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A Spatio-Temporal Model of Seizure Propagation in
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Abstract—We propose a novel Coupled Hidden Markov Model
(CHMM) to detect and localize epileptic seizures in clinical
multichannel scalp electroencephalography (EEG) recordings.
Our model captures the spatio-temporal spread of a seizure by
assigning a sequence of latent states (i.e. baseline or seizure) to
each EEG channel. The state evolution is coupled between neigh-
boring and contralateral channels to mimic clinically observed
spreading patterns. Since the latent state space is exponential, a
structured variational algorithm is developed for approximate
inference. The model is evaluated on simulated and clinical
EEG from two different hospitals. One dataset contains seizure
recordings of adult focal epilepsy patients at the Johns Hopkins
Hospital; the other contains publicly available non-specified
seizure recordings from pediatric patients at Boston Children’s
Hospital. Our CHMM model outperforms standard machine
learning techniques in the focal dataset and achieves comparable
performance to the best baseline method in the pediatric dataset.
We also demonstrate the ability to track seizures, which is
valuable information to localize focal onset zones.

Index Terms—Seizure detection, focal epilepsy, coupled hidden
Markov models, variational inference, electroencephalography

I. INTRODUCTION

EPILEPSY is a heterogeneous neurological disorder char-
acterized by recurrent and unprovoked seizures [1].

Epilepsy affects between 1–3% of the world’s population,
making it one of the most prevalent neurological disorders.
While epilepsy can often be controlled with medication, it is
estimated that 20–40% of patients are medically refractory
and do not respond to anti-epileptic drugs [2]. Alternative
therapies for these patients rely on our ability to detect and
localize epileptic seizures in the the brain. Epileptic seizures
can be be broadly characterized as either focal or general-
ized. Generalized seizures manifest simultaneously across the
cortex. Conversely, focal seizures originate in a specific onset
zone, but may subsequently spread to neighboring regions of
the brain until potentially the entire cortex is involved [3]. In
medically refractory focal epilepsy, resection of the onset zone
may be the only treatment available to completely eliminate
seizures.
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Scalp EEG can provide information about whether the
seizures are focal or generalized. In the case of focal seizures,
it can be used to coarsely localize the onset zone. Scalp EEG is
a natural complement to other noninvasive imaging modalities,
such as PET [4] and MRI [5], which can be used to refine
the localization. These modalities have the advantage of a
higher spatial resolution, but they are more costly to acquire.
After multimodal localization is performed using EEG and
other noninvasive imaging, the extent of the onset zone may
be identified using more invasive techniques, such as electro-
corticography (ECoG), just prior to surgical resection. EEG
studies play a critical role in this process, affording clinicians
a noninvasive and cost efficient means of establishing early
information necessary for treatment planning.

Scalp EEG recordings are typically acquired over the course
of several days after any medication is withdrawn. Continuous
EEG monitoring is performed over several days until an
adequate number of seizures are recorded. Visual inspection of
the EEG recordings remains the standard procedure for seizure
detection. This process is time intensive, requires extensive
training, and has the potential to miss important events.

A. Prior Work on Epileptic Seizure Detection

Automated seizure detection in clinical EEG recordings has
been under investigation since the early 1980s [6]. Interested
readers can find a survey of a variety of techniques in [7]
and [8]. Broadly, most seizure detection algorithms follow a
standard machine learning pipeline. First the EEG signals are
divided into windowed epochs, from which a set of features
are extracted. Next, a classifier is trained on these features to
declare each epoch as seizure or baseline [9]. This approach is
exemplified by the work of [10], where the power in different
spectral bands are used in conjunction with a Support Vector
Machine (SVM) on two-second epochs of EEG data. Seizure
detectors are trained in one of two manners: patient-specific
or patient-agnostic, the latter of which can be used for a broad
patient cohort. Intuitively, patient-specific seizure detectors
tend to outperform patient-agnostic ones. However, they rely
on having many good quality seizure recordings per patient,
which is not always possible in a clinical setting. In contrast,
patient-agnostic detectors are easier to train but tend to suffer
in heterogeneous cohorts.

Much of the research in seizure detection has focused on
identifying features that capture the specific morphologies of
ictal, or seizure related, EEG. However, this task is compli-
cated by the presence of artifacts in the EEG signal, which are
often of greater magnitude than the true neural measurements.
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In addition, many ictal morphologies closely resemble normal
EEG patterns. For example, the rhythmic sinusoidal waves that
can indicate the onset of a seizure share similarities with the
posterior dominant rhythm present in normal EEG [11].

Given the above challenges, prior work in EEG feature ex-
traction has studied a diverse range of signal properties. These
strategies fall broadly into time domain and time-frequency
domain approaches. Time domain methods extract signal
statistics, such as power, skewness, kurtosis, and maximum
amplitude, from the raw EEG signal as further described in
[12]. Techniques from non-linear signal processing and chaos
theory are an important sub-class of time domain features and
have also received significant attention in the seizure detection
literature. For example, the work of Andrzejak et al. identified
differences in the non-linear dynamics of EEG signals in
ictal versus non-ictal periods [13]. Other examples include
the application of Lyapunov exponents [14] and approximate
entropy [15], which measure the complexity in the evolution
of non-linear dynamical systems.

Time-frequency decompositions have become increasingly
popular in the seizure detection literature. From a biological
standpoint, brain waves are believed to fall within functionally
specialized frequency bands: theta (1–4 Hz), delta (4–8 Hz),
alpha (8-13 Hz), beta (13–30 Hz), and gamma (≥ 30 Hz)
bands. By construction, time-frequency decompositions can
isolate activity in these different frequency bands that may
be relevant to the seizure onset. For example, the work of
[16] used the relative power in these brain wave bands across
EEG channels to perform patient-specific seizure detection.
In contrast, [10] took a more data-driven approach by using
evenly spaced band-pass filters to compute relative power
across the frequency spectrum. The power in each sub-band
is then fed into an SVM for seizure vs. non-seizure classifi-
cation. Similarly, in [17] the Fourier transform was applied to
calculate the power in the 2.5–12 Hz range, achieving accurate
seizure detection in a patient specific-context.

Recently, wavelet based methods, such as the Discrete
Wavelet Transform (DWT) and wavelet packet decomposi-
tions, have gained in popularity due to the dyadic band-
pass nature of the sub-band decomposition. Depending on the
sampling rate, these sub-bands may naturally align with the
clinically relevant brain wave bands. For example, the works
of [18] and [19] extract simple features, such as amplitude,
energy, and coefficient of variation from each wavelet sub-
band for use in seizure classification.

To better leverage their advantages, features from the time
domain and time-frequency domain are often combined to pro-
duce better detection performance. For example, the work of
[20] compares the individual performance of 65 time-domain
and frequency-domain features; it identifies line-length and
relative energy in the 12.5–25 Hz as the most robust features.
Likewise, fractal dimension and energy in each band of the
wavelet packet decomposition were combined for patient-
specific classification in [21]. A similar approach was used in
[12] where time domain features are combined with Fourier
domain features and by [22], who added wavelet features to
the mix. Finally, the works of [23], [24], [25] extract nonlinear
signal characteristics following the wavelet decomposition.

X0 X1 X2 X3 X4

Y 0 Y 1 Y 2 Y 3 Y 4

Time

Fig. 1. Graphical model depicting an HMM. Observed variables, Y t, are
shown shaded. Hidden variables, Xt, are unshaded.

