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Abstract

We present a novel approach for emotion conversion that

bridges the domains of speech analysis and computer vision.

Our strategy is to warp the pitch contour of a source emotional

utterance using diffeomorphic curve registration. The associ-

ated dynamical process pushes the original source contour to-

wards that of a target emotional utterance. Mathematically, this

warping process is completely specified by a set of initial mo-

menta. Therefore, we use parallel data to train a highway neural

network (HNet) to predict these initial momenta directly from

the signal characteristics. The input features to the HNet in-

clude contextual pitch and spectral information. Once trained,

the HNet is used to obtain the initial momenta for new utter-

ances. From here, the diffeomorphic process takes over and

warps the pitch contour accordingly. We validate our frame-

work on the VESUS repository collected at Johns Hopkins Uni-

versity, which contains parallel emotional utterances from 10

actors. The proposed warping is more accurate that three state-

of-the-art baselines for emotion conversion. We also evaluate

the quality of our emotion manipulations via crowd sourcing.

Index Terms: Emotional speech morphing, 2D curve registra-

tion, momentum estimation, highway neural network

1. Introduction

Human speech contains a vast amount of information beyond

the semantic content. For example, the manner of speaking im-

plicitly reflects our emotional state and intent [1, 2]. While hu-

mans are adept at generating and parsing these emotional cues,

the same cannot be said for automated platforms. One reason

is that emotions are highly complex with overlapping signal

attributes, thus making them difficult to disentangle. Another

reason is the lack of freely available emotional speech data to

train end-to-end systems. As a result, most emotion recogni-

tion models cannot generalize beyond individual datasets, and

expressive synthesis remains an open problem [3]. This paper

circumvents the challenges of prior work by focusing on the

problem of emotion conversion. Namely, given a neutral speech

utterance, we learn a model to transform the emotional content

without altering the semantic or speaker information.

At a high level, emotional speech is controlled by three

prosodic attributes: pitch also known as fundamental frequency

(F0), signal intensity, and speaking rhythm [1]. Out of these,

the pitch contour controls intonation, which plays a crucial role

in emotional expression. For example, anger is often charac-

terized by sharp increases in pitch, while sadness is linked to

gradual pitch reductions. Several previous works have explored

the problem of emotion conversion via prosodic manipulation.

A explicit modeling of the pitch contour was proposed by [4].

The authors compared the accuracy of linear regression, a Gaus-

sian mixture model (GMM) and nonlinear regression trees in

performing the required manipulations. Another method pro-

posed by [5] independently modified prosodic and spectral fea-

tures. Similarly, a GMM with global variance constraint was

proposed for voice conversion in [6] and later adopted for emo-

tion conversion by [7]. Sparse coding and dictionary learning

based strategies have also been used for emotion conversion. In

particular, the work of [8] developed a non-negative matrix fac-

torization (NMF) model to learn parallel spectral dictionaries

for the source and target emotions. A new utterance is first en-

coded using the source dictionary and reconstructed using the

target. With the advent of deep learning, the work of [9] pro-

posed a bi-directional long-short memory network (Bi-LSTM)

model for emotion conversion, which acts on both the prosodic

features and a parameterized spectrum. The prosodic features

are also affected by both short-term (phoneme level) and long-

term (syllables or words level) acoustic events of an utterance.

This paper develops a completely novel framework for

emotion conversion based on the principles of deformable im-

age registration. Image registration is a widely studied prob-

lem in computer vision, where the goal is to align two images

by manipulating the underlying coordinate systems [10, 11].

Within this class of transformations, diffeomorphic algorithms

are based on a smooth and invertible displacement field using an

exponential mapping [12]. In our case, the “images” will corre-

spond to 2-D pitch contours of the same utterance in the source

and target emotions. We will learn a simple vertical transforma-

tion that locally changes the pitch without affecting the speaker

identity or speaking rate. Mathematically, this transformation

is parameterized by an initial displacement field, also known as

the momenta. Our strategy is to predict the initial momenta us-

ing a highway neural networks (HNet) architecture. The HNet

input features consist of the raw spectrogram averaged within

the standard Mel-frequency bands, along with the F0 values in

a 400 ms context window. We train and evaluate our model

on the VESUS emotional speech database collected at Johns

Hopkins [13]. We compare the performance of our momenta

prediction algorithm with three state-of-the-art baselines.

