΓnB� ΛnÞðI K þ 2BTBÞ�1

The gradient ascent update on fΛng is as follows:

∂J
∂Λn

¼ Dn � BdiagðcnÞ

Λkþ1
n ¼ Λk

n þ ηk
∂J
∂Λn

Similar to the case of the coefficients cn, each of the N pairs of updates fDn;Λng are decoupled from each other, and can be solved in parallel. Overall,
the sets of Λn gradient ascent updates ensure that the respective set of constraints Dn ¼ BdiagðcnÞ is satisfied with increasing certainty at each iteration.

The Augmented Lagrangian construct
������Dn � BdiagðcnÞ

������2
F
prevents trivial Lagrangian Λn solutions.
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