Almost as broad as the signal processing techniques applied
to the feature selection process are the classifiers used to detect
seizure versus non-seizure activity. The SVM has enjoyed wide
popularity in the seizure detection literature, especially for
patient-specific classification [16], [26]. Random forest (RF)
classifiers have also enjoyed success [12], [27]. Other classi-
fiers employed in the literature include k-nearest neighbors
[27], relevance vector machines, and adaptive thresholding
[17]. Recent investigation has applied deep learning to seizure
detection. In [27] multi-layer perceptrons were compared to an
array of other classifiers, achieving comparable performance.

B. HMM Background

A complementary approach to frame-wise feature extraction
is to model the temporal evolution of the EEG signal. The
Hidden Markov Model (HMM) is a popular sequence model
used often in time series applications, where an evolving latent
state governs the emission of observed variables. HMMs are
popular in speech, natural language processing, bioinformatics,
and genomics applications [28], [29].

A graphical model depicting the HMM is shown in Fig. 1.
The model consists of observed nodes Y t and hidden nodes
Xt for times t = 0, . . . T . Nodes Xt form a Markov chain
of discrete states. At every timestep, an observed emission
Y t is generated from an emission likelihood P (Y t | Xt), i.e.
Y t is conditionally independent of all other variables in the
model given the latent state of the Markov chain at t. Given
a distribution over the initial state X0, the joint probability
distribution of ensemble variables X and Y factorizes as:

P (X,Y) =

P (Y 0 | X0)P (X0)
T∏
t=1

P (Y t | Xt)P (Xt | Xt−1).

The conditional distribution P (Xt | Xt−1) governing transi-
tions between latent states is often expressed by a stochastic
transition matrix A, where P (Xt = j | Xt−1 = i) = ai,j .

The forward-backward algorithm [28], [29] is used for exact
marginal inference in the HMM. At a high level, this algorithm
uses dynamic programming to propagate information back
and forth along the HMM chain using forward and backward
message passing. More details about this procedure can be
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Fig. 2. Graphical model depicting a CHMM. Observed variables, Y t
i , are

shown shaded. Hidden variables, Xt
i , are unshaded.

found in [28], [29]. The forward messages αti(k) and backward
messages βti (k) are computed via the following recursions:

αt(i) := P (Y 0, Y 1, . . . , Y t, Xt = i)

=
∑
j

P (Y t | Xt = i)aj,iα
t−1(j)

βt(i) := P (Y t+1, Y t+2, . . . , Y T | Xt = i)

=
∑
j

βt+1(j)P (Y t+1 | Xt+1)ai,j .

The data likelihood can be easily calculated by noting that
P (Y 0, Y 1, . . . , Y t) =

∑
j α

t(j). The singleton and pairwise
marginals, γt(i) and ξt(i, j) respectively, are obtained by
normalizing the following expressions:

γt(i) = P (Xt = i | Y) ∝ αt(i)βt(i)

ξt(i, j) = P (Xt = i,Xt+1 = j | Y)

∝ αt(k)ai,jP (Y t+1 | Xt+1 = j)βt+1(j).

C. Bayesian Models for EEG Analysis

Extensions to the HMM have been applied to several prob-
lems in EEG analysis. For example, the work of [30] develops
an Autoregressive HMM (AR-HMM) to model the changing
correlation structure in raw EEG data as an unsupervised way
to discover different dynamical regimes in the EEG signal.
However, no labels were used in training the model, so expert
labeling was required to apply the learned states to related
problems. For example, to apply the outcome of this model to
seizure prediction in canine EEG, the pre-seizure states had to
be manually identified from the AR-HMM output.

The Coupled Hidden Markov Model (CHMM) extends the
original HMM formulation to include multiple latent chains.
Within the context of EEG, each latent chain corresponds
to a single EEG electrode. Coupling is defined such that
each latent chain may be affected by and may influence the
states of other chains. CHMMs made their debut in modeling
audio-visual relationships [31]. In another domain, the work
of [32] proposed a CHMM to model the spread of infectious
disease by defining a coupling structure based on the physical
proximity of individual people.

Small two channel CHMMs have been used in behavioral
EEG experiments [33]. In addition, the work of [34] developed

FP1 FP2

F7

F3 F4 F4

F8

T7 C3 Cz C4 T8

P7

P3 Pz P4

F8

O1 O1

(a)

FP1
- F7 FP1

- F3
FP2
- F4

FP2
- F8

F7 -
T7 F3 -

C3
Fz -
Cz

F4 -
C4

F8 -
T8

T7
- P7

C3
- P3

Cz
- Pz

F4 -
C4 F8 -

T8

P7 -
O1

P3 -
O1

F4 -
C4 F8 -

T8

(b)
Fig. 3. Electrode placement in the 10/20 international system [35] with
seizure propagation pathways shown in blue. The edges in the graph indicate
conditional independences in between nodes in consecutive timesteps of our
model. (a) Graph defined on the common average montage. (b) Graph defined
for the longitudinal montage.

a distance coupled HMM to model EEG signals in both al-
coholics and their healthy peers. Classification was performed
between groups by assigning a test sequence to the model class
under which its likelihood was maximum. While capable of
discerning patients from controls, these models were designed
to classify entire EEG sequences and not to label pathological
activity within a single recording. In addition, these works
simplify the analysis to just two EEG channels, for which exact
inference using the forward-backward algorithm is tractable.
However, the methodology outlined in [34] does not generalize
to more dense recordings.

D. Our Contribution

In this work we present a high-dimensional multichannel
CHMM for seizure detection from scalp EEG. Our CHMM
fuses information from the individual EEG channels via a
spatio-temporal model of seizure spreading. The CHMM
model is evaluated on two clinical datasets to demonstrate
its superior performance over standard approaches. A pre-
liminary version of this work was introduced in [36]. This
version provides a more complete description of inference and
learning with further algorithmic refinements which improve
performance. Additional real-world and simulated experiments
are provided as well.

The latent chains in our CHMM correspond to the standard
electrode placement locations and represent the key areas of
interest on the scalp. Interactions between EEG channels are
coupled such that as channels enter the seizure state, their
neighboring and contralateral electrodes are more likely to also
enter a seizure state. Due to the high dimensional state space,
exact inference in this model is intractable. Thus a structured
mean field variational inference algorithm is developed to
compute the latent posterior distributions of seizure activity
and infer the seizure spreading characteristics.

We evaluate the performance of our model on simulated data
and on two clinical EEG datasets from inpatient monitoring.
The first testbed consists of 15 focal epilepsy patients from
the Johns Hopkins Hospital. The second is drawn from the
publicly available Children’s Hospital of Boston (CHB) dataset
[10], which contains pediatric patients with both focal and
general epilepsy. Spectral power and line length are utilized
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Fig. 4. Hypothetical spreading of a focal seizure. (a) A seizure originates in a single channel. (b) The seizure propagates to neighboring EEG channels. (c)
Further spreading progresses to involve more EEG channels. (d) The left hemisphere is involved. (e) The seizure becomes generalized to the entire scalp.

as observed features in our CHMM. These features are simple
yet robust variants of popular features in the seizure detection
literature, which we have observed to perform well.

The generative framework is discussed in Section II. Sec-
tion III contains an overview of the variational inference
and Expectation-Maximization (EM) procedure for fitting the
model to data. Sections IV and V present our results using
simulated and real-world EEG data, respectively. In Section
VI the implications of our results are discussed and future
directions for our model are suggested. Section VII reviews
the findings of our experimentation and concludes the paper.