2. Momentum-Based Emotion Conversion

VESUS contains parallel emotional utterances, which allows us

to draw frame-wise correspondences. We use the STRAIGHT

vocoder [14] to extract pitch contours from the utterances. Dur-

ing training, we align the source and target emotional utterances

using dynamic time warping [15]. From here, we use the formu-

lation in the next section to estimate the frame-wise momenta

for each utterance pair. We then train an HNet to predict these

momenta based on the pitch and spectral information in the

original utterance. During testing, we estimate the frame-wise

pitch momentum using our trained HNet and apply the diffeo-
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Figure 1: Illustration of 2-D diffeomorphic registration for emotion conversion. Left: source (neutral) and target (emotional) pitch

contours from parallel utterances. Middle: intermediate output as source moves towards target. Right: final curve alignment.

morphic transformation to obtain the new pitch contour. We

resynthesize the modified utterance again using STRAIGHT.

2.1. Diffeomorphic Registration for 2-D Curves

Our goal in this work is to learn a transformation on pitch con-

tours that alters the perceived emotional content of the recon-

structed utterance. We adopt the Large Deformation Diffeomor-

phic Metric Mapping (LDDMM) framework [16, 17], which

provides global convergence and optimality guarantees. At a

high level, LDDMM is based on an underlying vector field that

acts on the source contour. This vector field is parameterized by

an exponential map, which provides a smooth transition. For

simplicity, we assume that the signals have been aligned using

dynamic time warping (DTW). In this case, the vector field acts

only in the vertical direction to locally change the pitch values.

Fig. 1 illustrates this warping process on two pitch contours.

Mathematically, let pt and p̂t be the source and target

pitch contours, respectively. The time index t corresponds

to the discrete sampling of the contours from t = 0, . . . , T .

Our approach is related to the landmark LDDMM setting of

[18, 19, 20] with a vertical constraint on the vector field. In par-

ticular, let vt(x; s) be a non-stationary and finite norm vector

field across time t and pitch values x. These vector fields gener-

ate the dynamical deformations with respect to the second evo-

lution argument s. Namely, for a fixed point in time t, we can

consider the continuous flow x 7→ ϕv
t (x; s) of the vector field

for s ∈ [0, 1] defined by ϕv
t (x; 0) = pt and the ordinary dif-

ferential equation (ODE) ∂sϕ
v
t (x; s) = vt(ϕ

v
t (x; s); s). Here,

the initial condition specifies that we begin the evolution pro-

cess from the source pitch contour. The ODE specifies that the

displacement at every new pitch value is given by the vector

field vt(x; s). The evolution process terminates at s = 1.

We now formulate the registration problem between the

source pitch contour pt and the target pitch contour p̂t through

the following optimal control problem:

min
v∈V

1

2

∫
1

0

‖vt(·; s)‖
2

V ds+ λ

T∑
t=1

(ϕv
t (pt; 1)− p̂t)

2
(1)

The first term of Eq. (1) is a smoothness constraint on the under-

lying vector field. The Hilbert norm || · ||V is implicitly defined

through a 2-D exponential kernel that operates across time and

pitch. The second term of Eq. (1) is the data matching term,

which enforces that the warped source contour should be close

to the target contour. Notice that the parameter λ controls the

trade-off between smoothness and registration fidelity.

The Pontryagin maximum principle of optimal control [20]

allows us to derive necessary conditions for the solution to

Eq. (1). In this case, the theory shows that there exist vari-

ables ms
t for s ∈ [0, 1] that we call momenta. These mo-

menta behave like hidden state variables in the continuous-time

Kalman filter framework. The “observed” variables in this anal-

ogy are the pitch values of the warped contour. The Hamiltonian

dynamics associated with the state/observer model allow us to

reformulate Eq. (1) as a minimization over initial momenta m0

t .