II. GENERATIVE MODEL OF SEIZURE PROPAGATION

This section details the generative process governing our
CHMM based seizure detection algorithm. Fig. 2 illustrates
the graphical model for a generic three chain CHMM. Here,
observed emissions Y ti for chain i at time t remain condition-
ally independent given latent states Xt

i . The transition prior
factorizes such that P (Xt | Xt−1) =

∏N
i=1 P (Xt

i | Xt−1)
where N denotes the number of chains. Accompanying these
latent states are observed emission variables Yi which are
conditionally independent given the latent variables.

Unlike past work, we design a transition prior P (Xt |
Xt−1) capable of tracking the spread of seizures in focal
epilepsy. In this prior, each electrode channel is represented by
a chain of latent states Xi where i indexes the EEG electrode.
These states represent the current seizure vs. baseline label of
the signal at each electrode. The observations Yi represent the
features calculated from channel i of the EEG data.

Mathematically, our transition prior includes a contribution
from all other chains via the above factorization. The observed
emissions Y ti for chain i at time t remain conditionally
independent given the latent states Xt

i . In the rest of this paper,
Xt
i and Y ti will denote latent and observed random variables,

respectively, for a single chain i at timestep t. Variable ensem-
bles are bolded, with the corresponding subscript or superscript
dropped. Thus Xi = {X0

i , X
1
i , . . . , X

T
i } refers to the ensem-

ble of latent states from chain i, Xt = {Xt
1, X

t
2, . . . , X

t
N}

refers to the latent states for all chains at time t, and X
refers to all latent variables. Similarly, the subscript −i, as
in X−i, will indicate a collection of random variables taken
over all chains excluding those of chain i. For convenience,
Table I defines symbols for random variables and non-random
parameters used in our model.

A. Transition Prior

At the heart of our model is a graph which encodes the
clinically informed spreading of a focal seizure. Connections
between the latent chains of the CHMM, as illustrated in Fig.
2, are constructed according to this propagation graph. This
graph is defined in the sensor space, using the common average
and bipolar montage from the 10/20 international system [35].
The bipolar montage is popular with neurologists for tracking
phase changes in the raw EEG signal. For both the common
reference signals and the longitudinal bipolar montage, we
define a network S of seizure propagation by connecting
neighboring and contralateral EEG channels. These graphs are
shown in Fig. 3. Neighboring connections capture local seizure
spreading between adjacent EEG channels. Contralateral con-
nections account for seizure activity that appears to manifest
simultaneously on each hemisphere. An example of the seizure
spreading our model encodes is shown in Fig. 4.

For notational convenience, let au(i) be the set of aunt
indices of a node i as the neighbors in the graph S, i.e.
au(i) = {j | j ∈ neS(i)}. Our transition prior now simplifies
to

P (Xt
i | Xt−1) = P

(
Xt
i | Xt−1

i ,Xt−1
au(i)

)
. (1)

As seen in (1), transitions in channel i depend only on the
previous state of the chain and the previous states of chains
au(i). This notation is used to avoid potential ambiguities
between the terms “neighbors” and “parents” in the directed
and undirected graphical modeling literature. Furthermore, it
allows us to distinguish between the previous state in chain i,
Xt−1
i , and the previous states of the neighboring electrodes,

Xt−1
au(i)

:= {Xt−1
j }j∈au(i), more compactly.

A three state left-to-right time imhomogenous transition
matrix is used to encode the probability of transitions between
latent states. States 0 and 2 represent pre- and post-seizure
baseline while state 1 represents a seizure as shown below.

Ati =

 1− gti gti 0
0 1− hti hti
0 0 1

 (2)

log

(
gti

1− gti

)
= ρ0 + ρ1η

t
i

log

(
hti

1− hti

)
= φ0 + φ1η

t
i

(3)
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TABLE I
RANDOM VARIABLES (TOP) AND NON-RANDOM PARAMETERS (BOTTOM) IN OUR GRAPHICAL MODEL SHOWN IN FIGS. 2 AND 3

Xt
i Latent state in chain i at time t

Y t
i Observed variables for chain i at time t
ηti Sum of the aunt nodes for channel i at time t
At

i Transition matrix for chain i at time t
gti Probability of seizure onset in chain i at time t
hti Probability of seizure offset in chain i at time t

S Connectivity graph between electrode channels
ρ0 Seizure onset parameter
ρ1 Seizure onset spread parameter
φ0 Seizure offset parameter
φ1 Seizure offset spread parameter
πk
im Emission mixture weight for mixture m for chain i for state Xt

i = k

µkim Emission mean for mixture m for chain i for state Xt
i = k

Σk
im Emission covariance for mixture m for chain i for state Xt

i = k

State 2 is the final state and, once entered, the chain remains
there for the duration of the recording. The transition prob-
abilities in (2) are computed via the logistic functions in (3)
based on the the neighboring state assignments. Here, let ηti
be defined as the number of aunt nodes in the seizure state
in the previous timestep, i.e. ηti :=

∑
j∈au(i) 1(Xt−1

j = 1).
The parameters ρ0 and ρ1 represent the base parameter and
aunt influence, respectively, for transitions from pre-seizure
to seizure. Namely, at any timestep, there is a small base
probability that a channel that has not transitioned into a
seizure state may enter one. We expect to learn a positive
value for ρ1 indicating more aunts in a seizure state will
encourage a transition into seizure. Similarly, φ0 and φ1
represent corresponding parameters for the transition out of
the seizure state into the post-seizure baseline.

B. Emission Likelihood
Emission likelihoods P (Y ti | Xt

i ) are modeled using Gaus-
sian Mixture Models (GMMs). Let M be the number of
mixtures. The parameter πkij is the weight of mixture m in
chain i when Xt

i = k. Likewise, µkim and Σkim are the mean
and covariance, respectively, for mixture m and chain i when
Xt
i = k, i.e.,

P (Y ti | Xt
i = k) =

M∑
m=1

πkimN
(
Y ti ;µkim,Σ

k
im

)
. (4)

As seen, the likelihood of the emission variable Y ti is the
weighted sum of Gaussian densities with weights πkim. For
simplicity, we tie the parameters for the pre- and post-seizure
baseline states, i.e. π0

im = π2
im, µ0

im = µ2
im, and Σ0

im = Σ2
im.

III. INFERENCE AND LEARNING

The joint distribution of our CHMM can be written as

P (X,Y) =
N∏
i=1

P (Y 0
i | X0

i )P (X0
i )

·
T∏
t=1

P (Y ti | Xt
i )P (Xt

i | Xt−1
i ,Xt−1

au(i)).

Notice that our transition prior allows all possible latent con-
figurations, which amounts to 319 states under the 19 channel
10/20 system. Due to the high dimensionality of this latent
space, exact inference is intractable. However, the structure of
our model lends itself well to approximation by variational
inference. We develop a structured mean field algorithm that
approximates the latent posterior probability P (X | Y) using
separate independent HMM chains for each channel.

A variational EM algorithm [37] is used to fit our model
to the observed data. This algorithm alternates between an
Expectation (E) step that computes current posterior beliefs
of the latent seizure states given fixed values of the likelihood
and transition parameters. The Maximization (M) step updates
the model parameters according to these beliefs. The E- and
M-steps are iterated until convergence, to obtain both the
model parameters and the marginal posterior beliefs. The
following subsections outline the E-step, M-step, initialization,
and training of the model.