Formally, let zt(s) = [t ϕv
t (pt; s)]

T be a two-

dimensional vector of the time and deformed pitch value,

and let γij(s) be the kernel evaluated at the pair of vec-

tors zi(s) and zj(s). The quadratic objective for the collection

of initial momenta can be written as follows:

J (m0) =
1

2

T∑
i,j=1

γij(0)m
0

im
0

j + λ

T∑
t=1

(ϕv
t (pt; 1)− p̂t)

2

(2)

subject to Hamiltonian equations. A standard approach to

solve such a problem numerically is given by shooting al-

gorithms [21]. We essentially apply a quasi-Newton descent

method on J , where the gradient w.r.t m0 of the second term

in Eq. (2) is computed via the adjoint Hamiltonian equations.

Our strategy is to use Eq. (2) to solve directly for the initial

momenta in the training dataset, where we have access to paral-

lel emotional utterances. We will then train a neural network to

predict these momenta directly from the signal characteristics.

This neural network will be applied to the testing utterances to

predict the (unknown) initial momenta. The contour registration

process is completely specified once we have these values.

2.2. Input Features for Momentum Prediction

As described above, our model predicts the initial displacement

(i.e., momenta) to transform a source utterance to the target

emotion. We use two classes of features to predict the frame-

wise momentum: a compressed form of the raw spectrum and

the original pitch contour with a 200 ms context on both sides of

the frame. Our rationale for using a long contextual window for

pitch is to account for both local and global properties. Since

pitch is affected by both segmental (phonetic level) and supra-

segmental (syllable or word level) characteristics, a context of

360 ms ensures that the pitch information is provided over on

average two syllables. All input features are extracted using a

frame period of 5 ms and a 5 ms window stride.

To reduce the input dimensionality, we compress the raw

spectral envelope using the normalized Mel frequency. Specifi-
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Figure 2: HNet architecture for initial momentum prediction.

cally, we first compute a 1,024 point FFT for each time frame,

which results in a 513 dimensional magnitude spectrum Ft ∈
R

513×1 (frequency range 0 to π). We use the normalized Mel

filterbank matrix to obtain a 128-dimensional input representa-

tion Ŝt ∈ R
128×1. The filterbank matrix preserves the shape of

the spectrum while preserving the acoustic information present

in the frame. Our compression scheme is highly effective in ac-

celerating the training times for our deep neural networks. Em-

pirically, we find that further compression beyond 128 dimen-

sions leads to undesirable distortions in the spectral envelope.

2.3. Highway Neural Network Architecture

We employ an artificial neural net with skip connections be-

tween the input and hidden layers. This architecture is known

as a highway network (HNet). Our model contains one input

layer, three hidden layers, and one output layer, as illustrated in

Fig. 2. The input spectral features ŝt are normalized to mean 0
and unit variance while the pitch contours pt are fed in without

any normalization. The output of neural network, i.e., the initial

momentum mt, is given by the following expression:

mt = φ[W34 × φ[W23 × (φ[W12

× (φ[W01 × {ŝt,pt}+ b1]

⊕ Iŝt) + b2]⊕ Iŝt) + b3] + b4] (3)

The variables Wij in Eq. (3) denote the weights going from

layer i to layer j, and φ is the ReLU non-linearity [22] applied

at each hidden layer and the output. The variable bi is the bias

related to the layer i. The term Iŝt denotes the skip connections

concatenated to the second and third hidden layer output, re-

spectively. The variable I is the identity matrix showing there is

no transformation of the features being carried out in skip con-

nections. Variable mt is the momentum predicted for the input

source frame t. We use a dropout [23] rate of 0.3 and batch

normalization [24] after every hidden layer and before the skip

connections with identity. We use the Adam optimizer [25] with

a fixed learning rate of 0.01 and mini-batch sizes of 500.