A. E-step: Variational Inference

Structured mean field variational inference is performed
by defining an analytically tractable family of approximating
distributions Q and minimizing an upper bound on the data
negative log-likelihood, known as the variational free energy:

FE := −EQ [logP (X,Y)] + EQ [logQ(X)] ≥ − logP (Y).
(5)

The bound in (5) is derived via Jensen’s inequality. Notice that
the distribution Q that minimizes the free energy also mini-
mizes the KL divergence between the approximating distribu-
tion and the true posterior distribution, i.e., D(Q(X) ‖ P (X |
Y)). Said another way, this variational inference process finds
the closest distribution Q ∈ Q to the posterior P (X | Y) in
an information theoretic sense.

Let the family of approximating distributions Q for the
CHMM be the product of N independent HMM chains across
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the dynamic latent states Xi for each of the N EEG channels:

Q(X) =
N∏
i=1

1

ZQi

Qi(Xi)

=
N∏
i=1

1

ZQi

T∏
t=1

ψti(X
t
i , X

t−1
i )ωti(X

t
i ).

(6)

The distribution of each chain in (6) is defined by singleton
factors ωti(X

t
i ) and pairwise factors ψti(X

t
i , X

t−1
i ). Substi-

tuting this approximating distribution into (5) allows us to
decompose FE into terms dependent on chain i and those
dependent on all the other chains, denoted −i.

FE =− EQi

[
EQ−i

[log p(Xi,Yi | X−i,Y−i)]
]

+ EQi
[logQi(Xi)]

− EQ−i
[log p(X−i,Y−i)] + EQ−i

[logQ−i(X−i)]

=− EQi

[
EQ−i

[
log p(Xi,Yi | Xau(i)

)]
+ EQi

[logQi(Xi)] + constant
(7)

In this substitution, we have used the factorization p(X,Y) =
p(X−i,Y−i) p(Xi,Yi | Xau(i)) to isolate terms pertaining
to chain i as in the last two lines of (7). Notice that this
factorization leads to a natural coordinate descent algorithm.
Namely, by holding chains −i constant and minimizing the
free energy with respect to chain i, the upper bound on the
negative log-likelihood can be iteratively refined. Since FE
is bounded from below (i.e., it cannot diverge to −∞), this
coordinate descent procedure is guaranteed to converge to a
local optima of the free-energy objective.

arg min
Qi

FE = arg min
Qi

−EQi

[
EQ−i

[
log p(Xi,Yi | Xau(i)

)]
+ EQi

[logQi(Xi)] + constant

= arg min
Qi

−EQi

[
EQ−i

[
log p(Xi,Yi | Xau(i)

)]
+ EQi [logQi(Xi)]

= arg min
Qi

D(Q(X) ‖ p(Xi | Xau(i),Y))

(8)
Hence, we perform inference, i.e. optimize Qi(Xi), over the
individual chains in a coordinate descent procedure until FE
converges. From the last line in (8), note that at optimality, the
approximating distribution Qi is related to the expected value
of the aunt chains as follows:

Qi ∝ exp
{
EQau(i)

[
log p(Xi,Yi | Xau(i))

]}
. (9)

Effectively, the approximating distribution Qi incorporates in-
formation from neighboring chains via the p(Xi,Yi | Xau(i))
terms in (9). Notice that the exponent of (9) factors into
p(Xi,Yi | Xau(i)) = p(Xi | Xau(i)) p(Yi | Xi). These two
factors can be matched to the pairwise and singleton terms,
respectively, of the approximating distribution Qi(Xi) in (6).
In addition, we approximate the contribution of future Xt+1

j

for chains j ∈ au(i) via a linearized approximation that we
incorporate into the singleton terms of (6). This approximation
is further described in Section III-A2.

The expectations in (7) are computed by iteratively applying
the forward-backward algorithm to a single chain, while

fixing the approximate posterior probabilities of the remaining
chains. Let the singleton and pairwise marginals in the approx-
imating distribution for chain i at time t be defined as γ̃ti (j) :=
EQi

[1(Xt
i = j)] and ξ̃ti(j, k) := EQi

[
1(Xt

i = j,Xt+1
i = k)

]
where 1(·) is the indicator function.

1) Pairwise factors: The pairwise factors of the approx-
imating distribution ψti(X

t
i , X

t−1
i ) mimic the transition pa-

rameters of the original distribution, i.e. FE is minimized via
a left-to-right time imhomogenous structure

Ãti =

 1− g̃ti g̃ti 0

0 1− h̃ti h̃ti
0 0 1


where ψti(X

t
i = k,Xt−1

i = j) = (Ãti)jk, where (·)jk
corresponds to the entry in row j and column k of the matrix
argument. From (9) the pairwise term becomes

ψti(X
t
i , X

t−1
i ) ∝ exp

{
EQau(i)

[
p(Xt

i | Xt−1
i ,Xt−1

au(i))
]}
(10)

Substituting in the parameters of our distribution, this re-
lationship implies that the onset probability satisfies g̃ti ∝
exp{EQau(i)

log gti} with (1−g̃ti) ∝ exp{EQau(i)
log(1−gti)}.

A similar relationship is true for the variational offset param-
eter h̃ti. Dividing these terms and taking the logarithm, the
variational transition terms are given by the expected value of
the logits in the original transition prior.

log

(
g̃ti

1− g̃ti

)
= ρ0 + ρ1EQau(i)

[
ηti
]

log

(
h̃ti

1− h̃ti

)
= φ0 + φ1EQau(i)

[
ηti
]

EQau(i)

[
ηti
]

=
∑

j∈au(i)

γ̃t−1j

These equations bare a strong resemblance to the original
transition terms presented in (2) and (3) and incorporate cross-
channel information via the EQau(i)

[ηti ] terms.

2) Singleton Factors: The singleton factors in our approx-
imating distribution ωti(X

t
i ) mimic the emission likelihood.

However, these terms also absorb information from the aunt
chains in the subsequent timestep. This information is captured
by the multiplicative factor exp{αti(z)}. We use a linearized
approximation of this term, shown in (13), to easily fold it
into the singleton factors. Namely the expectation in these
equations is easily computed as the sum of the aunt’s marginals
in the previous timestep νt+1

i =
∑
j∈au(i) γ̃

t
j :

ωti(X
t
i = 0, 2) = P (Y ti | Xt

i = 0, 2) exp
{
αti(0)

}
(11)

ωti(X
t
i = 1) = P (Y ti | Xt

i = 1) exp
{
αti(1)

}
(12)

αti(z) ≈
∑

j∈au(i)

[
ξ̃tj(0, 0)

(
−ρ0 − ρ1

(
νt+1
j + z

))
− γ̃tj(0) log

(
1 + e−ρ0−ρ1(ν

t+1
j +z)

)
+ ξ̃tj(1, 1)

(
−φ0 − φ1

(
νt+1
j + z

))
− γ̃tj(1) log

(
1 + e−φ0−φ1(νt+1

j +z)
)]
.

(13)
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For simplicity, the αti(·) terms were omitted in the preliminary
conference version of this work. However, their inclusion in
this paper improves both the approximation quality and the
detection performance on real-world EEG data.

B. M-Step: Update Model Parameters

In the M-step, the parameters of the generating distributions
are updated using the marginals computed in the E-step.

1) Emission Parameters: Updating each GMM emission
likelihood requires a nested EM update. The inner E-step in
(14) computes the expected latent state and mixture combina-
tion for every emission.

τ̃ ti,j(k) := EQi

[
Xt
i = k, Y ti drawn from mixture j

]
(14)

The inner M-step in (15)–(20) updates the parameters of the
GMM via standard mean and variance updates [28].