2.4. Reconstruction

The predicted momenta are used to transform the entire source

pitch contour. The aperiodicity and spectrogram components

are copied directly from the source speech. We reconstruct the

modified utterance using STRAIGHT by replacing the source

pitch contour with the transformed version.

3. Experimental Setup

We performed both an objective and subjective evaluation of our

momentum prediction framework. The results are compared to

three state-of-the-art emotion conversion baseline algorithms.

3.1. Emotional Speech Dataset and Evaluation

Our training and evaluation relies on the VESUS emotional

dataset collected at Johns Hopkins University [13]. VESUS

contains parallel emotional utterances spoken by a mix of ama-

teur and professional actors. The database has 2500 utterances

for each of five emotional classes: happiness, anger, sadness,

fear and neutral. The dataset also contains perception ratings

for each utterance provided by 10 raters on Mechanical Turk.

In this work, we consider three emotion conversion models:

neutral to angry, neutral to sad, and neutral to happy. These

conversions span both high- and low-arousal emotions to test

the limits of our diffeomorphic registration approach. We also

sub-select the VESUS utterances based on ≥ 50% agreement

between raters. The total numbers in our experiment are:

• Neutral to Angry: 1534 utterances for training, 72 for

validation, and 100 for testing.

• Neutral to Happy: 790 utterances for training, 43 for

validation, and 43 for testing.

• Neutral to Sad: 1449 utterances for training, 63 for val-

idation, and 70 for testing.

Our objective evaluation includes the mean absolute er-

ror and the Pearsons correlation coefficient measure between

the predicted pitch values and their corresponding ground truth

counterparts. For subjective evaluation, we ask human raters

on AMT (Amazon Mechanical Turk) to score each of the con-

verted test sample for perceived emotion. The survey plays two

audio files for the raters to listen. One of them is the baseline

neutral speech and the other one is the speech converted into

one of the target emotions. The order of neutral and emotional

speech is randomized in each trial to weed out any non-diligent

raters. After they are done listening, we ask them to indepen-

dently classify the emotion in both audio files. A bias correc-

tion using source (neutral) speech is important in our evalution

because emotion perception is highly dependent on knowledge

about the speaker articulation or manner of speaking.

3.2. Baseline methods

We compare the momentum prediction model against three

state-of-the-art baseline methods for emotion conversion. The

first baseline fits a Gaussian mixture model (GMM) to the joint

distribution of the source and target STRAIGHT cepstrum fea-

tures and fundamental frequency [7]. We use the global vari-

ance constraint proposed by [6] to improve the GMM accuracy.

The second baseline relies on the dictionary learning and

sparse Non-Negative Matrix Factorization (NMF) method de-

veloped in [8]. Here, two parallel dictionaries of STRAIGHT

spectrum are constructed from the training dataset by using an

active Newton set based method. NMF estimates the sparse

coding of the input spectral features over the source dictionary.

This sparse coding is then used to construct the converted spec-

trum and fundamental frequency using the target dictionary.

The third baseline is the Bi-LSTM model developed in [26].

As outlined in the original publication, we pre-train the Bi-

LSTM on the CMU-ARCTIC voice conversion corpus [27] and

fine-tune it for emotion conversion on the VESUS database.

This method simultaneously converts both spectral and prosody
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Table 1: MAE and Pearson’s Correlation measures for pitch

across target emotions using multi-speaker model.

Algorithm MAE(F0) Corr(F0)

Neutral-to-Angry

GMM 44.3 0.54

NMF 94.2 0.22

Bi-LSTM 57.4 0.34

Proposed 40.5 0.61

Neutral-to-Happy

GMM 53.8 0.51

NMF 106.7 0.25

Bi-LSTM 67.6 0.48

Proposed 49.8 0.54

Neutral-to-Sad

GMM 29.1 0.8

NMF 65.3 0.4

Bi-LSTM 29.6 0.78

Proposed 27.7 0.74

(pitch, energy) features between source and target emotion. The

prosody features are parameterized by a continuous wavelet

transform [28]. The intention behind such parameterization is

to consider both short-term and long-term pitch and energy tra-

jectories by using ten different wavelet scales.