µ0,2
ij =

∑
k∈{0,2}

∑T
t=0 τ̃

t
i,j(k)Y ti∑

k∈{0,2}
∑T
t=0 τ

t
i,j(k)

(15)

µ1
ij =

∑T
t=0 τ̃

t
i,j(k)Y ti∑T

t=0 τ̃
t
i,j(k)

(16)

Σ0,2
ij =

∑
k∈{0,2}

∑T
t=0 τ̃

t
i,j(k)

(
Y ti − µkij

)2∑
k∈{0,2}

∑T
t=0 τ̃

t
i,j(k)

(17)

Σ1
ij =

∑T
t=0 τ̃

t
i,j(k)

(
Y ti − µkij

)2∑T
t=0 τ̃

t
i,j(k)

(18)

π0
ij = π2

ij =

∑T
t=0 τ̃

t
ij(0) + τ̃ tij(2)∑

j′
∑T
t=0 τ̃

t
ij′(0) + τ̃ tij′(2)

(19)

π1
ij =

∑T
t=0 τ̃

t
ij(1)∑

j′
∑T
t=0 τ̃

t
ij′(1)

(20)

The nested E-step and nested M-step are repeated until the
algorithm converges. This iterative procedure is initialized
using the previous settings for the emission likelihoods.

2) Transition Parameters: The transition parameters form
a logistic regression onto the expected transition posteriors
ξ̃ti(j, k). Here we provide the update equations for the onset
parameters ρ0 and ρ1. Equations for offset parameters φ0 and
φ1 are almost identical and are omitted for space. Newton’s
method is used to minimize the FE . Let ∇ρFEk and ∇2

ρFEk
be the gradient and Hessian of the free energy with respect to
the vector of onset parameters ρ = (ρ0, ρ1). A single iteration
of the Newton’s method algorithm is

pk = −
(
∇2
ρFEk

)−1∇ρFEk ρk+1 = ρk + αkpk

where the subscript k indicates the iteration number and αk
is the step size. Newton’s method is prone to oscillation
in logistic regression in some cases. Therefore we employ
backtracking to ensure our updates remain within a stable
region around the minimum. Specifically, we require our step
size to fulfill the second strong Wolfe condition |∇f(ρk +
αkpk)T pk| ≤ |∇f(ρk)T pk| [38]. This ensures that each step
approaches a stationary point. Defining the logistic sigmoid

function as σ(x) := 1
1+e−x , the first and second derivatives

making up the gradient and Hessian are shown below.

∂

∂ρ0
EQ [logP (X)] =

T∑
t=1

N∑
i=1

(
ξ̃ti(0, 1)

− γ̃ti (0)EQau(i)

[
σ(ρ0 + ρ1η

t
i)
])
− 2λρ0

∂

∂ρ1
EQ [logP (X)] =

T∑
t=1

N∑
i=1

ξ̃ti(0, 1)

(
EQau(i)

[
ηti
]

− γ̃ti (0)EQau(i)

[
ηtiσ(ρ0 + ρ1η

t
i)
])
− 2λρ1

∂2

∂ρ20
EQ [logP (X)] =

T∑
t=1

N∑
i=1

−γ̃ti (0)

· EQau(i)

[
σ(ρ0 + ρ1η

t
i)
(
1− σ(ρ0 + ρ1η

t
i)
) ]
− 2λ

∂2

∂ρ21
EQ [logP (X)] =

T∑
t=1

N∑
i=1

−γ̃ti (0)

· EQau(i)

[
(ηti)

2σ(ρ0 + ρ1η
t
i) ·
(
1− σ(ρ0 + ρ1η

t
i)
)]
− 2λ

∂2

∂ρ0∂ρ1
EQ [logP (X)] =

T∑
t=1

N∑
i=1

−γ̃ti (0)

· EQau(i)

[
ηtiσ(ρ0 + ρ1η

t
i)
(
1− σ(ρ0 + ρ1η

t
i)
)]

Here `2 norm regularization with weight λ is used to stabilize
the learning and deal with identifiability issues.

C. CHMM Initialization and Semi-Supervised Training
Our model is trained on multichannel EEG snippets in

which an expert has annotated the approximate start and
end of a single seizure. We emphasize that we do not use
localization information about where the seizure originates and
how it spreads. Rather, our model automatically learns this
information from the data. Pre-seizure is fixed as state Xt

i = 0
and post-seizure is fixed as Xt

i = 2 throughout the course of
training. Inference is performed over the seizure interval with a
required transition into the seizure state. This semi-supervised
strategy overcomes both the lack of exact onset and offset
labels and the lack of spreading labels.

We initialize the emission distribution based on the seizure
interval annotations. A GMM for the seizure state is trained on
all data from the seizure interval while non-seizure state GMM
is trained on data from the rest of the recording. Transition
prior parameters are initialized to ρ0 = −7, ρ1 = 2, φ0 = −3,
and φ1 = 0. These settings correspond to one expected seizure
every 13 minutes lasting an expected length of 15 seconds.
An aunt in a seizure state raises the probability of seizure
onset in a given channel by a multiple of roughly 7, with no
change in offset probability due to aunts in a seizure state. We
emphasize that these settings are just for initialization. The
model updates these parameters through the variational EM
algorithm. In fact, we observe convergence to a stable set of
parameter values regardless of initialization.
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D. Comparison to Machine Learning Baselines

We compared the performance of our model to classifiers
from the machine learning literature, performing classification
using a Deep Neural Network (DNN) and a Random Forests
classifier (RF) [28]. The neural network includes 2 hidden
layers with a discriminative output layer as in [39]. In contrast,
RFs are an ensemble of simple decision trees that perform
classification using majority vote over the decisions of the
ensemble. By combining relatively simple classifiers, random
forests can create complicated decision functions while re-
maining robust to overfitting.

In addition, a GMM based Likelihood Ratio Test (LRT)
was used to perform posterior inference. The GMM-LRT is
analogous to our original model with no prior over the hidden
states. One GMM is trained for all non-seizure intervals to
model P (Y | X = 0) and another is trained on the seizure
intervals to model P (Y | X = 1). δ := P (X = 1) is
fixed to the proportion of seizure in the dataset. The posterior
probability of a test frame belonging to the seizure class is

P (X = 1 | Y ) =
δP (Y | X = 1)

δP (Y | X = 1) + (1− δ)P (Y | X = 0)
.

For each classifier, DNN, RF, or GMM, two approaches to
seizure detection are evaluated. In the first approach, features
from each EEG channel are concatenated to form a single
stacked feature vector used for detection. The second approach
trains classifiers on each channel independently to evaluate the
performance from a channel-wise perspective. These compar-
isons allow us to quantify the gain from fusing information
across channels. When presenting our baseline results, the
prefixes S and I are used to represent stacked feature vectors
and independent channel-wise classification, respectively, e.g.
SGMM for stacked feature Gaussian mixture model or IRF
for independent channel random forest.

IV. EVALUATION ON SYNTHETIC DATA

Synthetic data is generated by simulating different seizure
propagation patterns. The CHMM and baseline algorithms are
then used to infer the underlying spatio-temporal dynamics.
The latent seizure states are sampled from a modified version
of the transition prior outlined in Section II-A governed by
onset parameters {ρ0, ρ1}, and offset parameters {φ0, φ1}.
Each seizure recording begins in a non-seizure state. Prior to
a seizure occurring, the probability of a channel entering the
seizure state depends on its neighbors via σ(ρ0). After onset,
the probability a channel enters the seizure state is given by
σ(ρ0+ρ1η

t
i). Thus, ρ1 controls the speed of seizure spreading,

where higher values cause faster spreading. Departing from
our prior, we enforce that all channels must enter the seizure
state before offset is allowed. Once all channels enter the
seizure state, the probability a channel returns to the normal
state is given by σ(φ0 + φ1η

t
i).