4. Experimental Results

Table 1 summarizes the objective results obtained for baseline

and proposed methods. Our algorithm is uniformly better at

approximating the target pitch contour in absolute error sense.

The results demonstrate that our parameterization of pitch de-

formation by intial momentum does work effectively.

The GMM based prosody and spectrum conversion comes

a close second, beating both NMF and Bi-LSTM based mod-

els. The reason for this can be attributed to the simplicity of

GMM which allows it to learn the parameters i.e., mean and

covariances in high dimensional space. However, the speech

reconstructed by GMM is poor because of the averaging effect

that mixture models have. It fails to conditionally sample from

the tails of joint distribution and hence the predicted pitch wig-

gles about the mean of the training data. NMF does a poor job

in prediction of prosody because of the lack of any global con-

straint while estimating sparse coding. The cepstral features are

not a unique representation of an acoustic unit and there exist a

many-to-one mapping. This further results in discontinuities in

the converted spectrum going from one frame to the next. In the

end, the reconstructed speech is very distorted and sometimes

completely unitelligible. Bi-LSTM does worse compared to our

method of pitch approximation because of its over parameteri-

zation. The multi-scale wavelet transform used for encoding the

prosodic features leads to a very rough estimate of the predicted

pitch and energy contour. Furthermore, the underlying assump-

tion about the existence of local minima for emotion conversion

being close to the voice conversion optima is not always true.

In contrast, our proposed model predicts only one value

which is the initial momentum parameter. Besides, we design

Figure 3: Comparison of emotion classification accuracy.

our HNet to appropriately learn this regression function by min-

imizing the l1 penalty which, unlike l2 loss allows the model to

evenly focus on the less extreme parts of the target distribution.

Our subjective evaluations are based on five crowd-sourced

ratings for each converted speech via AMT. A majority vot-

ing decides the final emotion label of the converted utterances.

We found the reconstructed speech from the GMM and NMF

models are be highly distorted and unintelligible. Therefore,

we only obtain crowd-sourced ratings for our HNet and the

Bi-LSTM model. To get a uniform comparison between the

proposed method and Bi-LSTM based conversion, we crowd-

source the ratings for exact same utterances spoken by same

speakers. Fig.3 shows the emotion classification accuracy on

the testing utterances. Compared to the baseline model, our

proposed model has higher classification accuracy across all

three emotions. Further, the classification for neutral-to-angry

is the best followed by neutral-to-happy and then neutral-to-sad.

Comparatively, the high arousal emotions like angry or happy

are easier to discern than low arousal emotions like sad. This ef-

fect is evident in the Fig.3 as the difference in classification ac-

curacy is lowest for neutral-to-sad conversion. Our method, un-

like the Bi-LSTM model, only modifies the pitch and still does

remarkably better on the listening tasks. This proves that the

proposed method is very robust for carrying out emotion mor-

phing. Another point to be noted is that, since we only modify

the pitch and not the spectral envelope, the speaker information

is retained and the converted speech is distortionless.

5. Conclusion

We proposed a method for emotion conversion based on esti-

mating a curve warping function for pitch contours. The warp-

ing was based on a diffeomorphic registration technique that

generates a sequence of smooth and invertible time-varying vec-

tor fields in an iterative fashion. We trained a highway net-

work to predict the deformation parameter, also called as the

initial momentum, for every point on a given pitch contour.

The warped curve was used to reconstruct speech for three tar-

get emotions. Our experiments showed that the speech gener-

ated by modified pitch contours were perceived more emotional

than speech generated by the baseline algorithm. Furthermore,

our proposed model retained the speaker characteristics and the

quality of speech by not changing the spectral envelope of the

source audio. As a future direction, we plan to modify both

pitch and speaking rate (duration) to exercise a control over the

strength of target emotion in converted speech.

Acknowledgements: We thank Jacob Sager for his help
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