Paremeters are fixed ρ0 = −9.0, φ0 = −3.0, and φ1 = 0.0
to simulate seizures occurring after roughly 425 timesteps.
These parameters control the likelihood of seizure onset,
the base rate of offset, and the between channel influence
during offset. As these parameters are less clinically relevant
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Fig. 5. Simulated underlying seizure stats for (left) slow and (right) fast
propagation. Seizure onset and offset are shown with dashed black vertical
lines. Seizure is shown in blue while non-seizure is shown in white.

than the speed of seizure spreading, we do not vary them
between tests. Instead, we vary the neighborhood influence ρ1,
which indirectly controls the spreading rate. In our experi-
ments, ρ1 ∈ {3.0, 4.0, 5.0, 6.0} to explore a range of seizure
spreading speeds, where higher values of ρ1 correspond to
quicker spreading. While recording length in the real-world
datasets varies, this variation is not clinically meaningful.
Thus the length of the simulations is fixed to 1600 samples,
corresponding to 20 minute recordings. Fig. 5 shows two
simulated seizures for ρ1 = 3.0 (slow) and ρ1 = 6.0 (fast).

Emissions are sampled from a univariate normal distribu-
tions with mean 0 for non-seizure and mean 1 for seizure. The
intra-class variance parameter is swept in [0.1, 1] to evaluate
the model performance under different degrees of separability
between the seizure and non-seizure classes. If the variance
is small, the two classes remain easily separable. However,
as the variance increases, the data distributions have a higher
degree of overlap, making classification more difficult. For
each setting, 10 sets of simulated training and testing data
X are generated, each containing 100 seizures. Classifiers are
trained using the training sets and test performance is reported
for each classifier using the average across all folds.

Figs. 6 and 7 show the results of the simulated experiment.
For both the IDNN and SDNN we use a network with two
hidden layers of 10 nodes. The Area Under the Curve (AUC)
for each test is shown on the y-axis while the intra-class
variance parameter is shown on the x-axis. Fig. 6 shows the
CHMM models and independent baselines for the full range
of intra-class variances. Because the channels are evaluated
individually, baselines in this figure achieve extremely similar
performance for all values of ρ1. At higher noise levels
we observe that performance of the CHMM model degrades
faster under slower spreading seizures. Intuitively, this makes
sense as seizures originating close to simultaneously in each
channel should result in easier cross channel information
fusion, leading to increased performance. Fig. 7 shows the
performance for the CHMM and stacked baselines. In general
we observe that the performance of the stacked baselines
increases as ρ1 increases. This makes intuitive sense, as faster
spreading seizure activity will be present in more channels
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Fig. 6. AUC results for the CHMM and channel-independent baseline methods across a range intra-class variance values. Class separability estimated from
the real-world EEG data is shown by the vertical dashed blue line. Values of ρ correspond to rate of seizure spread.

concurrently and is thus easier to classify.

Finally, we have estimated a lower bound on the class

separability of our real-world EEG data by computing the

Hellinger distance between the seizure and non-seizure classes

in the focal JHH dataset. Specifically, a multivariate normal

distribution with full covariance is fit to the temporal features

extracted for each class (see Section V for details on the

data preprocessing). The Hellinger distance between these

two distributions for each EEG channel is then computed.

These distances were then averaged across all EEG channels

and recordings. Based on the average Hellinger distance, we

computed the real-world data to have an approximate emission

variance of 0.46. This value is marked with a dashed vertical

line in Figs. 6–7.

V. EVALUATION ON CLINICAL DATA

We evaluate our model on clinical EEG data recorded in two

different hospitals. Details of the datasets, preprocessing, and

feature extraction are given below. In our experiments on real

data, the two hidden layers of the IDNN and SDNN contain

10 and 50 units, respectively.

JHH Dataset: This data is acquired in the Epilepsy Mon-

itoring Unit (EMU) of the Johns Hopkins Hospital. The

recordings were screened and annotated by epilepsy fellows

in the Department of Neurology. Due to the liberal annotation

procedures followed at this hospital, many of our annotated

seizure intervals are overly generous and contain periods of

baseline before and after the seizure event. In total our dataset

includes 90 seizures from 15 patients. Each of these seizure

recordings contains up to 10 minutes of baseline EEG before

and after the seizure. Recordings were sampled at 200 Hz in

10/20 reference space using the common average montage.

In early experimentation, we evaluated our methods after

applying the bipolar montage but found no sizable change

in performance. Though not used during training, a subset of

recordings contain clinical annotations of the likely seizure on-

set. When possible, we validate the seizure spread information

generated by our model using these annotations.
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Fig. 7. AUC results for the CHMM and stacked-channel baseline methods across a range intra-class variance values. Class separability estimated from the
real-world EEG data is shown by the vertical dashed blue line. Values of ρ correspond to rate of seizure spread.

CHB Dataset: We also tested our algorithm on a publicly

available dataset recorded at Children’s Hospital in Boston

(CHB) [10],[40]. The dataset contains scalp EEG recordings

from pediatric patients and one adult ranging from age 1.5 to

age 22. Seizure regions from the CHB dataset were trimmed

with a random amount of pre- and post-seizure baseline not

exceeding 10 minutes in each case. In total, 185 seizures from

24 patients were used. This dataset contains both focal and

generalized seizures with more accurately annotated seizure

intervals. The data has been released in the bipolar montage;

hence the network depicted in Fig. 3b for was used inference.

A. Preprocessing and Feature Extraction

Each EEG recording is minimally preprocessed using a

high-pass filter at 1.6 Hz and a low-pass filter at 50 Hz to

remove DC trends and high frequency noise. In addition, a

second order notch filter at 60 Hz with Q = 20 was used to

remove any remaining interference from the power supply.

We extracted features based on 1 second Tukey windows

with shape parameter 0.25 and a 750 ms advance. First,

short time Fourier transform coefficients for each window

are computed. The coefficient magnitudes were summed ac-

cording to the standard EEG frequency bands: theta (1–

4 Hz), delta (4–8 Hz), alpha (8–13 Hz), and beta (13–30

Hz). A logarithm was applied to the summed features. These

features track activity in each brain wave band, which has been

noted to change during seizures and closely resembles feature

extraction techniques in [16], [26]. Log line length features

[41], computed as logL = log
(∑T

t=1|s[t]− s[t− 1]|
)

where

s is a time series, were also included. Line length captures

the smoothness of a signal. The features for each channel

were normalized to mean 0, standard deviation 1 for each

recording. This combination of features echoes those cited

as optimal in [20]. Our prior experimentation with different

feature extraction methods verified that spectral power and line

length outperformed more sophisticated EEG features in the

literature such as wavelet and entropy measures. In addition,
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similar features have been employed for use with implanted
EEG sensors [42].

B. Evaluation

Five-fold cross validation was used to evaluate the methods.
Each recording was randomly assigned to a fold irrespective of
patient. This approach stands in contrast to prior work, which
trains patient specific classifiers. Rather, we evaluate our model
in a general setting where we may not have prior data from
any given patient. Training was performed on four folds while
testing was performed on the remaining fold. Reported metrics
are averaged across all test folds.

We quantitatively evaluate each model based on the amount
of detected seizure activity within the annotated region. Here,
each channel detection within the seizure interval is counted as
True Positive (TP). Each channel detection outside the interval
counted as a False Positive (FP). Let t = 0, . . . , T index the
one-second time windows within a single recording and let ts
and te denote the starting and ending time of the annotated
seizure interval. Mathematically let the TP, FP, True Negatives
(TN), and False Negatives (FN) for channel i be defined as:

TPi =

ts∑
t=te

1(Xt
i = 1) FPi =

T∑
t=1

1(Xt
i = 1)− TPi

FNi =

ts∑
t=te

1(Xt
i 6= 1) TNi =

T∑
t=1

1(Xt
i 6= 1)− FNi .

Detections are aggregated across channels to yield True Posi-
tive Rate (TPR) and True Negative Rate (TNR):

TPR =
1

N

N∑
i=1

TPi
te − ts

TNR =
1

N

N∑
i=1

TNi
T − (te − ts)

.

As we lack onset annotations for each individual channel we
calculate these statistics based on the single clinician provided
onset annotation. This strategy is based on the assumption
that given liberal onset annotations, any positive classification
within the annotation are likely to be correct.

Our reported performance is averaged over (potentially
generous) seizure regions. Notice that our evaluation criterion
is more stringent than the metrics reported in prior work as we
report percentages of correctly classified activity rather than
a single correct detections within the seizure interval. Hence,
lower overall TPR than is presented in other seizure detection
papers is expected. Precision (P) and Recall (R) averaged
across channels are reported along with the AUC and F1 score
to evaluate overall performance of each detector:

P =
1

N

N∑
i=1

TPi
TPi + FPi

R =
1

N

N∑
i=1

TPi
TPi + FNi

.

C. Experimental Results

Fig. 8 depicts the output of our model for a single recording
from the JHH dataset. Fig. 8a shows the posterior beliefs
of our model in blue. EEG channels are arranged along the
y-axis of the image while time progresses horizontally. The
dashed black lines indicate the annotated onset and offset of
the seizure. Once again, these annotations serve as a rough
guide, rather than a precise demarcation of onset. Fig. 8b-d
shows baseline classifications for the same recording shown
in Fig. 8a. Fig. 9 shows the same posterior distributions
superimposed on the raw EEG signal while Fig. 10 shows
them topographically on the scalp as the seizure progresses.

These results illustrate the ability of our CHMM to correctly
label seizure intervals. Clinical annotations for the seizure in
Fig. 8 note rhythmic theta activity in the left frontal area at the
onset of the seizure, which correlates with the earliest CHMM
detection in Fig. 8a. Likewise, the superimposed posteriors in
Fig. 9 and topographic detail in Fig. 10 both show the earliest
response of our model occurring in the left frontal region and
spreading through the rest of the channels.

Figs. 8b and 8c illustrate the behavior when using the
concatenated spectral power and line length features to make a
single framewise classification. Notice that both models place
higher weight on the seizure interval but lack contiguity. In
addition, the GMM model in Fig. 8b reacts strongly to activity
after the seizure that is likely muscle artifact. Conversely,
Fig. 8d shows the results when channels were classified
independently using a GMM classifier. This strategy allows
us to isolate seizure activity in different channels but does not
impose spatial or temporal contiguity in classification.

Mean and standard deviations of evaluation metrics are
shown for the JHH dataset in Table II. As seen, our method
outperforms all machine learning baselines. The clinical an-
notations demarcating seizure intervals have a tendency to
extend beyond onset and offset. This coarse labeling and our
stringent evaluation explains the low TPR across all models
relative to results in the literature. The effect of the spatio-
temporal transition prior is clear by comparing the CHMM
with the IGMM. The prior allows our model to correctly
place more posterior confidence in seizure, resulting in a
higher TPR, while ignoring non-seizure baseline behavior that
resembles seizure activity, simultaneously improving TNR. Of
the baselines evaluated, only the SDNN surpassed the CHMM
in TPR. The CHMM model surpasses the baseline methods
in the summary scores AUC and F1, standing as much as a
standard deviation above the best performing baselines.

Similar to the JHH dataset, Fig. 11 depicts posterior beliefs
for a representative patient from the CHB dataset. Again, black
dashed lines indicate annotated seizure onset and offset. Fig.
11a shows posteriors from the CHMM. Since the dataset does
not include annotations of seizure type or focus, images of pos-
teriors superimposed on the raw EEG signal and topographic
details have been omitted, Once again, posteriors from both
GMM baselines and the SRF are included.

Notice that in Fig. 11a the CHMM correctly labels the
region containing the seizure but its detection extends slightly
beyond the annotated offset. This is behavior can be attributed
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Fig. 8. CHMM and selected baseline classification posteriors for a representative JHH patient. EEG channels are arranged on the y-axis with time along the
x-axis. Seizure onset and offset are indicated by the vertical dashed lines. (a) Classification results using our CHMM model. Stacked features are used in
conjunction with GMM and RF classifiers in (b) and (c), respectively. (d) Classification performed on each channel with a GMM. Posterior beliefs are shown
in blue where intensity depicts the strength of the belief.

Fig. 9. CHMM posteriors superimposed on EEG for the recording in Fig. 8. Raw EEG signal is shown in blue while CHMM posteriors are shown in red.
EEG channels are organized on the y-axis, while time progresses along the x-axis.

to the high degree of artifact present in the EEG signal
post-seizure. While we lack clinical annotations regarding
seizure types for this dataset, the presence of rhythmic activity
occurring simultaneously in all channels at the annotated
seizure onset indicates that this is likely a generalized seizure.
Our CHMM inference readily captures this phenomenon by
turning all channels on simultaneously. Hence even though our
CHMM prior assumes a assumes a focal spreading pattern,
our method is flexible enough to capture multiple seizure
types. Once again, the baseline classifiers suffer from the
same drawbacks. The models trained on stacked features place
higher beliefs in seizure regions but allow for many spurious
onsets and offsets while models trained on each channel

individually place lower posterior beliefs in seizure regions.

Quantitative results for the CHB dataset are shown in
Table III. The best performance under each metric is bolded.
We have underlined when our model achieved the second
highest performance in any metric. Our model outperforms
baselines in most metrics while remaining within a standard
deviation of the best performing baselines. In general, the
GMM and RF classifiers using stacked features are slightly
biased towards positive classifications, resulting in higher TPR
and recall, but lower TNR and precision.

In summary, our Bayesian model outperforms all baseline
methods in the JHH dataset. The focal epileptic seizures
present in this population are most accurately classified using
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Fig. 10. Spread of the seizure depicted in Fig. 8, as computed by the CHMM. The CHMM classifies the earliest ictal activity occurring in the left frontal
channels in agreement with clinical annotations.

TABLE II
QUANTITATIVE RESULTS FOR THE JHH DATASET

Classifier TPR TNR AUC P R F1

CHMM 37.40± 7% 98.29± 0.54% 0.84± 0.05 0.66± 0.11 0.44± 0.09 0.49± 0.09

SDNN 38.10± 4 % 93.76± 1.08 % 0.82± 0.03 0.35± 0.04 0.41± 0.05 0.35± 0.04

SGMM 33.42± 5 % 95.19± 1.45 % 0.72± 0.04 0.44± 0.08 0.37± 0.06 0.36± 0.00

SRF 29.35± 3 % 92.53± 1.20 % 0.79± 0.03 0.29± 0.05 0.34± 0.04 0.28± 0.06

IDNN 22.31± 2 % 92.93± 1.02 % 0.80± 0.03 0.24± 0.03 0.25± 0.02 0.22± 0.02

IGMM 26.20± 3 % 92.79± 1.36 % 0.79± 0.03 0.27± 0.04 0.30± 0.03 0.25± 0.04

IRF 24.11± 3 % 92.51± 1.04 % 0.74± 0.03 0.24± 0.03 0.28± 0.03 0.23± 0.03

the CHMM with a transition prior designed for this task.
Baseline methods fared poorly in part due to the heterogeneity
of focal seizure presentations. In general, the CHB dataset
contains better annotations, resulting in higher performance
across the board. Furthermore, stacked feature vector based
classification in the CHB dataset is better due to the presence
of generalized seizures. Despite being tailored to capture focal
spreading patterns, our CHMM maintains robust performance
across both datasets. This cross hospital evaluation is the first
of its kind and demonstrates our model’s ability to generalize
to diverse seizure types and patient populations.

VI. DISCUSSION

We have developed a novel CHMM framework that captures
the spatio-temporal propagation of a seizure for robust seizure
detection. Using a variational approximation, we are able to
efficiently perform inference and learn the model parame-
ters despite its high dimensional state space. The CHMM
is compared to baseline classifiers based on both individual
and concatenated EEG features trained across patients. The
framework is evaluated on EEG data acquired at two different
hospitals, which has not previously been reported in the seizure
detection literature. Our CHMM model outperformed or per-
formed comparably to the best machine learning baselines
in both our JHH dataset of focal epilepsy and the publicly
available CHB dataset of pediatric epilepsy recordings.

Performance of our model in the JHH dataset exceeded that
of all the baselines in all but one statistic. This improvement
demonstrates our models efficacy in patient-agnostic seizure
detection in a heterogeneous focal epilepsy dataset. In contrast,
for the CHB dataset, our CHMM performed within a standard
deviation of the best baseline approaches. We believe these
differences arise from two clinically-relevant factors. First,
our modeling choices regarding the spread of focal seizures
mirror that of the patient cohort, as every patient in the

JHH dataset has focal epilepsy. Thus our model more closely
models the data than any of the baselines, leading to increased
performance. In the CHB dataset, seizures appear to spread
faster, indicating the presence of patients with generalized
seizures. The simulations demonstrate that stacked feature
baselines perform better in these conditions, thus explaining
their better performance in this more homogeneous patient
cohort. Second, the CHB dataset has been well-curated prior
to its release, allowing better training of baseline models.
In contrast, the JHH dataset has undergone minimal pre-
preprocessing to better reflect clinical conditions.

Furthermore our model provided onset localization informa-
tion for several patients in the JHH dataset, which highlights its
potential use in localizing seizure foci. This coarse localization
in the EEG sensor space mirrors the early stages of clinical
diagnosis, where EEG provides localization to a channel or
lobe. As EEG is cheap to acquire, this coarse localization
provides diagnostic information to guide expensive or invasive
modalities, such as PET, MRI, or ECoG. Findings from EEG
can be used in conjunction with these modalities for more
comprehensive localization and treatment planning.

Interestingly, the CHB dataset includes generalized seizures
which do not fit the assumptions of our spreading prior. Cor-
respondingly, our simulated experiments show that the stacked
baselines achieve better performance with faster spreading
seizures. This behavior is mirrored in the CHB dataset where
the CHMM performs on par with the baselines, particularly
for the stacked feature representations. The advantage of our
model stems from the ability of the CHMM transition prior
to isolate the highest probability seizure interval. Despite the
lack simultaneous onset in generalized seizures, this temporal
data fusion still increases the CHMM performance relative to
the individual channel baselines.

Future work will explore several modeling improvements
to our CHMM. For example, allowing synchronous onset



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2950252, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. X, XXXXTOBER 20XX 14

600 650 700 750

Time (s)

FP1-F7
F7-T7
T7-P7
P7-O1

FP1-F3
F3-C3
C3-P3
P3-O1
FZ-CZ
CZ-PZ
FP2-F8
F8-T8
T8-P8
P8-O2

FP2-F4
F4-C4
C4-P4
P4-O2

E
E
G

C
h
a
n
n
e
l

CHMM

600 650 700 750

Time (s)

SGMM

600 650 700 750

Time (s)

SRF

600 650 700 750

Time (s)

IGMM

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b) (c) (d)

Fig. 11. CHMM and selected baseline classification posteriors for a representative CHB patient. EEG channels are arranged on the y-axis with time along
the x-axis. Seizure onset and offset are indicated by the vertical dashed lines. (a) Classification results using our CHMM model. Stacked features are used in
conjunction with GMM and RF classifiers in (b) and (c), respectively. (d) Classification performed on each channel with a GMM. Posterior beliefs are shown
in blue where intensity depicts the strength of the belief.

TABLE III
QUANTITATIVE RESULTS FOR THE CHB DATASET

Classifier TPR TNR AUC P R F1

CHMM 57.43± 5.64% 98.67%± 0.38 0.86± 0.03 0.65± 0.05 0.54± 0.06 0.56± 0.04

SDNN 52.31± 8.44% 97.79± 0.41% 0.91± 0.01 0.51± 0.05 0.48± 0.09 0.47± 0.07

SGMM 59.40± 4.28% 97.36± 0.67% 0.87± 0.02 0.53± 0.05 0.55± 0.02 0.51± 0.03

SRF 46.89± 4.63% 96.55± 0.29% 0.88± 0.02 0.41± 0.03 0.45± 0.03 0.40± 0.03

IDNN 27.73± 2.09% 95.62± 0.22% 0.83± 0.02 0.27± 0.03 0.27± 0.02 0.24± 0.02

IGMM 30.82± 2.05% 95.56± 0.22% 0.83± 0.02 0.28± 0.03 0.30± 0.02 0.26± 0.02

IRF 29.66± 2.52% 95.45± 0.20% 0.76± 0.02 0.27± 0.03 0.29± 0.02 0.25± 0.02

in all channels could increase performance on generalized
seizures. Likewise, evaluating concatenated features could
increase model performance. This fusion could be performed
by an auxilary HMM chain that focuses on the concatenated
feature vectors to initiate the spreading chains. In addition,
we observe that seizures recordings typically progress from
rhythmic behavior to intervals of muscle artifact. Including
more seizure states to model this transition could aid in
localization and improve performance in general. Finally, some
elements of our model may be useful in seizure prediction
tasks where the specific focus is generally known and the
typical propagation pattern is of interest. Seizure prediction is
typically performed using ECoG and some adaptation to this
domain may be required. However, as scalp EEG becomes
more available through wearable technology [43], techniques
designed for scalp EEG may become more prevalent in seizure
prediction.

Many features have been evaluated for the purpose of EEG-
based seizure detection. In this work, we identified spectral
bands and line length as robust and simple features. However,
learning these representations from the data is an interesting
direction for future work. For example, we may levarage lever-
age the ability of deep learning to learn more discriminative
representations for EEG analysis from data.

VII. CONCLUSION

In this paper we developed a spatio-temporal propagation
model for epileptic seizures based on a CHMM architecture.
We demonstrated our model on a dataset of focal epilepsy
recordings and on a publicly available dataset of pediatric
EEG recordings. By specifically modeling the spread of focal
seizures, our model outperforms baseline classifiers in the
dataset containing focal epilepsy recordings. In the dataset
comprised of pediatric seizure recordings, our model performs
the best or comparably to our baselines. While commercial
seizure detection algorithms exist, they have yet to supplant
manual annotation. Accurate and reliable seizure detection re-
mains a clinical necessity. Our experimentation here indicates
that direct modeling of cross-channel interactions present in
EEG signals can improve the performance of seizure detection
algorithms. This modeling shows the ability to provide infor-
mation capable of aiding the localization process for diagnosis
and treatment planning of focal epilepsy.
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